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Introduction

Scheduling problems are among the most widely studied problems in computer science,
mathematics and operations research. Scheduling decisions are involved in a huge amount
of decision and optimization problems arising in practice, for instance, in computer sys-
tems as well as in tactical, strategical and operational production planning. Due to the
practical relevance and in many cases due to the intrinsic hardness, these problems have
challenged researchers with theoretical as well as with practical background.

In a scheduling problem, we want to find start times for a set of jobs that have
certain characteristics with respect to a set of side constraints, such as precedence rela-
tions or resource constraints. These problems arise in many applications, such as setting
up time-tables in schools and universities, in production planning and when assigning
crews to specific operations. Due to these and numerous other applications, schedul-
ing problems have been widely studied and various optimization techniques have been
developed to solve problems of this type. These problems often contain different char-
acteristics that make these problems already NP-hard. To compute optimal solutions
to such problems is a challenging task. Different communities from the OR-society, such
as Integer Programming (IP), Constraint Programming (CP) and Satisfiability Solving
(SAT) developed exact solvers with different abilities to model and solve optimization
problems.

MIP solving is restricted to problems that can be modeled via binary, integer or con-
tinuous decision variables coupled with linear constraints. An LP relaxation is solved in
each node of the branch-and-bound tree with the heavy use of cutting plane algorithms
in order to increase the dual bound and thereby prune unpromising search spaces. Fur-
ther techniques, such as Lagrangean relaxation, Dantzig-Wolfe decomposition or Benders
decomposition can be used to cope with large instances. In a CP solver where usually
no objective function is present, propagation algorithms are applied in each node of the
search tree in order to shrink the domains of the variables until a feasible solution is
found if the problem is not infeasible at all. In SAT solvers, problems are model via bi-
nary variables (true or false) and clauses over these variables in conjunctive normal-form.
A technique called conflict analysis is used to speed up the search. Thereby, infeasible
states are analyzed in order to perform backtracking or to learn new valid clauses.

The goal of this thesis is to develop and compare solution techniques in a hybrid
framework that integrates the different techniques from mathematical programming (CP,
IP and SAT) in one search tree. In particular, we study the complexity of delivering opti-
mal explanations for propagation algorithms and the complexity of deriving lower bounds
through a continuous relaxation, both for cumulative scheduling problems, such as the
very general Resource-Constrained Project Scheduling Problem (RCPSP). The techniques
developed for this problem will also be applied to related problems, such as RCPSP with
discounted cashflows, a labor-constrained scheduling problem and a resource leveling



problem as it occurs, e.g., in chemical manufacturing. Heading for a generic solver, we
show how the techniques are best integrated and measure the impact of preprocessing,
and of different propagation algorithms, relaxations and branching rules.

Main lessons. RCPSP is a fascinatingly complex problem which has attracted many
researchers over the last decades. It is widely believed that CP techniques perform best
on these instances as they are of high logical structure that can be used throughout
search. This thesis sheds some light on the strengths of the different techniques from IP,
CP and SAT. We show the merits of using conflict analysis as well as IP techniques to
tackle such problems.

We will show that it pays off to compute explanations of minimum size as this creates
smaller conflict clauses. Another important strength of our solver is the use of generic
branching rules. In contrast to problem specific branching rules, learning from infeasible
states is important to guide the search by branching on variables that are often involved
in conflicts. Guiding search by pseudocost as done in MIP solving, is even better than
search schemes from CP and SAT. Using the logical structure and identifying easy as
well as hard parts of the instances is important to handle the hard scheduling instances.
We propose to transfer coefficient strengthening techniques from MIP to CP’s global cu-
mulative constraint in order to derive better bound adjustments. Similarly, the detection
of subnetworks that induce their own lower bounds on transitive precedence relations is
a key ingredient to improve the dual bounds of several instances.

The application of these hybrid techniques to net present value problems with a more
complex objective function shows that using the proposed continuous relaxation improves
over a poor CP approach by far, if the objective function is complex with positive and
negative coefficients. On the other hand, our results on the Pack instances for RCPSP
and the application to LCSP show that a pure CP approach performs well if it is hard to
generate good conflicts. Strong dual bounds by IP, e.g., by Dantzig-Wolfe decomposition,
can be a key technique to solve these problems and in particular to close the optimality
gap if the heuristics are already doing well.

Outline of the thesis

Chapter 1: We start by introducing the very general RCPSP which serves as the basic
scheduling problem in our studies. Second, the solving methodologies Integer Program-
ming, Constraint Programming and Satisfiability solving are introduced. These tech-
niques will be applied to scheduling problems in a hybrid framework, called Constraint
Integer Programming (CIP). Benchmark instances, instance indicators and results from
other works are presented to make the reader familiar with RCPSP and its characteristics.

Chapter 2: Due to the logical implications induced by the resource constraints, CP
techniques work well to solve even large RCPSP instances. Our first computational study
on a close integration of IP, CP and SAT techniques has been published in [29] which
shows that IP and SAT techniques are valuable add-ons to the CP part depending on
the instance characteristics and the size of the instance.

Section 2.1 starts with an overview of the main CP propagation algorithms for the
cumulative constraint, such as time-tabling, edge-finding, time-table edge-finding and
energetic reasoning. As computational results reveal, on most instances it is best to



use time-tabling as the only propagation algorithm due to faster running times. A
lot of work has been carried out to improve the energy-based propagation algorithms,
such as energetic reasoning. For example, Kooli et.al. [165] propose to solve MIPs in
order to detect intervals with high energy consumption and thereby to detect infeasible
nodes early. On the contrary, in Section 2.1.4 we propose to identify promising intervals
by eagerly smearing the requested energy of a job over its processing window. The
resulting energy estimate does not underestimate the true energy contribution by more
than a factor of three. We embed our approximative criterion into the energetic reasoning
propagation algorithm and perform a computational study which reveals that on PSPLib
instances the estimated energy contribution is close to the true energy demand. This
way, we successfully restrict the number of intervals per node to be considered and obtain
a speed-up factor of four. This is joint work with Timo Berthold and Stefan Heinz from
the Zuse Institute Berlin [30].

The most important technique that comes from SAT is to learn from infeasible search
states. Here, learning results in additional constraints which induce further propagation.
Besides that, branching scores on the variables are kept which indicate which variables
are involved in many conflicts. When analyzing infeasible states, we need to explain
which variables invoked which bound change. For several types of constraints, such as
logicor, set-partitioning, and so on these explanations are unique. This is not the case for
some propagation algorithms of the cumulative constraint. We introduce the notion of
explanation algorithms that seek to find optimal explanations for the bound adjustments
of these propagation algorithms, see Section 2.2. Initial experiments have been published
in [137] in cooperation with Stefan Heinz.

From the IP world different exact formulations have been developed. These either
suffer from slow solving times on large instances or from poor lower bounds. In Sec-
tion 2.4, we develop a new continuous relaxation of the cumulative constraint that is
not exact but enables our solver to use lower bounds from LP, to perform branching
according to the LP values and most important to collect pseudocost values to guide the
choice of the branching variables.

Chapter 3: A huge amount of RCPSP instances which contain between 30 and 60 jobs
cannot be solved to optimality nowadays. The huge duality gap of about 60% between
a critical path lower bound and initial solutions from simple list scheduling heuristics
show that stronger lower bounds on the makespan are highly demanded to come up with
competitive exact approaches.

In Section 3.2, we devise two approaches in order to tighten the lower bounds. First,
we generalize coefficient strengthening techniques from MIP to CP’s cumulative con-
straint. This helps to close 10 additional Pack instances, as this way the energy-based
propagation algorithms are able to detect stronger bound adjustments. Second, we study
transitive precedence relations, where the distance between such two jobs can be strength-
ened by volume and disjunctive arguments of the induced subnetworks. We propose a
preemptive propagation algorithm to compute such lower bounds.

The applied branching scheme has a huge impact on the solving process. We show in
Section 3.3 that generic branching schemes perform much better in a CIP framework on
disjunctive instances from standard benchmark libraries, in contrast to problem-based
branching schemes, which in return perform well on highly cumulative instances.

At the end of this chapter, we compare the CP, IP and SAT techniques with each



other and to other approaches. The results show that applying conflict analysis from
SAT remarkably helps to prune unpromising nodes. The numbers further indicate that
the proposed continuous relaxation helps to make good branching decisions based on
pseudocost scores. In particular, highly cumulative instances with low makespan are
best solved via IP approaches, whereas on the disjunctive instances a CP-SAT approach
performs best.

Chapter 4: RCPSP has a simple objective function which contains only one variable,
the makespan variable, with coefficient one. More complex cost functions such as expo-
nential functions are part of many practical applications. In Section 4.1, we apply our
techniques to RCPSP with the objective to maximize net present value, i.e., the sum
over all cash-in minus cash-out flows. We show that a CP-SAT hybrid performs best on
instances where all coefficients are either positive or negative. If both kinds of coefficients
occur, the use of the continuous relaxation from Chapter 2 becomes a powerful add-on.
With this CIP approach on inhomogeneous instances more best upper and lower bounds
can be derived in contrast to a pure CP-SAT hybrid.

In a second case study (Section 4.2), the CIP solving techniques for RCPSP are applied
to a labor-constrained scheduling problem in which the resource demands per job vary
over time. On such kinds of instances it turns out that a pure CP approach performs
best with respect to primal and dual bounds. One instance from a given benchmark set
can be closed with our approach, while we are only able to improve primal bounds in
contrast to pure CP approaches. Tabu search heuristics from the literature report better
results there.

Chapter 5: In this chapter we study the Turnaround Scheduling problem as it occurs
in the shut-down of chemical plants. We show for a complex subproblem, the resource
leveling problem, that a Dantzig-Wolfe reformulation yields optimal solutions within
reasonable running times while performing much better than a standard MIP solver.
The computational study reveals that the dual bounds after reformulation are much
stronger and therefore yield the optimality proof. In this context, we transform well-
known strong precedence inequalities to the reformulated problem and study how to best
separate them as cuts throughout search. It turns out that with these cuts the number of
nodes remarkably decreases while unfortunately also the solving times increase. Anyway,
few hard instances can be solved faster using these cuts.

The studied problem and the heuristics have been introduced in Megow et al. [183],
while the branch-price-and-cut framework is joint work with E.T. Coughlan and M.E.
Liibbecke. Preliminary results have been published in [67].



Chapter 1

Basics: Scheduling and solving
techniques

Resource-constrained scheduling problems have been widely studied and different solving
paradigms such as Constraint Programming, Satisfiability Solving, Integer Programming
and heuristics have been applied to solve these problems. In this chapter, we introduce
the problem and the most important frameworks and results from the literature. These
build the fundament of our study in which hybrid techniques are developed and closely
integrated in one search tree.

In Section 1.1, we formally introduce RCPSP that includes several scheduling prob-
lems in one model. The notation that is used throughout this thesis is introduced in
Section 1.2. In Section 1.3, we present the three basic techniques and a hybridization of
them, Constraint Integer Programming, to tackle optimization problems. We conclude
by presenting studies from the literature in Section 1.5.2 where several approaches are
compared to each other.

1.1 RCPSP

1.1.1 Problem definition

The Resource-Constrained Project Scheduling Problem (RCPSP) is one of the most
widely studied problems in the scheduling community. This is due to its practical rele-
vance and its inherent computational complexity, see Section 1.1.2.

In RCPSP we are given a set J of n non-preemptable jobs and a set R of renewable
resources. Each resource k € R has bounded capacity Ry € N. Every job j € J has a
processing time p; € Ny and resource demands 7, € Ny of each resource k € R. W.lLo.g.,
we assume that all these parameters are integer. A schedule S € Nfj is an assignment
of integer start times S; for each job j. The start time S; of job j is constrained by
its predecessors that are given by a precedence graph G = (V| E). In the node set V
there is exactly one node j for each job j. A directed edge (i,j) € E represents a
precedence relationship, i.e., job ¢ must be finished before job j starts. This can be
expressed by the inequality S; + p; < S;. Schedules that obey all precedence relations
are called precedence-feasible. We assume that a first and a last dummy job with zero
processing times exist which model the start and end of the project. Their start times
are denoted by Sp and S,11. All other jobs succeed job 0 and proceed job n + 1. The



start time 5,11 of the last dummy job is also denoted by Chhax, the mazimum completion
time: Crax = maxjc7{S; + p;}.

Another set of constraints are the resource constraints which require for each point
in time that the cumulated demand of all jobs running at that point in time, must not
exceed the given capacity:

>  rx<Ry VtVEeR. (1.1)
78 <t<Sj+p;

If a schedule respects all resource constraints, it is called resource-feasible. Finally, a
schedule is called feasible if it is precedence- and resource-feasible.

The goal in RCPSP is to find a feasible schedule such that the latest completion time
of all jobs, the makespan, is minimized. The problem formulated as a non-linear program
reads as follows:

min  Chax (1.2)
subject to  S; +p; <5 V(i,j) e E (1.3)
> rp< Rk Vt,VkeR (1.4)

j:8; <t<Sj+p;
S; € Ny Vied. (1.5)

Example 1.1. Figure 1.1 shows a precedence network with seven jobs and a possible
schedule that respects the resource and precedence constraints. A schedule is given by
a gantt chart, where the horizontal axis indicates the time and the vertical axis the
resource usage. In Figure 1.1, the resource capacities are given by R; = 3 and Ry = 4.
The processing times and resource demands are given as follows:

j |A B CDEF G

pj |3 2 2 4 2 4 3
1 2 2 0 0 2 0 1
rg |1 0 2 3 0 1 3

1.1.2 Complexity status

RCPSP is strongly AN'P-hard and this hardness stems from different problem character-
istics, such as Knapsack or Job-Shop-Scheduling. Garey and Johnson [116] show that a
very simple special case of RCPSP makes the problem already intractable. They show
strong N'P-hardness by a reduction from 3-Partition. In this case, RCPSP consists of one
resource with capacity 3, no precedence constraints and each job has a processing time
of one.

Ullman [251] shows by reduction from 3-SAT that Precedence Constrained Scheduling
is N'P-complete already for a deadline of three. This problem asks whether a feasible
schedule exists, given a set of jobs with unit processing time, unit resource demands,
precedence constraints, a single resource with capacity of m > 3 and an overall deadline.
But here, the capacity m can get arbitrarily large. Additionally, Ullman shows that the
case m = 2 is N'P-complete if processing times are selected from {1,2}.

Blazewicz et al. [33] show that many machine scheduling problems with the objective
to minimize the makespan become strongly NP-hard as soon as resource constraints

7
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Figure 1.1: A precedence network of seven jobs and two dummy jobs (start and end)
and an optimal solution with makespan Ci.x = 12 are depicted.

are part of the model. They provide a stronger result than Ullman, as they show in
Theorem 7 [33] strong NP-hardness for makespan minimization on two parallel machines,
one resource with capacity one, unit processing times and even if the precedence relations
correspond to chains.

Furthermore, RCPSP is strongly NP-hard by reduction from Bin-Packing — it gener-
alizes Bin-Packing to multiple dimensions. In this generalization, each resource constraint
models one dimension, jobs have unit processing time and the goal is to minimize the
makespan, see Garey et al. [192]. Reduction works again from 3-Partition as in [116].

Furthermore, RCPSP models the famous graph coloring problem and is therefore
strongly N'P-hard, as shown by Schéffter [221] and later Blazewicz et al. [33]. In graph
coloring the goal is to minimize the chromatic number, i.e., the number of colors that
suffices to color all the vertices such that two adjacent vertices have different colors. For
this reduction unit processing times, unit demands and exactly one disjunctive resource
per edge from the coloring graph are needed. No precedence constraints are introduced.
This reduction induces bad approximability results for RCPSP, see [110]. They show
that unless P C ZPP, or equivalently NP & coN'P it is intractable to approximate the
chromatic number within n'~¢ for any € > 0, where n is the number of vertices of the
graph. In the reduction, one disjunctive resource per edge in the graph is needed. This
hardness result is of practical relevance, because in RCPSP a lot of jobs are disjunctive
due to the resource demands from different cumulative resource constraints. Hence, this
reduction underlines the hardness of disjunctive RCPSP instances.

The more recent results by Gafarov et al. [115] also underline the hardness of RCPSP.
The authors show that for a special case with one resource constraint no polynomial-
time constant factor approximation algorithm exists. Furthermore, they prove that the



preemptive relaxation yields a ratio of O(nlog(n)).

1.2 Notation for scheduling problems

We distinguish two classes of scheduling problems: machine scheduling problems and
project scheduling problems. In the former problem, machine assignments for a set of
jobs need to be found. In the latter problem, start times need to be assigned for each
job subject to resource and precedence constraints. Mixtures and numerous variations
of these problems exist.

As various communities treated such problems, conflicting notations have been devel-
oped. In project scheduling r; symbolizes the resource demand while earliest start times
(release dates) are denoted by estj, whereas in machine scheduling, the release dates
are denoted by r;. We mainly focus on project scheduling problems and stay coherent
with this notation as introduced by Brucker et al. [36]. Resource demands per job j are
denoted by r; and release dates (earliest start times) by est;. When considering relations
to machine scheduling problems, we change the font of the parameters and write r; for
release dates and sizej for resource demands. Both notations are introduced in the next
sections.

1.2.1 Machine scheduling

The «|f|v-classification scheme [127] constitutes a precise and compact formulation for
general machine scheduling problems. It is used throughout the literature and we will
relate our work (lower bounds by a continuous relaxation of the cumulative constraint,
see Section 2.4) to well established results.

In the a|B|y-scheme, parameter o models the machine environment, 3 the job char-
acteristics and ~ the optimality criterion. The parameters as needed in this thesis are
summarized in Table 1.1. E.g., Pm|p; = 1, r;|Cax denotes a machine scheduling prob-
lem with m parallel machines where each job has unit processing time and a release date
while the objective is to minimize the makespan. As another example, P|size;| ; w;C;
denotes a parallel machine scheduling problem where each job j requires size; machines
during its processing interval and the objective is to minimize the sum of weighted com-
pletion times.

n number of jobs
m number of machines
a P parallel machines, here m is not part of the input
Pm m parallel machines, m is part of the input
Pj processing time of job j
rj release date of job j
d; deadline of job j
B size; number of machines required by job j
prec precedence constraints
pmtn preemption is allowed
v Chax makespan minimization

> w;C; weighted completion time criterion

Table 1.1: Notation for machine scheduling problems.



1.2.2 Project scheduling

Project scheduling problems have several additional characteristics compared to machine
scheduling problems. Each job may be processed in different ways (multiple modes), or
the execution of a job may need several resource units of different resources (renewable
and non-renewable). The «|f3|y-classification scheme has therefore been extended by
Brucker et al. [36]. In this scheme, RCPSP can be written as MPSp, co|prec|Cax for
multi-project scheduling of renewable resources with capacity p, precedence constraints
and the objective to minimize the makespan. In Tables 1.2 and 1.3 the notation for
project scheduling problems as used throughout this thesis is summarized.

n number of jobs

a p number of resource constraints
J set of jobs
MPS multi-mode project scheduling
Dj processing time of job j € J
Tk resource demand (consumption) of job j of resource k
rj resource demand of job j if resource is clear
Dim processing time of job j in mode m

B Timk resource demand of job j in mode m of resource k
Ry, R resource capacity of resource k, k omitted if resource is clear
< precedence constraints

v Chax makespan minimization

> pmaxri(S,t) resource availability cost

Table 1.2: Notation for project scheduling problems in extended «|f|y-scheme.

est;, Ist; earliest and latest start of job j

ect;, lct; earliest and latest completion time of job j

€j energy of job j; e; = 1j - p;

G = (V,E) precedence graph with node set V' and directed edge set FE
M, set of modes of job j

Table 1.3: Further notation used for project scheduling problems when considering CP
and IP techniques.

1.3 Solving techniques

Many scheduling problems are well known for their hardness to be solved to optimal-
ity. Hence, they have motivated researchers to develop different approaches in order to
tackle these problems. The most prominent approaches are integer programming (IP),
constraint programming (CP) and satisfiability testing (SAT). We will introduce these
in the following together with a hybrid approach called Constraint Integer Programming
(CIP).
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1.3.1 Mixed Integer Programming

In Mixed Integer Programming (MIP) we are given n, € N integer variables x € Z"* and
ny € N continuous (for computational issues rational) variables y € Q", an inequality
system Az, y]t < b with A € Qm*(=+7) and b € Q™ with m € N inequalities.

Definition 1.1. The polyhedron P(z,y) := {(z,y) | Alz,y)! < bz € Z",y € Q™} is
called the set of feasible solutions.

By introducing cost coefficients [c;,c,] € Q" ™™, linear objective functions can be
modeled that are to be minimized or maximized. We mainly consider minimization
problems here and therefore restrict the definitions to that case.

Definition 1.2. A Mixed Integer Program (MIP) in minimization form is given by the
following formulation:

min {c,z + ¢,y | (z,y) € P(x,y)}. (1.6)

In case that n, = 0, we speak of an Integer Program (IP), and in case that n, = 0
and x € {0,1}" of a Binary Program (BP).

Solving BPs is strongly NP-hard as shown by Karp in 1972 via reduction from 3-
SAT [155]. Moreover, Zuckerman [272] showed in 1996 that a constrained version is
inapproximable within any constant factor unless P = N'P.

Definition 1.3. The Linear Programming (LP) Relaxation of a MIP is given by relaxing
the integrality constraints on the integer variables:

HliIl {CI‘T + cyy | A[‘rvy]t = b,LU S an7y € Qny} :

This relaxation provides dual bounds (in case of minimization lower bounds) on
the objective value of the MIP. It can be solved in polynomial time via the Ellip-
soid method [130, 157]. In practice, it is nevertheless solved via the (in general non-
polynomial) Simplex Method [69] due to its experimentally faster convergency.

1.3.1.1 Solving a MIP

General purpose MIP solvers are IBM ILOG CPLEX [68] and Gurobi [199] that use a
branch-and-bound framework where a rooted tree is built up step by step. In each node
of the tree (starting from the root) the LP relaxation is solved. If the dual bound at
least matches the best primal bound, the node can be pruned (bounding). If all values z*
of the LP solution (z*,y*) are integral, a primal solution has been found. Otherwise,
fractional solution values from a solution to the LP relaxation can be used to split the
feasibility space into two disjoint subspaces (branching), while the union of both still
contains all feasible solutions of the current node. Branching is performed by selecting
a variable z; with fractional value :c; and two children of the current node are created.
They are called the left and the right child. The left (right) child node obtains the
additional constraint x; < |2} (v; > [2}]). After branching is performed, an unpruned
node is selected and the same process that begins by solving the LP relaxation is started
over again.

Valid inequalities (cutting planes) can be added in order to strengthen the LP relax-
ation. Such inequalities cut off non-integer points, e.g., the current fractional LP solution.

11



The most prominent and basics cutting planes are Gomory-Chvatal cuts [61, 125]. For an
overview on cutting planes and their relations we refer to Cornuéjols [66] and Fischetti
and Lodi [111].

Besides cutting plane algorithms, further techniques have been developed to solve
Integer Programs. Among them are Lagrangean relaxation, Benders decomposition [28]
and Dantzig-Wolfe decomposition [70, 71, 88]. We refer to Section 5 for an application
of Dantzig-Wolfe decomposition to a multi-mode resource leveling problem.

1.3.1.2 IP formulation for RCPSP

Several exact IP formulations for RCPSP exist (time-indexed, event- and flow-
based) [164]. In our study, we use one of the first formulations by Pritsker et al. [209].
The reason for choosing this formulation is due to the strong dual bounds, the various
improvements suggested from literature and the close relation of the resource constraints
in that formulation to knapsack constraints.

The formulation by Pritsker et al. is based on binary variables x;; that are one if job j
starts at time ¢ and zero otherwise. This formulation is only pseudo-polynomial due to
the time discretization but for low makespans the obtained lower bounds are remarkably
good.

min Zt “Tnlt (1.7)
t
subject to Zt “Zit +pi < Zt Tt V(i,j) € E (1.8)
t t
d ap=1 VieJ (1.9)
t
t
o> kg <Ry VkeRYt  (1.10)
JET T=t—p;j+1,7>0
zjt € {0,1} VieJ,Vt (1.11)

In the objective function (1.7), the start time of the dummy job n+ 1 for the project
end is minimized. Constraints (1.9) and (1.11) ensure that each job is scheduled exactly
once, while constraints (1.8) enforce the precedence relations and constraints (1.10) model
the resource constraints.

1.3.2 Constraint Programming

Constraint Programming (CP) is a programming paradigm wherein a problem is modeled
via variables and logical constraints. This model is solved by using the logical implications
between the variables that are induced by the constraints in order to tighten the variable
domains throughout an enumerative branch-and-prune search.

In CP, a problem is formulated as a Constraint Satisfaction Problem (CSP). A CSP
consists of a set of variables {z1,...,z,} with a domain per variable and a set of con-
straints.

Definition 1.4 (Domain). A domain D(x;) is the set of all values which variable z; is
allowed to take. If the domain is an interval, we write D(x;) = [(b;,ub;] with ¢b; < ub;
and £b;,ub; € Q.

12



In case that the lower and upper bound are equal, we say the variable is fixed.

Definition 1.5 (Constraint). A constraint C'(X) is an n-ary relation over a sequence
of variables X = wx1,x9,,...,2, and their respective domains D(x1), D(x3),...D(xy).
Hence, a constraint describes the solution space by a subset of the Cartesian product over
the domains C(X) C D(z1) x D(x2) X ..., xD(xy).

Observe that a constraint gets as input a set of variables together with their respective
domains and describes the set of all solutions (all variable assignments) that satisfy this
constraint. Given a variable assignment, i.e., all variables are fixed, we say C'(X) holds
to describe whether under this assignment the solution space of this constraint is not
empty.

Example 1.2. Basic examples for constraints are:
e Linear constraints: Cy({z1,x2}) = {z1, 22 | x1 + 229 < 8}
e Quadratic constraints: Co({z1,x2,23}) = {1, 22,23 | x122 + x5 < 11}

e Set-partitioning constraints:
C3({w1, w2, 23}) = {71, 22,23 € {0,1} [ 21 + 12 + 23 < 1}

e Cumulative constraints:

C4(S) = cumulative(S,p,r,R) = ¢ S € Ny | Z rj <R, Vt
J:8; <t<Sj+p;

Definition 1.6 (Constraint Satisfaction Problem (CSP)). A Constraint Satisfaction
Problem, CSP=(C, X, D), consists of a set of variables X = {x1,x2,...,x,} with their
respective domains D(x1), D(xz2),...,D(xy), and a set of constraints C in which each
constraint C' € C s defined over a subsequence of variables X¢o C X.

We define the feasible region of a CSP as:

CSP = {X ={x1,..., 20} |z € D(z;), Vi, X C ) C(X(;)}.
ceC

CSPs are strongly N'P-hard in general, because they generalize the SAT problem [64].
Typical examples for CSPs are the eight queens puzzle, crosswords, sudoku and the
knapsack problem.

1.3.2.1 Solving a CSP

Prominent CP solvers are CHiP [90], Choco [58], Comet [63], Gecode [119] and IBM
ILOG CP Optimizer [198].

A CSP is solved similarly to a MIP via a search tree using propagation algorithms
instead of LP relaxation. The main difference to MIP is that in CP no objective function
is at hand. Proving feasibility or infeasibility is the goal in each node (called candidate)
of the search tree. An objective function can be modeled via a binary search on an
artificial variable together with a linear constraint. Furthermore, no LP relaxation, no
fractional variables and no dual bounds implicitly exist. It is important for any CP solver
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to efficiently check a partial assignment for global feasibility. This checking is usually
done constraint-wise.

The main workhorse in CP is domain propagation, a technique that reduces the
domains of the variables or generates new constraints that can be propagated themselves.
If the domain of a variable gets empty, the candidate is abandoned (the node is pruned)
and we backtrack to the last feasible node. If no further domain reductions can be found
and none of the domains is empty, a branching is performed. As a branching candidate,
usually a variable is picked that is contained in many constraints and has been involved
before in successful propagations. Instead of branching on one variable, sets of variables
(e.g., set-partitioning constraints) can be used as branching decision, or new constraints
can be added that split the search space. After branching, the next candidate (node)
to be considered is selected which is often based on an estimated number of domain
reductions. In CP, a depth-first-search is used.

1.3.2.2 Domain propagation

In each node of the search tree, domain propagation is performed. Given a partial
assignment of the variables, the goal is to remove inconsistent values from the domains
of the variables. This is done by analyzing repeatedly the variable domains and their
interdependencies that are induced by the constraints. If only one constraint is involved
in the propagation, this process is also called constraint propagation.

By removing inconsistent values, a certain type of consistency can be achieved. Differ-
ent concepts of consistency exist, see e.g. [166], and propagation algorithms are clustered
according to the consistency they achieve. In a k-consistency test, constraints with k
variables are considered, also known as node- (k = 1), arc- (k = 2) and path- (k > 2)
consistency [113, 189, 249]. Domain consistency tests check each value from the domain
of a variable whether it can be excluded, if no feasible assignment of all other variables
exists anymore [65]. For bound-consistency, only the left and right bound of a domain
is considered [73, 175, 190, 253]. Bound-consistency can sometimes be achieved in poly-
nomial time. E.g., the propagation algorithms from Section 2.1.3.2 for the cumulative
constraint achieve bound consistency.

As a consequence, for NP-hard problems not all inconsistent assignments can be
efficiently removed from the variables domains. Hence, fast heuristics or approximations
are needed. Algorithms that remove these inconsistent values are called propagation
algorithms, in some former papers referred to as consistency tests. To summarize, prop-
agation algorithms operate on a single constraint or on a set of constraints, they check
a certain condition and if this is satisfied, the domain of one or more variables can be
reduced.

We will formally introduce the terms propagation algorithms and domain reduc-
tions and also review the main propagation algorithms in cumulative scheduling in Sec-
tions 2.1.1 and 2.1.3.2.

1.3.2.3 CP formulation for RCPSP

RCPSP can be modeled as a constraint program using the cumulative constraint [5],
which enforces resource-feasibility for a resource k. We denote by S = [S;];, p = [pj;

14



and 7, = [rji];, the vectors of start times, processing times and resource demands.

cumulative(S,p,ri, Ri): ¢ S € Zj | Z rik < Ri, Vit
J:8;<t<S;j+p;

Precedence constraints (i,7) € E are modeled via the precedence constraint (in SCIP
called varbound):

precedence(S;, S;,p;i) : {(S:,5;) | Si +pi < S;}.
Then, RCPSP can be modeled as a CP as follows:

min  Chax

subject to precedence(S;, S;, pi) V(i,j) € E
cumulative(S, p, rk, Ri) VkeR
D(S;) = Ny ViedJ.

We point out that no additional variables need to be introduced. The constraints
capture the logic given by the resource constraints.

1.3.3 Satisfiability testing (SAT)

In an instance of SAT we are given a set of boolean variables {z1,...,z,} (that can take
the values true and false) and boolean operators AND (A), OR (V) and NOT (—) that
connect these variables with each other to form boolean expressions. Let {z1,...,z,} be
the set of boolean variables, where we identify the false assignment with 0, and a true
assignment with 1. A literal y; is a variable x; or its negation —x;. E.g., 1 and -z are
two literals.

Definition 1.7. A clause is a disjunction of literals.

E.g., (mx1 V x2) is a clause. Given this, we can define the SAT problem formally.

Problem: Satisfiability (SAT)
Instance: A set of m clauses over boolean variables x1, ..., x,.
Question: Is there an assignment z* € {0, 1}" that satisfies all clauses?
E.g., (mx1 VaaVg) A(x1Vas) A(xeV-xs) is an instance of SAT in conjunctive normal
form.

By the famous Cook-Levin theorem, SAT is known to be the first N’P-complete
problem [64]. If all clauses contain exactly three variables, the problem is called 3SAT
and is already strongly N'P-complete. Many decision problems can be easily expressed
as an instance of SAT. Hence, given some efficient algorithm to solve SAT, these problems
can be solved generically. This has guided the rapid evolution of SAT solvers.

1.3.3.1 Solving an instance of SAT

Examples for modern SAT solvers are CHAFF [191], GRASP [180], and MINISAT [103,
104]. They rely on a branching scheme, like the DPLL-algorithm [74, 75] from 1960/62
that enumerates all possible variable assignments. Here, unit domain propagation [268]
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is applied in every node, like constraint propagation per clause. Infeasible subproblems
are analyzed in order to learn new clauses and to perform non-chronological backtrack-
ing [120]. Furthermore, restarts are used in order to explore promising search spaces
more frequently and to perform rather expensive propagations only in the root node.

The search process in SAT works as follows: Initially all variables are unassigned.
In each node of the search tree, unit domain propagation is performed, i.e., constraint
propagation over each boolean formula is applied. Thereby, variables of one constraint
(one formula) are checked whether they can be fixed to 1 (true) or 0 (false). E.g., if all but
one literal of a clause are false, the remaining variable can be set such that the clause is
satisfied. Local search heuristics are used in order to find a feasible assignment. As soon
as the first feasible assignment has been found, the algorithm stops. When constraint
propagation cannot detect any further fixings, some variable is fixed to true or false (the
branching step). The branching variable is chosen according to its importance in former
propagations and its involvement in conflicts. If all literals of at least one clause are fixed
to zero, the subproblem is infeasible. This is called a conflict. Conflicts are analyzed in
order to produce conflict clauses [180]. During this analysis, a conflict graph is created.
Such a graph is a logical expression tree where vertices correspond to variable fixings
(zero or one). There is a directed edge in that graph between two vertices v and v if the
fixing of the variable belonging to u deduced the fixing of the other variable in node v.
Cuts in that graph that separate the branching decisions from the infeasibility yield new
clauses. Furthermore, the analysis may show that some branching decision (variable
fixing) in the last subtree at depth level ¢ yielded the infeasibility together with other
fixings at some depth level £ < £. Then, the negation of the branching decision can
be already applied at depth level ¢. This is called non-chronological backtracking. The
concept of conflict analysis in our framework with integer variables is explained in more
detail in Section 2.2.1.

We remark that in contrast to IP and CP solver, a SAT solver creates exactly one
child per node. After applying conflict analysis and backtracking a second child is created
if needed. Hence, the search tree as kept in memory is always a path.

We do not state a SAT model for RCPSP since it will not be used in this thesis
and similar to the IP models different formulations exist. We refer to Horbach [144] for
further readings.

1.3.4 Constraint Integer Programming

All three paradigms presented so far share some characteristics like branching and prun-
ing. While in MIP, branching decisions are based on the values of the variables in the
LP relaxation and the objective function, in CP and SAT this decision is made based
on the information gathered throughout search: involvement in propagation (CP, SAT)
and in conflict clauses (SAT).

Learning from the other techniques and hybridization already have a long history. In
particular, conflict analysis from SAT has been generalized to integer variables for CP
and to LP solving [2]. To fully hybridize the three techniques means to use a unifying
branching strategy, to perform domain propagation, solving an LP relaxation, and to
apply conflict analysis and restarts. One of the closest integrations is the Constraint
Integer Programming (CIP) framework SCIP by Achterberg [2] that we use for our studies.
Another hybrid framework is given by the branch-infer-and-relax framework SIMPL [11].

Formally, we define a Constraint Integer Program as follows.
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Definition 1.8. A Constraint Integer Program, CIP=(C, X, D,c) consists of a set of
variables X = {x1,xa,...,x,} with their respective domains D(x1), D(x2),...,D(xy),
and a set of constraints C in which each constraint C' € C is defined over a subsequence
of variables Xc C X with objective function vector ¢ € Q™.

n

min{Zcixi ’ZL‘Z ED(:Bi),Vi/\Xg ﬂ C(Xc)} (1.12)
i=1 cec

Furthermore, we require for a CIP that after fizing all integer variables, the remaining

problem is an LP.

ScIP integrates the three techniques in one search tree, i.e., in every node of the tree
an LP relaxation is solved and domain propagation is performed. Furthermore, primal
heuristics and more problem specific propagation algorithms can be applied. If a node is
detected to be infeasible, conflict analysis is applied in order to generate conflict clauses
and perform non-chronological backtracking. Conflict analysis can also be applied to
infeasible LPs. We will use this framework in our experiments.

It is best to understand the CIP model, by thinking of a Constraint Satisfaction
Problem that is handed to the solver. Each constraint (precedence or cumulative in case
of scheduling) has the ability to perform propagation and separation algorithms. It is
essential to understand that not all inequalities must be added to the LP relaxation.
Even any kind of problem specific relaxation can be used. In particular, it must not be
based on an exact IP formulation. Therefore, the constraints must be able to efficiently
check feasibility of any presented solution. Hence, it is important to verify efficiently (in
low order of polynomial time) whether a solution violates a constraint or not. The faster
this can be done, the better for the overall running time. Summarizing, the constraints
are the main part of a CIP solver.

Hybrid branching schemes [3] can be used in this framework: the scores from IP
(pseudo-cost score), CP (inference score, the number of involved domain reductions) and
SAT (conflict score, number of conflicts involved) are weighted into one score and the
best weighted candidate is selected, see Section 3.3 for further readings. E.g., in scIp a
huge weight is placed on the conflict score and the inference score serves as tie-breaker.

When considering integer variables in SAT solvers, not only the variable but also the
value to branch on is chosen by the conflict score. In a SAT model each possible value of
an integer variable is encoded as a halfspace: {S; < 4},{S; <5},.... Conflict scores per
variable and lower and upper bound values are called VSIDS (variable state independent
decaying sum) and are increased whenever a variable bound is reported to the conflict
graph [191].

CIP formulation for RCPSP The CIP formulation we use reads as the CP formu-
lation. The difference is that the constraints additionally capture the IP logic and are
able to add variables and separate cutting planes and thereby provide an LP relaxation.
E.g., the cumulative constraint may add binary variables and all necessary constraints
to the model in order to use the LP relaxation of the exact IP formulation by Pritsker
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et al. [209]. For completeness, the CIP model reads as:

min  Chax
subject to precedence(S;, S;, pi) V(i,j) € E
cumulative(S, p, 7k, R) VkeR
D(S;) = No Vied.

1.4 Related work

Approaches to solve RCPSP range from inexact approaches, such as ordering heuristics
or genetic algorithms, to exact approaches, such as Mixed-Integer Programming, Satis-
fiability Solving and Constraint Programming. Next, we give a short overview on the
successful implementations which will be refined later in the corresponding sections.

Main techniques

Heuristics On the heuristic side, excessive research has been carried out such that
numerous algorithms have been developed. Surveys can be found by Hartmann and
Kolisch [38, 135, 136, 160, 161]. Among these heuristics are schedule generation schemes
(SGS) that work similar to a list scheduling algorithm for machine scheduling problems.
We consider two schemes, the serial SGS and the parallel SGS, also see [160] for more
details. In a serial SGS, jobs are considered in a topological order (e.g., sorted by their
earliest start or by the minimum float time) and are scheduled according to that order
as early as possible, respecting the precedence and resource constraints. In a parallel
SGS, the resource profiles are focussed on. For each resource profile (one per constraint)
the first point in time is considered when enough capacity is available to schedule a
job. Then, a job is selected that can be scheduled there with respect to the precedence
constraints.

The serial generation scheme has been extended to a forward-backward SGS by Li
and Willis [176], also referred to as bidirectional SGS. The first schedule, the so-called
forward schedule, is obtained by performing a serial SGS. Then, all jobs are sorted in
non-increasing order of their completion times in the forward schedule. According to
that ordering, a backward schedule is created by scheduling all jobs as late as possible.
It gets clear from the way the algorithm works, that if a feasible forward schedule has
been found, a feasible backward schedule can be obtained, since no job needs to be
scheduled earlier as in the forward schedule. Recreating a forward schedule by sorting
the jobs according to their start times in the backward schedule leads to a makespan
not larger than the one in the forward schedule. We use such a bidirectional SGS in our
computations.

Genetic algorithms use these generation schemes as a subroutine to generate a sched-
ule for a given population (an order among the jobs that respects the precedence con-
straints), see e.g. [133, 264]. Furthermore, tabu search approaches [195, 202, 247] have
been developed in order to avoid evaluating an order multiple times. In tabu search in
contrast to local search, when escaping from a local optimum, some neighboring solutions
are declared as tabu to avoid cycling. In order to not explore similar solutions, a small
tabu list is kept in memory.

More elaborate heuristics have also been investigated. A large neighborhood search
has been employed by Palpant et al. [201]. They fix a certain amount of the variables or
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heuristically add precedence constraints to the model and solve the remaining problem
(still an RCPSP) via CP or IP techniques.

MIP Several IP formulations have been proposed for RCPSP. The classical formulation
goes back to Pritskers et al. [209]. For an overview and an experimental study on other
types of formulations such as time-indexed, event- and flow-based formulations we refer
to Koné et al. [164].

We briefly mention the most important IP techniques besides the formulation pre-
sented by Pritsker et al. [209]. Cutting plane algorithms have been used by Christofides
et al. [59] and Sankaran et al. [217] on the standard time-indexed formulation. E.g.
in [59], it remains unclear whether using disaggregated precedence constraints yields a
total speed up of the basic formulation. As reported by Uetz [250] this seems to be in-
stance dependent. On the other hand, new valid inequalities for the LP relaxation based
on constraint based arguments are derived in [81] such as shaving and clique cuts which
yield stronger dual bounds.

Order based formulations have been proposed that introduce binary decision variables
whether one job is executed after another. In case of cumulative scheduling problems,
jobs may be allowed to run in parallel. Hence, to exclude only those that violate the
capacity Bartusch et al. [27] interpret RCPSP as the search for a strict order between
subsets of the jobs which correspond to feasible left-shifted schedules.

This idea has been further extended by Alvarez-Valdés and Tamarit [6]. A set of
jobs that exceeds the capacity, if scheduled pairwise in parallel, is called a forbidden
set. Such a set is minimal if deleting any of the jobs from the set would not violate
the capacity. As there may be exponentially many of these sets and several are not of
interest as precedence constraints may be present between two jobs, Stork and Uetz [246]
use a tree structure to enumerate all necessary minimal forbidden sets. This idea has
been pursued further. Interpreting the strict order from the transitive closure of the
precedence network, a schedule corresponds to a resource flow [13], where the available
resource capacity flows through the precedence network and a maximum cut in that
network needs to be always less than the capacity in order to yield a feasible schedule.
One drawback of these two models is that big-M constraints are used to model the
precedence relations. Furthermore, the resource flow model induces symmetry and yields
a weaker LP relaxation. This model has been used successfully to measure the robustness
of a schedule with respect to uncertain processing times, see Leus and Herroelen [174].

Mingozzi et al. [186] propose a preemptive relaxation based on feasible subsets. This
approach has been improved by Brucker and Knust [37] by using column generation and
allowing preemption. Similarly using feasible subsets, Carlier and Néron [42] compute
linear lower bounds of a linear multi-elastic preemptive relaxation.

For the case of generalized precedence constraints, Bianco [31, 32] derives lower
bounds by relaxing resource constraints for jobs which are not precedence related. More
precisely, they model resource conflicts between two jobs via edges in an expanded
activity-on-node network. This allows a dynamic programming approach to compute
valid lower bounds. Lower bounds derived from a Lagrangean Relaxation also prove
useful, see Mohring et al. [188]. The authors show that the Lagrangean subproblem can
be efficiently solved via a sequence of maximum flow computations. Furthermore, they
use the (possibly infeasible) start times from the relaxation as a starting point for a
heuristic based on a-points, see [239]. Later on, similar approaches using Lagrangean
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relaxation are used to derive lower bounds or solve pricing problems of other formulations
for RCPSP, see e.g. [37, 80].

As time-indexed formulations are only of pseudo-polynomial size, they become in-
tractable if the makespan gets too large. Two event-based formulations, called start/end
event-based and on/off event-based, have been proposed by Koné et al. [164] to overcome
this disadvantage. But the dual bounds of this relaxation are weak. We elaborate on
these formulations in Section 1.5.

CP Constraint Programming techniques use logical implications to strengthen the
bounds of variables via domain propagation. These techniques are also used as a pre-
processing routine in IP solving in order to reduce the number of variables. In case of
scheduling, a vast amount of literature can be found on propagation algorithms. We will
recapitulate the most important ones in Section 2.1.3.2.

The most prominent solving approaches for RCPSP based on propagation have been
proposed by Klein and Scholl [159], Caseau and Laburthe [47], Baptiste et al. [21] and
Dorndorf et al. [95]. More recent works can be found in Liess and Michelon [177],
Vilim [263] or Artigues et al. [12]. In [12], several approaches are compared with each
other.

A pure CP approach is presented by Lies and Michelon [177] who use lazy constraint
generation (like cutting planes in IP). Throughout search, when a subset of the jobs
violates the capacity, a resource constraint involving only this subset is created. This
technique substitutes the time-tabling propagation algorithm as it posts new constraints
exactly when time-tabling would have detected an infeasibility.

Worth-mentioning on the CP side is the work of Laborie [168], where minimal critical
sets (MCS) are resolved during branching by adding local precedence constraints. He uses
time-tabling, edge-finding and shaving as propagation rules. At that time, more than
31% of the best known lower bounds on a public library (PSPLib) have been improved
and more than 15% of open problems have been closed.

Applications of CP techniques to scheduling problems can be found e.g. in Dorndorf
et al. [94] in a job-shop scheduling environment where they show that guessing the
direction of the edges of the disjunctive graph leads to better heuristic solutions within
the same amount of computation time than other approaches. Approaches that combine
heuristics with CP techniques have been reported by Nuijten and Aarts [197], Pesch and
Tetzlaff [205], Phan Huy [92], and by Nuijten and Le Pape [196].

SAT Satisfiability testing, or SAT for short, also heavily relies on domain propagation
algorithms embedded in a search process, and additionally learns from infeasible states by
analyzing the infeasibility to use non-chronological backtracking or to create new local
or global valid clauses. By these new clauses, similar search states can be eliminated
early. The underlying model is an instance of SAT and therefore RCPSP needs to be
reformulated into SAT clauses. Horbach [144] proved this to be a very efficient and
successful approach for RCPSP. Furthermore, Ansétegui et al. [8] show how time-indexed,
task- and flow-based formulations can be encoded in a SAT solver. Their approach is
based on satisfiability modulo theories (SMT) which generalizes SAT solving by adding
arithmetic and other theories. They present competitive results which show that time-
indexed formulations are well suited for small instances.
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Hybrids Several of the approaches above already combine CP and IP techniques by
using constraint propagation to obtain tighter IP relaxations. Such hybrids of IP and
CP can be found by Baptiste and Demassey [19], Brucker et al. [39] and Demassey
et al. [81]. In particular, new valid inequalities for the LP relaxation based on constraint
based arguments are derived in [81] such as shaving and clique cuts.

Hybrid solvers that combine the strengths from the different communities, like a CP-
SAT hybrid [228] or the CIP framework Scip [137], prove most successful in order to
solve hard scheduling instances efficiently. Schutt et al. [228] use a CP approach with
time-tabling, edge-finding and not-first not-last detection [230] as the main propagation
algorithms. They generate a SAT model that discovers conflict clauses throughout search.
Currently, their implementation is the fastest on PSPLib, though there are few instances
where the SAT model by Horbach [144] or our approach provide better primal and dual
bounds.

Our results have been developed independently in parallel to these works.

1.5 Benchmark instances and computational studies

In this section we describe the publicly available instances and some indicators by which
these instances are characterized. In Section 1.5.2, we collect known results from the
literature in order to give the reader a familiarity with the approaches that have already
been applied and empirically compared. We conclude by describing the computational
environment used in the next two chapters for tuning our CIP framework for RCPSP.

1.5.1 Benchmark instances and instance indicators

One of the first official benchmark sets is given by the Patterson set [203]. Unfortunately,
this set turned out to be relatively easy to solve. Several indicators such as precedence
ratio or resource strength have been developed in order to cluster scheduling problems,
to estimate their hardness and to apply appropriate techniques depending on the given
instance. Nevertheless, none is perfectly suited to select the best propagation algorithm
throughout a branch-and-bound search. In the following, we mention the most important
indicators.

The precedence ratio (also called order strength [182], flexibility ratio[78] or den-
sity [78]) is given by the number of pairs of jobs that are transitively precedence related
divided by the total number of pairs. A precedence ratio of zero means that all jobs can
be executed in parallel (according to the precedence constraints), while a ratio of one
means that all jobs are totally ordered. With increasing precedence ratio the hardness
decreases as more scheduling decisions are already fixed.

The resource strength (per resource constraint), see e.g. Kolisch et al. [163], com-
bines precedence relations with resource information. It is defined as RS = (Ry —
Rpin) /(Rax — RInin) - Here, RIM™ = max{rj; | j € J} is the maximum demand of
any job of that resource constraint and R;’®* is the maximum peak in an earliest start
schedule when neglecting resource capacities. Hence, the resource strength can be seen
as a normalized resource capacity, i.e., the strength is close to one if an earliest start
schedule satisfies the resource constraint and close to zero if either many small jobs can
be executed in parallel or at least one job needs all the capacity. Easy instances have
resource strength zero or one, while those with resource strength zero are much harder.
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Hard instances have an intermediate resource strength. Altogether a bell-shaped easy-
hard-easy curve can be observed. Artigues et al. [12] present further indicators and show
in an experimental study that none fits best in order to describe the hardness of an
instance or to decide prior to search which algorithm to use.

Nevertheless, the disjunction ratio [21] works well as indicator to distinguish in-
stances. This indicator combines precedence and resource features and is computed
as follows: DR = |E U D|/(n - (n + 1)/2), where E denotes the transitive closure
of the precedence graph and D is the set of pairs of jobs that are in disjunction,
ie, D = {(i,j) € J* | 3k € Rry + rjp > Ry}. If the disjunction ratio is high,
we speak of disjunctive instances. Therein, pairs of jobs that cannot be scheduled in
parallel occur frequently. Strong lower bounds on the makespan can be computed by
considering the sum of processing times of all cliques formed by the disjunctive jobs.
For example, the Patterson set turned out to be disjunctive with high precedence ratio
and is therefore easy to solve. Cumulative instances have a low disjunction ratio and
are characterized by the fact that many jobs can be scheduled in parallel, such that al-
most a two-dimensional packing problem needs to be solved if there were no precedence
constraints at hand. Here, volume arguments (like in propagation algorithms such as
energetic reasoning) and the LP relaxation provide good lower bounds on the makespan,
but it is harder to find optimal solutions by heuristics due to the packing character.

Besides the Patterson set, further instances have been generated with respect to
indicators such as resource strength and precedence ratio. The nowadays well-established
library for RCPSP, the PSPLib [162], has been created by Kolisch et al. [163]. Four sets
(J30, J60, J90 and J120) with 30, 60, 90 and 120 jobs per instance are given with 2040
instances in total. Each instance of a set contains 4 resources and the jobs demand
between 1 and 10 resource units of multiple resources. Some instances have a high
resource strength and those that are unsolved yet, are rather disjunctive than cumulative.

Another set, the Pack instances [43], are of highly cumulative type, i.e., there are
only few precedence constraints and in a feasible schedule several jobs are scheduled
in parallel. The set contains 55 instances, the number of jobs, on average 25, varies
from 17 to 35 and the number of resource constraints is three, while the capacity of
each resource ranges from 5 to 10. The instances are of two types. The first type
may include disjunctions between the jobs as resource demands have been generated
randomly between zero and the capacity. In the second type of instances, all demands
cannot exceed half the capacity, hence no disjunctions are present. That’s why, these
instances are called highly cumulative. They are hardest to solve as they have low order
strength and zero disjunction ratio. Due to the low makespan and only up to 35 jobs,
IP models derive good bounds on these instances. Only 79% of the Pack instances have
been solved to optimality. We will close some of these instances for the first time.

Though extensive research has been carried out on RCPSP and all the indicators
mentioned above have been used to characterize the hardness of an instance, it has been
computationally revealed that the initial duality gap is the most discriminating indicator.
E.g., Artigues et al. [12] show that a standard MIP has an initial duality gap of 27% on
average on set J60 while unsolved instances bear an integrality gap of 62% on average.
Similarly, the Pack instances that are of highly cumulative type bear a high integrality
gap. For the other indicators the following observations have been made: Hardness
decreases with increasing order strength and network complexity, and decreasing resource
factor. Highly disjunctive problems and highly cumulative problems are hard.

22



1.5.2 Computational studies

In many of the aforementioned works different approaches and formulations have been
compared with each other. We collect the most important insights here. E.g., Koné
et al. [164] compare the standard MIP by Pritsker et al. [209] using the strong prece-
dence inequalities from [59], denoted by (DT), with the continuous flow formulation
(FCT) [13], the start/end event-based formulation (SEE), and with the on/off event-
based formulation (OOE) [164]. Table 1.4 indicates the strength of the time-indexed
MIP for small instances and the strength of the on/off event-based MIP for large scale
instances. In the scaled instances, the processing times from a subset of the jobs has
been scaled by a factor of 50.

Table 1.4: Comparison of the number of optimally solved instances by time-indexed and
event-based approaches from [164].

DT FCT SEE OOE
J30 82% 62% 2.9% 30%
Pack 5% 0% 0% 9%
Packso 0% ™% 4%  18%

The fact that time-indexed MIPs are no longer capable to solve instances with high
makespan, motivates us to invest a theoretical and computational study on a different
kind of relaxation. We present a continuous relaxation for cumulative scheduling prob-
lems in Section 2.4 which is able to handle even large real-world instances as shown in
Section 4.1.

Now we turn to the different solution methodologies. Several exact approaches, which
mainly rely on intelligent enumeration, exist and have been developed by the IP, CP
and SAT communities. It is widely believed that RCPSP is best solved via CP and
SAT techniques since it is rather a feasibility problem (one variable in the objective
function) than an optimization problem. Computational results on standard benchmark
instances reveal this fact, while we also show in this thesis that depending on some
problem characteristics, the choice of the algorithm varies. The best results in the area
of CP and SAT solving are given by the works of Schutt et al. [225, 227] with a CP-
SAT hybrid (CPSAT), Horbach [144] with a pure SAT model (SAT) and Liess and
Michelon [177] using a pure CP approach (CP). On the Pack instances, the best results
have been generated by Carlier and Néron [43] by introducing redundant resources and
using energetic reasoning as propagation algorithm. Hence, we report these values for
the CP. Table 1.5 summarizes the capabilities of these solvers to solve instances from
the different test sets revealing the strength of SAT based hybrid solvers.

Table 1.5: Comparison of exact procedures based on CP and SAT by comparing the
percentage of optimally solved instances. -’ indicates that no values are reported.

J30 J60 Joo J120  Pack
CP 97.7% 81.2% 78.8% 40.0% 80.0%
SAT 97.3% 84.0% 79.0% 41.2% -
CPSAT 100.0% 89.6% 82.7% 47.0% 69.1%
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Certainly, all techniques, from propagation algorithms, over the way conflict analy-
sis is implemented, to the model used, computers, time limit and so on, play a crucial
role when comparing these instances. Some procedures turned out to be well-suited for
small but not for medium or large instances. Hence, we did not reimplement these, but
mention them next. In general, the cut-set rule of Demeulemeester and Herroelen [84]
is most efficient for small size instances. It is based on storing partial schedules. The
local bounds of variables are checked for being dominated by these partial schedules.
Due to the high number of cut-sets to be stored it does not scale to medium or large
size instances. Good results are reported for instances with up to 50 jobs, see [84, 177].
Another often well-suited technique is to branch by posting new precedence constraints.
Laborie [168] concludes that branching by posting new precedence constraints for each
minimal conflicting set is too expensive for highly cumulative instances. In our experi-
ments, this kind of branching has an even more negative impact as our solver does not
support local constraints in conflict clauses — only variables are allowed. This technique
is not better suited in our solver. Last, we point out that several IP formulations exist
and could be used. We restrict to the one of Pritsker et al. [209] that is well suited for a
CIP solver like scip due to the knapsack like resource constraints and a simple linking
constraint. Nevertheless, different models might prove useful on different instances. In
this thesis, we concentrate on the integration of CP, IP ad SAT techniques in a CIP
environment. Comparisons between available IP formulations can be found in [12, 164].

1.5.3 Setup for experiments

In this thesis we compare the solvers and the used propagation, separation and explana-
tion algorithms with each other. Benchmark instances are available, but some of them
are easily solved or too hard to solve. We concretize next how all experiments are done
in order to get comparable results within reasonable time.

Environment To perform our experimental study we use the non-commercial Con-
straint Integer Programming framework scip [2], version 2.1.1 with bug-fixes and some
refinements that make e.g., bound-widening in conflict analysis possible. We integrated
CPLEX release version 12.4 as underlying LP solver. All computations reported are ob-
tained on Dual QuadCore Xeon X5550 2.67 GHz computers (in 64 bit mode), 24 GB of
main memory, running a Linux system using GNU compiler 4.6.2.

scIP has a SAT-like conflict analysis mechanism and is a backtracking system. To
avoid an overhead by constructing explanations for bound changes, it is possible to
store additional information for each bound change. Since the number of stored bound
changes is quite large during the search, the space for these information are restricted
to 32 bits each. In the corresponding section, we explain how we use these bits to deliver
explanations efficiently.

We turn off all heuristics during branch-and-bound search since global primal heuris-
tics sometimes find feasible solutions by different branching decisions. Prior to branch-
and-bound search, we use a scheduling-specific serial SGS based on the a sorting of the
start times variables that is set up according to a relaxed problem (LP solution or CP
solution), see [188]. These solutions are in most cases not optimal and are only improved
during search if an earliest start schedule that respects the local bounds yields a feasible
solution.
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Instances To measure the impact of solving techniques on instances from RCPSP,
we concentrate on instances from PSPLib and on the Pack instances. in order to test
parameter settings within reasonable running time, we shrink the test set instead of
lowering the time limit. In order to shrink the size of the test set we collect a subset of
the instances where different behaviors of the solving techniques can be observed. We
carried out an initial study with default CP settings and erased all instances that have
been either easily solved or too hard to solve within one hour. For all test sets we used
the following criteria to restrict the test set to reasonable instances. From the PSPLib
we kept all instances which:

1. could be solved to optimality by at least one solver,
2. at least one solver needed more than one search node, and
3. at least one solver needed more than one second of running time.

Then, we grouped these instances into small ones (“setS”), subsets from J30 and J60,
and large ones (“setL”), subsets from sets J90 and J120. We kept the whole Pack set
consisting of 55 instances, though several are too hard to solve and only on 28 of them
the criteria would apply.

We list the set of instances here: From set J30, we took the instances 5_{2,4}, 9_{1-
10}, 13.{1-10}, 14.{2,7}, 25.{1-9}, 29.{1-10}, 30_{2,3}, 37.7, 41_{1-10}. 45_{1-10}
and 46_7. From set J60, 5.{1-9}, 9.4, 14.4, 178, 21_{1-10}, 26_{3,4,9}, 37_{1-10}, 382,
41.{4,7}, 42.{3,4,7,8} and 46-{1,4,5,6,7,8}. From set J90 we are left with 1_{1-10},
5.{1,2}, 6.8, 17{1,2,3,8,9,10}, 21_{3,4}, 26_{4,7}, 33_{1,5,9,10}, 37_{3,4,7,9}, 42_9 and
46_{1,3,5}. From set J120 the following instances remain: 1.{2,4-7,9,10}, 2_{1-10},
3.1, 8.1, 14.{3,9}, 15.3, 191, 21.{3-6,8-10}, 22.{1,2,4-10}, 23.{5,6,9}, 28.{2,4,6},
29.{4,5,8}, 30{5,7}, 34.{4,6,7}, 359, 41.{1-8,10}, 42_{3-10}, 43.{1,3-6,9}, 48.9,
49 {5,7,8,9} and 50_{2,10}

For the overall performance, we finally report results on the set of all instances.
Later, for applications of our techniques we use additional test sets for labor constrained
scheduling problems, for RCPSP with discounted cash flows and for a multi-mode resource
leveling problem that will be described in the corresponding chapters.

Tables and figures In order to compare different settings or different solvers with
each other we will show elaborate results in tables such as given in Table 1.6. These
tables contain the number of optimally solved instances (‘nopt’), how often which solver
found the best primal (‘bprimal’) or best dual (‘bdual’) bound. The average gap of all
instances from the test set is given in column ‘gap’, while the gap after solving the root
relaxation is given in column ‘gapRoot’. Gaps are computed for a primal bound p and
dual bound d via (p — d)/d. Choosing d as denominator instead of p, we report a more
pessimistic final gap. When comparing presolving and lower bounding techniques, we
also show the gap between the final dual bound d; and the root dual bound d, given
by (df — d,)/d, which measures by how much the dual bound has been improved. The
gaps are shown in percentages, while in later tables we do not display the %-sign.

On those instances that are solved to optimality by all solvers, we compute the average
running time (‘avtime’) in seconds and the average number of nodes (‘avnodes’) needed
by each solver on this restricted subset. The cardinality of this subset is displayed after
‘allopt:’.
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setting nopt bprimal bdual gapRoot[%)] gap(%) avtime [sec] avnodes [sec]

setS (114 instances) (allopt: e.g., 19 instances)

Table 1.6: Headers of the tables used in the experiments.
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Figure 1.2: On the left, the number of optimally solved instances per time limit is shown,
while on the right, a distribution function is given that shows which multiple of nodes
(or running time) is needed for a certain setting to solve an instance compared to a best
setting.

On the picked test instances from setS, setL and Pack, the number of nodes and the
running time vary widely between 100 and 500, 000 nodes. Hence, we do not compute
the standard deviations from the average values as these are always pretty high. Instead,
we support visualizing the impact of the different settings on the number of nodes and
on the running time with the help of distribution functions. In Figure 1.2 on the left, the
distribution function for different time limits is given. The time limits on the horizontal
axis are chosen to be 2,10, 60,300 and 600 seconds in logarithmic scale. On the vertical
axis, the percentage of the instances that are solved to optimality are shown. Hence, each
marked point corresponds to the percentage of the instances that can be solved within
the given time limit. Connecting these points linearly is done to support visualization
per setting. Points on the lines do not correspond to the percentage of instances that
can be solved within intermediate time limits. On the right of Figure 1.2, a distribution
function is shown. On the vertical axis, we again show the percentage of optimally
solved instances. For each instance solved to optimality, we compute the minimum
number of nodes needed to solve this instance over all the considered settings. Then,
a ratio per setting is computed as the number of nodes needed by this setting divided
by the minimum number of nodes any solver needed on this instance. The functions
in the figure now show the distribution function of these ratios in logarithmic scale.
Hence, a point on a line of this curve corresponds to the percentage of instances that can
be solved by needing at most a certain multiple of the minimum number of nodes. A
similar distribution function will be shown for the running times on all optimally solved
instances.

26



Chapter 2

CIP Techniques for RCPSP

In this chapter we study and develop solving techniques in a Constraint Integer Pro-
gramming (CIP) framework for RCPSP. Recall the CIP formulation for RCPSP from
Chapter 1:

min  Chax
subject to precedence(S;, S}, p;) V(i,j) € E
cumulative(S,p, 7, R) VkeR
D(S;) =Ny Vied.

In a CIP framework, the different techniques from Integer Programming (use of LP
relaxation, pseudo-cost branching, LP-based heuristics,...), Constraint Programming (do-
main propagation, inference or constraint branching,...) and SAT (conflict analysis, hot
restarts, conflict-driven search) are used throughout a branch-and-bound search. The
techniques are either implemented in the constraints which provide callback methods or
by other propagators or separators that are part of the framework.

Within this framework we evaluate the impact of the different solving techniques on
the solution process.

Nowadays, hybrid approaches that combine CP and SAT techniques like [137, 228],
prove most successful in order to solve hard scheduling instances efficiently. We show
the importance of the IP part in such hybrid frameworks by presenting a continuous
relaxation of the cumulative constraint. We study algorithms and their complexity for
propagation, explanation and separation procedures. In contrast to previous literature on
explanation algorithms for cumulative scheduling, we carry out a complete complexity
study on optimal explanation algorithms for the propagation algorithms time-tabling,
edge-finding time-tabling edge-finding and energetic reasoning. We develop different
explanation algorithms for these propagation rules and show in a computational study
the merits of minimum size explanations in contrast to less elaborate approaches and in
contrast to a pure CP search without conflict analysis.

Contribution After discussing the main propagation algorithms for the cumulative
constraint, we develop techniques to speed up the energetic reasoning propagation al-
gorithm. We show that using an approximative criterion to estimate the energy of an
interval, we are able to improve the running times on PSPLib instances to 1/4 if energetic
reasoning is used as stand-alone propagation algorithm. Nevertheless, on most instances
it is best to use the time-tabling algorithm.
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We study and develop explanation algorithms for bound adjustments detected by the
cumulative propagation algorithms. To this end, we introduce the notion of explanations,
which we show to be not unique in case of the cumulative constraint, in contrast to
standard clauses in SAT. Using our sophisticated explanation algorithms, we are able
to reduce the average number of branching nodes by 90% on instances from PSPLib,
which is remarkable. As a computational overhead is induced by performing conflict
analysis, the average running times will only decrease to 33%. Interestingly, on the Pack
instances these good results are not obtained, which may be due to the nature of these
highly cumulative instances because of which time-tabling is not able to detect bound
adjustments.

The use of a continuous relaxation enables the hybrid solver to apply MIP techniques,
in particular branching on fractional values and to use pseudocost branching to guide the
branching decisions. Using this technique, we are able to solve few more instances from
each test set while the number of nodes decreases by one-half and the average running
time decreases to two-third in contrast to the best CP-SAT hybrid developed before.

Outline Section 2.1.2 presents basic constraints, like precedence (that models the
precedence relations in scheduling), disjunctive (that models jobs that are not allowed
to be executed in parallel) and bounddisjunction (that models constraints that result
from conflict analysis). Then, in Section 2.1.3 the CP techniques for the cumulative
constraint are presented. We develop an approximative criterion for energetic reasoning
to detect an overload in Section 2.1.4. This criterion is used in a parametrical propa-
gation algorithm. In Section 2.2 we describe hybridizations of CP, IP and SAT and in
particular the process of conflict analysis for general constraints based on an example
from cumulative scheduling. We invest a theoretical and computational study on how
to best perform conflict analysis for various explanation algorithms. In Section 2.3.1 we
study the complexity of delivering optimal (minimum size and minimum weight) explana-
tions to these algorithms. We develop explanation algorithms that differ in strength and
running time in Section 2.3.2. We conclude with an experimental study and compare the
developed explanation algorithms on standard benchmark instances from PSPLib [162].
Section 2.4 presents a continuous relaxation of the cumulative constraint. This relaxation
is only based on the integer start time variables and has to the best of our knowledge
not been used successfully for RCPSP so far.

2.1 CP techniques

CP is famous for its better scalability on instances from RCPSP in contrast to MIP
because no time-indexed variables need to be introduced. Furthermore, RCPSP can be
solved via a binary search on the makespan after which a pure satisfiability problem
remains. Also because of the high logical structure in such instances, CP techniques
have been successfully applied to solve series of hard scheduling problems.

In this section, we start by introducing constraint propagation and the notation for
bound changes needed in our study on explanation algorithms in Section 2.2. Then,
several well-known propagation algorithms for scheduling problems are discussed in Sec-
tion 2.1.2. In particular, in Section 2.1.3 we concentrate on propagation algorithms for
the cumulative constraint and compare their impact when solving standard benchmark
instances. This study shows, that time-tabling is best to be used on instances from
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PSPLib, while energetic algorithms such as edge-finding or time-table edge-finding are
very useful on highly cumulative Pack instances.

Section 2.1.4 is devoted to the energetic reasoning algorithm for which we propose
an approximative criterion to decide whether too execute this powerful but costly algo-
rithm. On instances from PSPLib, the running times can be decreased to 1/4 on average,
whereas on highly cumulative instances this technique does not yield any improvement.

2.1.1 Constraint propagation

Recall from Section 1.3.2, that constraint propagation is a technique to reduce the search
space by excluding inconsistent values from the domains of the variables. We start by
introducing the basic notation for this technique, see e.g., [1]. With each continuous vari-
able S; with earliest start time est; > 0 and latest start time Ist; > est; we associate its
domain Dj := [est;,...,Ist;]. We abuse notation by writing S; € D; for the assignment
of variable S;. It becomes clear from the context whether a variable or its assignment is
considered. Using a MIP notation based on halfspaces, we can express the domain of a
variable by D; = {S; > est;} N {S; <lst;}.

Throughout branch-and-bound the domains are reduced by branching decisions or
by propagation algorithms. A halfspace that reduces the domain of a variable is written
in the form {S; > ul'}, resp. {S; < pU}, where ul > estj, resp. pu¥ < Ist;. Let D =
Dy x ... x D, be the vector of domains per variable.

Given a node of branch-and-bound tree, we consider the unique path from the root to
that node and denote by B = {Bj,... By} the set of all so far performed domain reduc-
tions (branching decisions and deductions from propagation algorithms). More formally,
we denote the set of all lower bound changes of variable S; by L= {L},..., Lij }, where

for k =1,..., L; the sets Li denote the halfspaces L7 = {S; > uk}. Equivalently, we de-
note the set of all upper bound changes by U7 := {U{, cee UjUj }, where Ui ={9; < u¥}.
Then, D = ﬂjej(ﬂiLi1 LN ﬂzU:]1 Uj) = Ni-1 Be.

Now, we formalize our notation of a propagation algorithm. A propagation algo-
rithm P gets as input a set .S of variables, the domains D represented via halfspaces B
and one or more constraints C(S) over the variables. It is more convenient in the next
definition to use B instead of D to describe the local bounds of the variables, as these
are used in our study on explanations for the propagation algorithms. A propagation
algorithm uses the logical implications of the given constraint(s) to perform domain re-
ductions, also equivalently referred to as bound adjustments, bound changes or, in MIP
notation, as halfspaces. Adjusting the lower bound of variable S; to some value of at
least est;- is denoted by the halfspace {S; > est;-}. Propagation algorithms only per-
form feasible bound adjustments, i.e., the set of feasible solutions before and after the
domain reduction remains the same!. The set of all feasible domain reductions (half-
spaces) by propagation algorithm P under constraint C'(S) and bounds B is denoted
by fp(S,B,C(S)). Hence, we write {S; > est’} € fp(S,B,C(S)). This notation will be
used in our study on explanation algorithms in Section 2.2. In the sequel of this section,
where we present the bound adjustments of different propagation algorithms, we state
the values est;- in the corresponding lemmas, instead of using the halfspace notation.

' A weaker assumption can be used in MIP (CP): at least one optimal (feasible) solution must remain
if the solution space is non-empty.
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Example 2.1. We consider the network with seven jobs as depicted in Figure 2.1.
The processing times and demands are shown in the table of Figure 2.2. The resource
capacity is three (R = 3). Figure 2.1 shows that a feasible solution with makespan 13
exists. Assume that a hypothetical makespan of Ciax = 14 is known. Column 4 of
Figure 2.2 shows the global bounds of the variables due to precedence constraints with
a global makespan of 14. Columns 5, 6 and 7 show the variable bounds after iteratively
applying the branching decisions {Sp > 1}, {S¢ < 5} and {Sgp < 8} with propagation
of the precedence and resource constraints using time-tabling propagation as described
in Section 2.1.3.2. After the last branching decision has been propagated, job A can
be shifted over its latest start time and therefore the problem becomes infeasible. This
example will be used later in our study on explanations for infeasibilities and bound
changes.

A

B ¢ D G £

} ! 1 1
T T

01 2345 6 7 8 9 1011 12 13 14

Figure 2.1: A precedence network of seven jobs A, B, ..., G and two dummy jobs (start Sp
and end Cpax) and an optimal solution with makespan Cp,ax = 13 are depicted.

2.1.2 Propagation of basic constraints

Propagation algorithms are the main algorithms in CP solvers. They are applied more or
less in every node of the search tree in order to detect inconsistent variable assignments
and to remove these from the search space. Next, we recall the constraints and their
propagation algorithms as they are needed for resource-constrained project scheduling
problems. These constraints are the precedence constraints, the disjunctive constraints
and the bounddisjunction constraints. The former are needed in conflict analysis.

2.1.2.1 The precedence constraint

A precedence constraint © < j models the relation between two jobs ¢ and j. It enforces
that in a precedence-feasible solution S; + p; < S holds.

Precedence constraints do not only occur in scheduling problems. They are part of
many [P and CP formulations and binary or continuous variables can be involved and
scaling factors may appear. Hence, in CP solvers the more general varbound constraint
exists, whose input are variables z,y (binary, continuous or integer) and parameters
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global bounds | 1st branch | 2nd branch | 3rd branch
pj | Tj lest; Ist;] lest;;Ist;] | [est;;lst;] lestj; Ist;]
A 6|2 [0; 8] [0; 8] [0; 8]
B L1 [0; 4] [1;4] [1;4] [1;1]
C 3] 2 [1; 5] [2; 5] [2; 5] [2; 2]
D 31 [4; 8] [5; 8] [5; 8] [5; 5]
E 3| 2 [7:11] 8; 11] [8; 11 8: 8]
F 311 [0; 8] [0; 8] [0; 2] [0; 2]
G 311 [3; 11] [3; 11] [3; 5] [3; 5]
Conax | 0 | 0 [10; 14] [11;14] [11;14] [11;14]
,est; et
A |

0012345 6 7 8 910111213 14

Figure 2.2: On top, the variable bounds before and after branching are displayed. Below,
a time-table after the third branching decision is shown. Using time-tabling propagation,
the lower bound of job A can be updated from zero to eleven, thereby violating the latest
start time Ist, = 8.

a,a,b e Q.
varbound(z,y, @,a,8):  {(,9) € (D(x), D)) | a <o~z +y < b}

Since our approach will not need these more general constraints, we stick to the
precedence-constraint defined for integer variables S;, S; and a parameter p;:

precedence(S;, Sj,p;) : {(Si,85) € (D(Si),D(S;)) | Si +pi <S;}.
The following bound changes can be derived:

Lemma 2.1. Given a precedence(S;, S, p;)-constraint.
(i) A walid lower bound est;- on the start time S; of job j with respect to this constraint
s given by:

est’; = max{est;, est; +-p;}.

(ii) A wvalid upper bound lst; on the start time S; of job i with respect to this constraint
s given by:
Ist; = min{lst;, Ist; —p; }.

Given that observation, we may deduce an infeasibility:
Lemma 2.2. The problem is infeasible w.r.t. precedence(S;, Sj,p;) if est; +p; > lst;
holds.
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Propagating precedence constraints has been done for a long time in project schedul-
ing. For problems containing minimum and maximum time-lags, a Bellman or a Floyd
Warshall algorithm with a complexity of O(n?) is used. For acyclic precedence networks
a topological sorting of the jobs is used such that propagating these constraints runs in
linear time O(m).

2.1.2.2 The disjunctive constraint

In many applications, some jobs are not allowed to be executed in parallel due to technical
restrictions or due to a limited number of resources. An extreme case is given if all jobs
cannot be executed in parallel. Then, we speak of single machine scheduling problems.
If only a subset of jobs cannot be executed in parallel and there is no transitivity given,
then such scheduling problems are referred to as scheduling with conflicts [108, 148].

From a CIP perspective we will use the disjunctive constraint to model the conflicts
between pairs of jobs i,j € J with i # j:

disjunctive(S;, S, pi, pj) :
{(Si, S5) € (D(S;), D(S))) | Si +pi < S;VS; +p; < Si}

An IP formulation for this constraint is obtained by introducing a binary variable z;;
that models whether job i precedes job j (x;; = 1) or whether job j precedes job 4
(xi; = 0) and the following big-M-constraints for some large value M:

Si+pi§(1—xij)-M+Sj A Sj—i-pjfxij'M—l—Si.

Here, a pair of jobs is not allowed to be executed in parallel. Observe that this must
not be a transitive relation between the jobs. An extreme case can be found in single-
machine or sequencing problems, where no job is allowed to be executed in parallel to any
other. Cumulative constraints (see next section) with capacity one are another extreme
case, where all jobs from a single constraint are not allowed to be executed in parallel.

Due to the huge amount of variables (in the worst case quadratic in the number of
jobs) that might be introduced and the weak dual bounds due to the bigM-formulation,
we do not linearize this constraint but use it throughout branch-and-bound for propaga-
tion.

It is easy to check for each disjunctive constraint whether the variable bounds are
already that tight, such that the constraint can be replaced by a precedence constraint,
as the following lemma summarizes.

Lemma 2.3. Given a disjunctive pair (i,7).
(i) If lct; < ectj, then job i precedes job j.
(i1) If Ict; < ect;, then job j precedes job i.

Instead of posting new precedence constraints locally in a node of the search tree,
the domains can be propagated according to Lemma 2.1.

Lemma 2.4. If for a disjunctive pair (i,j) lct; < ect; holds then est; > ect;
and lst; <lst; —p;.

Infeasibilities are detected if both domains are that tight that the jobs must be sched-
uled in parallel. We denote by lcty; ;1 := max{lct;, lct;} and by esty; j, := min{est;, est; }.
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Lemma 2.5. Given a disjunctive pair (i,j). If lety; jy —esty; jn < pi + pj, then the
problem is infeasible.

If a problem consists of resources with unit capacity, more specialized algorithms
than for general capacity values can be applied, see e.g., [92]. In Section 3.2.2 we will
use the set of all pairs of disjunctive jobs to identify large cliques and build redundant
cumulative resource constraints with capacity one.

2.1.2.3 The bounddisjunction constraint

The bounddisjunction constraint [1] is part of the scip framework. We introduce it here
shortly because it is created throughout branch-and-bound as a result of conflict analysis.
The bounddisjunction constraints are conflict constraints (no-goods) for integer or
continuous variables. Given an n-dimensional vector x and an m-dimensional vector y of
variables and two vectors a € Q",b € Q™, the bounddisjunction constraint is defined
as:

bounddisjunction(z,y,a,b) : {xz € D(z;),y; € D(y:) | LJ{:):Z >a; b U LJ{yZ < bl}} .

i=1 i=1

This constraint can only propagate if at most one variable does not obey its bound
condition. Hence, it is expensive to propagate them if many of them are present or if a
single constraint contains many variables. From a computational point of view it is good
to have few bounddisjunction constraints in the model, and each with few variables.
The initial SCIP settings only keep these constraints from conflict analysis if at most 8
variables or not more than 10% of the variables are involved in the generated conflict
constraints. In case of scheduling we increase this number to at least 10 or 10% of the
variables.

2.1.3 The cumulative constraint

The resource constraints play an important role, since they turn RCPSP into an NP-hard
problem. First, we give an overview on the most important domain propagation tech-
niques for the cumulative constraint, also called propagators. We will only present the
basic ideas of the algorithms we use and formally state the conditions under which prob-
lems are detected to be infeasible and the conditions to perform bound changes. These
basics are needed in Section 2.1.4 where we find an approximative criterion fora propa-
gation algorithm, called energetic reasoning, to detect infeasibilities and in Section 2.2
where we develop explanation algorithms for the different propagators.

In this section, we consider exactly one particular cumulative constraint and recall
the notion omitting the index k of the resource. In cumulative scheduling, an instance
is given by a set J = {1,...,n} of non-preemptable jobs with processing times p; € N
for each job j € J. Each job j requires a certain number 7; of a cumulative resource
which has a capacity R € N. In a constraint program, a cumulative constraint as
introduced in [5] is given by cumulative(S,p,r, R), defined by vectors of start times S =
(S1,...,5n), processing times p = (p1,...,pn) and resource requests r = (r1,...,7y),
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and the capacity R. The cumulative constraint enforces that at each point in time ¢, the
cumulative demand of all jobs running at ¢, does not exceed the given capacity, i.e.,

Z ri <R for all ¢.
jej:tG[Sj,Sj-i-pj)

Depending on the earliest start times (est;), earliest completion times (ect;), latest start
times (Ist;), and latest completion times (lct;) for each job j € J, propagation algo-
rithms update variable bounds. The domain of a start time variable .S; corresponds
to the interval [est;;Ist;]. The feasible interval when a job can be processed is given
by [est;; lct;).

2.1.3.1 Checking resource feasibility of a solution

Given some solution to RCPSP or for other cumulative scheduling problems. It is eas-
ily checked whether precedence constraints are fulfilled, while for checking resource-
feasibility more efforts are needed. In the literature, see e.g. [12], a procedure with
quadratic running time O(n?) is given that checks for one resource constraint whether it
is violated by a solution or not. The authors sort all jobs by non-decreasing completion
time and check at each such point in time whether the jobs that are running or complete
at this point in time violate the capacity. As there are possibly n points in time and O(n)
jobs to be considered, this yields a total running time of O(n?). It is possible to speed up
their procedure to run in O(nlogn). For completeness, we state Algorithm 1 with that
efficiency here. The idea is to keep two sorted lists L1, Lo, for which indeed two arrays can
be used. Observe that the resource profile changes only at event points that correspond
to the start or completion of a job. The first list Ly is sorted by non-decreasing start
times S; and the second one by non-decreasing completion times S;H— pj. Simultaneously
to sorting both lists, we keep track which resource demands belong to the designated
start and completion times. Then, we run through both lists in a synchronized manner
by using one counter per list for fast access. According to that ordering, each event (at
most 2n) is checked whether the capacity is obeyed or not. For that purpose, all resource
demands that complete before that point in time, are subtracted and all resource de-
mands of starting jobs are added. If the capacity is exceeded, the problem is infeasible.
In contrast to the approaches from the literature, we need to sort two lists, keep track of
the associated resource demands for each point in time and need to consider 2n points
in time instead of n. Altogether, this yields an O(nlogn) algorithm.

2.1.3.2 Propagation algorithms

Several CP techniques focus on propagation algorithms for the cumulative constraint, see
e.g. [12, 22, 45, 95, 159, 230, 263]. We give a survey of the basic ideas of the propagation
algorithms time-tabling, edge-finding, time-tabling edge-finding and energetic reasoning.

We only consider the updates of the lower bounds since updating the latest completion
times can be handled symmetrically. As introduced before, bound changes are halfspaces
induced on a single variable, e.g., {S; > est;} for some j € J. We clarify how the
propagation algorithms update the variable bounds in separate lemmas. If a propagation
algorithm updates the bound of variable S; from est; to some larger value est;., this is
equivalent to adding a halfspace {S; > estg-}, a notation used for explanation algorithms.
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Algorithm 1: Checking feasibility of a solution for one cumulative constraint.

Input: Resource capacity R, set J of jobs and their schedule S*.
Output: Returns whether solution is feasible or not.
Create list of points in time L, sorted by S7.
Create list of points in time Ls sorted by S}‘ +pj.
Set D = 0.
for t € L1 U Ly in non-decreasing order do

Subtract demands of jobs that end until ¢ from D.

Add demands of jobs that start at t to D.

if D > R then

L return Fualse.

0 N O Ok W N

return True.

©

Time-tabling Time-tabling is also known as the concept of core-times [159]. The
core of a job is defined by the interval v; := [Ist;,ect;). Observe that a core can be
empty. Intuitively, this is the interval in which the job must be processed due to its
earliest start and latest completion time since preemption is not allowed. We define the
core-profile I' 7 : t — N for a set of tasks J as:

Ly(t):= Z T

Jitey;

This profile can be computed in O(nlog(n)) by first sorting the jobs according to
the start and completion times of the cores which yield at most 2n event points to be
considered. Then, the profile is created in the order of these events. A point in time ¢
at which the capacity is exceeded, i.e., I'7(t) > R, is called a peak.

If due to their cores too many jobs need to be executed at a particular point in time t,
then the problem is infeasible. We summarize this in the following lemma.

Lemma 2.6. The problem is infeasible if T'(t) > R holds for some t.

Now, we turn to the time-tabling propagation algorithm. A job j can be scheduled
at time ¢ if FJ\{]-}(T) < R—rjholdsforall 7 =t,...,t+p; — 1. Bound adjustments can
be made by trying to insert each job j as early as possible into the core-profile I' 7\ ;1.
If it cannot be scheduled there, the earliest time slot of size p; where the job can be
scheduled yields a new lower bound on the start time 5.

Lemma 2.7. A wvalid lower bound est} on the start time S; of job j with respect to the
resource profile is given by:

est; := min {t>estj [Tr(r) <R—rjfor 7=t ,t+p;—1}. (2.1)

A job may be shifted over several peaks R — r; to some larger value (even larger
than Ist;) in one iteration. If the job admits a core itself after updating the bound, this
core can be immediately inserted into the core-profile in time O(log(n) + p;). Hence,
time-tabling can be easily implemented as a dynamic propagation algorithm (i.e., an
algorithm that performs bound changes immediately and updates the core-profile in
every iteration), see Algorithm 2. We remark that in line 4 of Algorithm 2 any order can
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Algorithm 2: Implementation of time-tabling.

Input: Resource capacity R, set J of jobs.
Output: Earliest start times est;- for each job j or an infeasibility is detected.

[uny

Create profile I' 7.
if 3¢:T7(t) > R then
3 L return Infeasible.

N

4 foreach job j in order of non-decreasing est; do
5 if job j can be scheduled at est; in I 7\ (;; then
6 L continue.

7 Find estg- according to I' 1\ (;1 by scanning the profile from left to right.
if est’ > Ist; then
L return Infeasible.

10 Set est; := est;», possibly update I' 7.

be chosen, but an ordering according to earliest start times is computationally beneficial
as after an update new cores may occur or the cores just expand.

Example 2.2. Figure 2.3 visualizes how the core of a single job is computed. On the
right, two jobs each with demand r; = ro = 2 and processing times p; = 4, and ps = 3
and processing intervals [est;,lct;) = [0,6), and [esta,lcty) = [0,4), resp., are given.
There is a peak at t = 2.

In Figure 2.4, the core-profile for some set of jobs is depicted. The core of the specified
job j is empty, but job j cannot be scheduled at its lower bound est;, since at ¢ = 3 the
core-profile exceeds R — r;. Hence, est;- = 4. Furthermore, at t =5 € [est;,est; +p;)
again a peak larger than I? —r; exists. Repeating this procedure, an update to est;- =13
can be propagated.

| est; | lct; e
| ‘ L dob 1}
| ' left shift o
1 | right shift | | R
- Hl o,
sty rect; 01 2 3 45 6

Figure 2.3: On the left: Visualization of a core 7; of job j. On the right: The core-profile
for two jobs where the capacity R is exceeded in the interval [2;3).

Energetic reasoning The energy of a job is the product of the processing time and the
resource demand. Energetic reasoning checks non-empty time intervals [a, b), with a < b,
whether all jobs contributing to that interval require more energy than available. This
concept is also known as interval consistency test, see e.g. [95]. In a problem setting of n
jobs there are O(n?) intervals to be checked for feasibility, see Baptiste et al. [22]. These
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Figure 2.4: Illustration of time-tabling propagation. The lower bound of job j can be
updated from zero to 13 due to the cores that exceed R —r; at least every p; time units
before ¢t = 13.

intervals can be computed from the earliest and latest start times. The available energy
of such an interval [a, b) is given by R - (b — a). The required energy e}ER(a, b) of job j in
interval [a,b) is defined by:

ER

e;" " (a,b) := max {0, min{b — a,pj, ect; —a,b —Ist;}} - r;. (2.2)

Hence, eER(a, b) is the non-negative minimum of (i) the required energy if it runs com-

pletely in the interval [a, b), i.e., (b—a)-7;, (ii) the required energy of job j, i.e., p;-r;, (iii)
the left-shifted energy, i.e., (ect; —a)-rj, and (iv) the right-shifted energy, i.e., (b—Ist;)-r;.
Figure 2.5 sketches the different situations how an interval [a,b) can be positioned to-
wards a job’s time window [est;, Ict;).

I

I

‘ -

I

|

|

|
‘— |
I 1
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I
I
I
| |

Ietp

>~ -t - -

estp c‘z ectp Istp

Figure 2.5: Visualization of e}ER(a, b). Job A contributes r4-(b—a) <ra-pa,
job B is fully contained and contributes rp-pg, whereas job C' has zero en-
ergy in interval [a,b) and job D intersects with the interval from both sides,
hence, ep(a,b) = rp - min{ectp —a,b —Istp} = rp - (b —Istp).

Next, we present the standard energetic checking and propagation rules, see e.g.,
Baptiste et.al. [22]. Consider a problem setting consisting of n jobs with some lower and
upper bounds on the start time variables. If an interval is overloaded, i.e., the required
energy Egz(a,b) := > ,c s e?lR(a, b) is larger than R-(b—a), then the problem is infeasible.

Lemma 2.8. If for a non-empty interval [a,b), Es(a,b) > R-(b— a) holds, then the
problem is infeasible.
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Algorithm 3: General framework of the propagation algorithms energetic reasoning
and edge-finding.

Input: Resource capacity R, set J of jobs, set of intervals O.
Output: Earliest start times est;- for each job j or an infeasibility is detected.
foreach interval [a,b) € O do
if E7(a,b) > R-(b—a) then
L return infeasible.

N =

foreach job j do
Compute update of earliest start time if overload is created:

6 est/, = max {estj, a+ [1 (Epgy(ab) = (b—a)- (R — rj))w } .

est; lIst; ect; lct;

job 4 | | 0 1 3 4

job 3 0 2 2 4

job 2 0 2 2 4

job 1 é i 0 2 2 4
0 1 2 3 1!

Figure 2.6: Problem setup of Example 2.3.

Variable bounds are updated by checking whether scheduling a job at its earliest start
time would induce an overloaded interval as stated in the following Lemma.

Lemma 2.9. If for an interval [a,b) the conditions Es(a,b) < R - (b — a) and
Epjy(a,b) + rj - (min{est; +p;, b} — max{a,lst;}) > R- (b — a) hold, then the earliest
start time of job j can be updated to:

esty = a + H(EJ\{J‘}(G’ b)—(b—a) (R— 7“j))w : (2.3)

Proofs are given in [22]. The fastest known implementation for energetic reasoning
runs in O(n3) by checking for each job all O(n?) intervals of interest. See Section 2.1.4
for further information and our study on an approximative criterion for this algorithm to
detect overloads of intervals. Algorithm 3 sketches the main steps of energetic reasoning.
The algorithm checks in line 2 for each interval whether the problem is already infeasible
according to Lemma 2.8. Then, each job is scheduled as early as possible and thereby a
job is possibly postponed in line 6 by applying Lemma 2.9.

Example 2.3. Consider a cumulative resource of capacity 2 and four jobs each with
a resource demand of 1, an earliest start time of 0 and a latest completion time of
4. Three of these jobs have a processing time of 2. The fourth job has a processing
time of 3 instead. Figure 2.6 illustrates this setup. The available energy interval [1, 3)
is (3 —1)-2 = 4. The first three jobs contribute one unit each, whereas the fourth job
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adds two units to the required energy. This sums up to F(1,3) = 5. This shows that
these jobs cannot be scheduled.

Edge-finding Edge-finding can be seen as a special variant of energetic reasoning. In
that variant the energy requirement of a job is only considered if the job lies completely
in the interval [a,b). It is defined by e?F = pj - rj if est; > a and lct; < b hold,
and e]EF := 0 otherwise. This clearly leads to weaker bound updates, but can be executed
in O(n?log(n)) using sophisticated data structures, namely the theta-lambda-trees, see
Vilim [262]. All update formulas and infeasibility statements from energetic reasoning are
transferred to edge finding by exchanging e?“R(a, b) with e?jF (a,b) in the corresponding
formulas.

The running time of the propagation algorithm has further been improved
to O(knlog(n)) by Vilim [261], where the implementation details are tricky. Here, in
each execution round only a job with largest update is searched for and therefore the
algorithm may need more rounds of execution to reach a fix point. Nevertheless, in
many runs, no updates are found and in total this turned out to be a very efficient
implementation. Several of these details and suggested improvements can be found by
Scotts [233].

Time-table edge-finding Recently, Vilim [263] proposed a lazy edge-finding pro-
cedure that incorporates energy requirements from time-tabling into the edge-finding
algorithm. It runs in O(n?) and turned out to be very good in deriving lower bounds.
In parallel to our work, this algorithms has also been implemented by Schutt et al. [227]
and they report improvements of their lazy clause generation approach that is able to
derive better dual bounds for some instances from PSPLib.

Impact of propagation on the solving process Table 2.1 shows the ambiguity of
using these different propagation algorithms. It can be observed that highly cumulative
instances need the propagations inferred by energetic algorithms, while most instances
are solved most efficiently when using the time-tabling propagator. Table 2.1 summarizes
these results on the chosen test sets.

Recall the description of Figures and Tables from Section 1.5.3. Column ‘nopt’ in-
dicates the number of optimally solved instances, ‘bprimal’ (‘bdual’) gives the number
of instances where the solver found the best primal (dual) bound among the competing
solvers and column ‘gap’ reports the average gap at the end of the solving process or when
the time limit has been hit. The last two columns, show the number of instances that
are solved by all settings to optimality and columns ‘avtime’ (‘avnodes’) represent the
average running time (number of nodes) in the arithmetic mean to solve these instances.

On instances from PSPLib (setS and setl), the pure time-tabling algorithm, denoted
by ‘tt’, is able to solve more instances to optimality than all combinations of time-tabling
with any of the energetic propagation algorithms, there are edge-finding ‘ef’, time-table
edge-finding ‘ttef’ and energetic reasoning ‘er’. On the unsolved instances, the final gap
is smaller on average.

Considering only the subset of the instances that have been solved to optimality by
all solvers, the running time increases by a factor between two (for ‘ef’) and 50 (for ‘er’).
The merits of the energetic propagators lie in the reduced number of nodes that need to
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be explored. There are about 20% less nodes needed in ‘er’ on setS and less than half
the number of nodes on the set setL.

For the Pack instances, the reduction in the number of nodes is up to a factor of 6
when using energetic reasoning. In case of edge-finding the number of nodes even in-
creases. We believe that this is due to worse branching decisions mainly on the instances
that create a large search tree. On several of these instances, the time-table edge-finding
algorithm yields the best results by decreasing the number of nodes and solving several
instances faster than the pure time-tabling approach. Though on average the running
time gets higher. In total from the Pack set, four more instances can be solved to
optimality when using time-table edge-finding instead of running only time-tabling.

Table 2.1: Comparison of the usage of the propagation algorithms time-tabling alone or
in combination with either edge-finding, time-table edge-finding or energetic reasoning.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 52 instances)
tt 93 114 114 1.89 3.83 29600.50
ef 86 107 96 2.52 7.49 28154.71
ttef 84 106 88 2.87 13.65 27433.46
er 52 75 58 6.85 223.57 24155.06
setL (119 instance) (allopt: 64 instances)
tt 102 119 119 0.93 2.07 5405.28
ef 97 114 113 1.30 3.16 4621.36
ttef 90 107 106 1.73 4.16 3416.38
er 64 81 83 3.84 52.04 2442.64
Pack (55 instance) (allopt: 27 instances)
tt 35 50 54 2.49 1.71 19691.85
ef 30 45 53 2.80 10.24 97730.37
ttef 39 54 51 2.46 2.24 11256.11
er 33 48 48 3.10 5.45 3208.63
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2.1.4 An approximative criterion for energetic reasoning

In this section, we concentrate on the evaluation of the energetic reasoning algorithm.
Its merit lies in a much stronger domain propagation rule by which the number of search
nodes can be noticeably reduced. Infeasible nodes are detected much earlier than by
time-tabling or edge-finding. The adjustment of lower and upper bounds on the start
time variables is quite elaborate by using volume arguments. However, the running time
of this algorithm is cubic in the number of jobs which often slows down the whole solving
process, see e.g. Table 2.1.

Initial experiments to improve the running times when using this algorithm have been
carried out. In these experiments only sub intervals of restricted length have been used
or the algorithm has been executed only every few depths of the search tree. Doing so,
we have not been able to come up with meaningful better results. Faster running times
usually came together with less instances that could be solved to optimality. We studied
what kind of jobs are most often updated by this procedure and how the intervals are
related to these updates. It turned out that jobs with high demands are updated most
often, whereas the sizes of the intervals range from short to long. Hence, the idea was to
estimate promising intervals.

To this end, we derive a necessary condition for energetic reasoning to detect in-
feasibilities. The condition is based on a relative energy histogram. We show that this
histogram underestimates the true energy requirement of an interval by a factor of at
most % and can be computed efficiently in O(nlog(n)). We embed this approximative
result in a parametrically adjustable propagation algorithm which detects variable bound
adjustments and infeasibilities in the same run.

As our computational results reveal, the presented algorithm remarkably reduces the
total computation time for solving instances from the PSPLib [162] in contrast to the
pure energetic reasoning algorithm. A decrease in the running time by a factor of 4
is observed on instances from PSPLib if our approximative criterion is used with an
approximation factor of about 1.0. Hence, our estimator for relevant intervals to be
checked is well-suited on these instances. In contrast, on the highly cumulative Pack
instances, it is best to use the common implementation of energetic reasoning.

We point out that these improvements do not yet make this algorithm competitive
with the standard time-tabling algorithm. Hence, all experiments carried out for this
study are obtained by using energetic reasoning as the only propagation algorithm of the
cumulative constraint.

Outline We start by quoting related work in more detail than done in Section 2.1.3.2.
Then, we derive a necessary condition for energetic reasoning to be successful and embed
it into the standard energetic reasoning procedure. Finally, experimental results show
that applying the criterion to all intervals with a factor of one yields the best running
times on the instances from PSPLib.

2.1.4.1 Related work

Baptiste et.al. [22] provide a detailed overview on the main constraint programming
techniques for cumulative scheduling. Therein, several theoretical properties of energetic
reasoning are proven. A more general idea of interval capacity consistency tests is given
by Dorndorf et.al. [95]. In the same paper, unit-size intervals are considered as a special
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case, which leads to the time-tabling algorithm [159]. Recently, Kooli et.al. [165] used
integer programming techniques in order to improve the energetic reasoning algorithm.
This approach extends the method presented by Hidri et.al. [141], where the parallel
machine scheduling problem has been considered. In both works only infeasibility of a
subproblem is checked; variable bound adjustments are not performed.

In order to detect infeasibility, O(n?) time-intervals need to be considered [22]. These
intervals correspond to the start and completion times of the jobs and are precisely
determined by the following sets:

0Oy = U ({estj} U {ectj} U {IStj}),

J

Oz :=|_J ({let;} U {ect;} U {lst;}) and

O(t) == J{est; +let; —t}.

The relevant intervals to be checked for energetic tests are given by (a,b) € O x Oq, for
afixed a € Oy : (a,b) € O1 xO(a), and for a fixed b € O3 : (a,b) € O(b) x Oy, with a < b.
These are O(n?) such intervals. Note that an interval [Ist;, ect;) corresponds to the core
of job 7, hence, deductions made by energetic reasoning include those of the time-tabling
algorithm. In case of feasibility tests, we are able to restrict the set of intervals that
need to be considered. Whether such restrictions can also be made for variable bound
adjustments is an open problem.

2.1.4.2 Restricted energetic reasoning

Recall the definition of the required energy of some job j in interval [a,b) for energetic
reasoning from (2.2) :

ej(a,b) := max {0, min{b — a, pj, ect; —a,b —lIst;}} - r;.

Energetic reasoning compares the available energy to the requested energy for certain
intervals. Therefore, it is more likely to detect variable bound adjustments if the bounds
are tight, i.e., if the domain [est;, Ist;] of job j is small. If the bounds are loose and small
intervals are considered, a job may contribute almost no energy to that interval or in
case of large intervals not enough energy is required in order to derive any adjustments.
This is a clear drawback as we are faced with a very time-consuming algorithm. To this
end, we identify intervals that are promising to detect infeasibilities and variable bound
adjustments.

Estimation of relevant intervals Let us consider one resource with capacity R and
cumulative demands r; for each job j. The total energy requirement of job j is given
by e; = p; - r;. We measure the relative energy consumption by €; := lctjefjestj

Furthermore, we define the relative energy histogram E : N — R and the relative
energy E7(a,b) of an interval [a,b) for a set of jobs J by:

~ e ~
E7(t) = — d E b) =Y E(t).
7(?) , Z let; — est; o 7(a:b) Z (t)
JET :est; <t<lct;
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This histogram approximates the required energy F(a,b) computed by energetic reason-
ing for each point in time, as we prove in Theorem 2.10.

Theorem 2.10. Let an arbitrary non-empty interval [a,b) be given. Then
o - E(a,b) < E(a,b)
with o > %

Proof. Let [a,b) be a non-empty interval. Intuitively, we denote by €;(a,b) the relative
energy that job j contributes to interval [a,b). Hence,

&i(a,b) = lcgﬂ_zstj  (min{let;, b} — max{est;, a}). (2.4)

We show the approximation factor « for each job separately. By linearity of sum-
mation, the theorem follows. First, we show that we can restrict the study to the case
where est; < a < b < lIct;.

If the energy is underestimated in [a,b), then (2.4) yields est; < a or lct; > b, since
otherwise €j(a,b) = e;(a,b). Assume est; < a < lct; < b. Then, ej(a,b) = ej(a,lct;)
and €;(a,b) = €;(a,lct;) holds. Applying a symmetrical argument to a < est; < b <lct;,
we can restrict the setting to est; < a < b < lct;.

Now, we consider all possibilities for which the minimum is attained in (2.2).

Case 1. Consider the case e;(a,b) = p; - r; and p; < b — a. That means, the job is fully
contained in [a,b), i.e., [est;,lct;) C [a,b). Hence, é;(a,b) = e;(a,b).

Case 2. Assume the following two properties:
(i) 1 < min{ect; —a,b—1st;} < min{b— a,p;}, and
(ii) ej(a,b) = min{ect; —a,b—lIst;} - r;.

Thus, o := €;(a,b)/ej(a,b) yields:

) pi(b—a) (1) max{p;,b—a}
~ (let; —est;) - min{ect; —a,b — Ist;} let; —est;

Now, we minimize o’ with respect to 1 < min{ect; —a,b—1st;}. The last condition
implies that est; > a — p; and lct; < b+ p;. The best value for « is given for large
intervals [est;,lct;) obeying this condition. This yields b —a = k and p; := k + 1 for
some k € N, such that o’ = max{k + 1,k}/(3k) > 1.

Case 3. Finally, consider the case where b—a < min{p;,ect; —a,b—Ist;} and
ej(a,b) = (b—a)-r; hold. That means, the job is executed at each point in time
in [a,b), i.e., [a,b) C [Ist;,ect;). This yields the condition ect; > Ist; +(b — a), which is
equivalent to 2p; — (b — a) > Ict; — est;. Thus,

5 Pi T Pi 1
éjla,b)=—"——0b—-a)> ———(b—a) -r; = ei(a,b).
We obtain a := min{a/, o} > 1. O
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The special cases that exhibit the approximation factors 1/2 and 1/3 are depicted in
Figure 2.7. The proof shows that an underestimation of E(a,b) occurs with factor 1/2
if the core of a job, i.e., [Ist,ect;), overlaps this interval and with a factor of 1/3 if a
job is associated with a large interval [est;,lct;) and intersects just slightly with [a,b).
We observe that the relative histogram may overestimate the required energy. E.g.,
consider one job j with est; = 0, Ict; = 3 and processing time p; = 1. Then, ¢;(1,2) =0
but €;(1,2) =r;/3.

k "k

I [ | f_'ﬁ —

[ . Lol | [ . ! |

i Jobj I | jobj : I I

I 1 1 I I 1

; = ; t — t

est; ab lct; est; «a b lct;
(a) Factor 1/2 obtained for (b) Factor 1/3 obtained for
b—a=1, a=Ist; and b = ect;. pj=k+1, a=ect; -1, b=Ist; +1
and b—a =k.

Figure 2.7: Visualization of the worst case instances that yield the approximation fac-
tors 1/2 and 1/3.

The following corollary states a necessary condition to detect infeasibilities by ener-
getic reasoning related to the approximative criterion.

Corollary 2.11. Energetic reasoning cannot detect any infeasibility, if one of the fol-
lowing conditions holds

(i) for all [a,b),a < b, E(a,b) < 1(b—a)R, or
(i) for all t: E(t) < i R.

The histogram E can be computed in O(nlogn) by first sorting the earliest start times
and latest completion times of all jobs and then creating the histogram chronologically
from the earliest event to the latest event. Since there are at most 2n event points (the
start and completion times of the jobs) only O(n) changes in the histogram need to be
stored.

2.1.4.3 Restricted energetic reasoning propagation algorithm

We now present a restricted version of energetic reasoning which is based on the results of
the previous section. According to Corollary 2.11, only intervals [a,b) containing points
in time ¢t with E(t) > %R need to be checked. Note that the cardinality of this set may
still be cubic in the number of jobs. We introduce an approach, in which we only execute
the energetic reasoning algorithm on interval [t1,¢2) if

Vte [tl,tg)Z E(t)>a'R
holds. For given E, this condition can be checked in O(n). If it holds, we check each

pair (a,b) € O; x Oz with [a,b) C [t1,t2) in order to detect an infeasibility or to find
variable bound adjustments.
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Algorithm 4: Restricted energetic reasoning (propagation of lower bounds).

Input: Resource capacity R, set J of jobs with earliest start times est;, and a
scaling factor a. Sets of event points O1, Os.
Output: Earliest start times est;- for each job j or an infeasibility is detected.

1 Create relative energy histogram E.
2 Compute and sort event points {est;,lct;}; and sets O; and Os.
3 foreach job j do
4 ‘ Set est’; := est;.
5 end
6 foreach event point t in increasing order do
7 if £(t) < a- R then
8 ‘ continue.
9 end
10 t1 :=t.
11 Let t5 be the first event point after ¢ with E(t;) < a - R.
12 foreach (a,b) € O; x Oz : [a,b) C [t1,t2) do
13 if E(a,b) > (b—a)-R then
14 ‘ return infeasible.
15 end
16 foreach job j with [a,b) N [est;,ect;) # 0 do
17 if E(a,b) —ej(a,b)+ e;»eft(a, b) > (b—a)-R then
18 V :=E(a,b) —ej(a,b) — (b—a) - (R—1;).
19 est’; := max{est’, a + [V/r;]}.
20 end
21 if est’; > Ist; then
22 ‘ return infeasible.
23 end
24 end
25 end
26 t:=to.
27 end

The procedure is captured in Algorithm 4. Here only the propagation of lower bounds
is shown, upper bound adjustments work analogously.

As mentioned before, the relative energy histogram E(t) can be computed
in O(nlogn) and needs O(n) space. The sets O; and Oz also need O(n) space
and are sorted in O(nlogn). Loops 6 and 12 together consider at most all O(n?)
intervals O; x Og. Loop 16 runs over at most O(n) jobs. The computed value for E(a,b)
in line 13 can be used in the remaining inner loops and all other calculations can be
done in constant time, such that we are able to bound the total running time.

Corollary 2.12. Algorithm 4 can be implemented in O(n>).

Asymptotically, it has the same running time as pure energetic reasoning, but the
constants are much smaller. Compared to the pure energetic reasoning algorithm we only
consider large intervals if the relative energy consumption is huge over a long period. The
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savings in running time and further influences on the solving process will be discussed
in the following section.

2.1.4.4 Computational results

The only scheduling specific propagation algorithm used is energetic reasoning and its
parametric variants, using the necessary condition from Corollary 2.11.

Parameter settings According to Theorem 2.10, it suffices to consider only o > %
Choosing a value close to %, however, results in checking the vast majority of the intervals,
similar to energetic reasoning. To evaluate the impact of different values of a, we run
the algorithm with « € {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2}. For comparison, we
further show results for & = 0.1 which refers to pure energetic reasoning.

Evaluation of all instances Figure 2.8 shows the number of optimally solved in-
stances per approximation factor X, given by setting “ner-X”. Here, X = 01 corresponds
to o = 0.1, while X = 10 corresponds to @ = 1.0. We observe that the outcome of
our approximative criterion heavily depends on the problem characteristics, i.e., on the
instances from PSPLib, it is best to choose a factor of 0.9 or 1.0, whereas on the Pack
instances, it is crucial to check all intervals, hence to use a factor of 0.1. With factors
larger than 1.0 much less or even no instances can be solved to optimality.

2 80 100 ner-01
% [0ner-03
< 1 . 0Oner-04
£ 60p ] M | |00 ner-05
qu LTl 08 ner-06
S e | |BEner-07
= Biner-08
= Biner-09
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x 0 *

I I I
setS setLL pack

Figure 2.8: Percentage of optimally solved instances per instance set and per setting for
the evaluation of the approximative criterion.

For the evaluation of running times and the number of solving nodes, we restrict the
experiments to more suitable subsets. We omit the factors 1.1 and 1.2 as always less
than 20% of the instances from PSPLib can be solved, compared to at least 60% in the
third worst setting. On the Pack instances, we also omit all factors larger or equal to 0.6
as the number of solved instances is too small otherwise.

Now, we turn to the remaining settings in Table 2.2 and compare those instances that
are solved to optimality by all settings. On instances from PSPLib, we observe an average
speed-up factor of four when using a factor of 0.9 or 1.0 compared to the pure energetic
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Table 2.2: Comparison of all optimally solved instances by different factors using the
approximative criterion for energetic reasoning.

% of optimally solved instances

100

75

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 72 instances)
ner-01 72 101 78 4.75 164.89 7676.36
ner-03 73 102 78 4.65 173.87 7917.64
ner-04 74 103 80 4.38 144.71 8472.56
ner-05 78 106 83 4.05 101.15 8419.11
ner-06 79 107 87 3.74 69.22 8008.49
ner-07 82 110 93 3.30 46.92 8634.17
ner-08 83 111 101 3.13 39.28 10960.79
ner-09 86 114 113 2.77 31.28 14002.69
ner-10 81 109 103 3.24 40.25 22888.69
setL (119 instance) (allopt: 69 instances)
ner-01 72 98 92 3.15 80.38 1545.84
ner-03 72 98 92 3.14 81.39 1544.01
ner-04 75 101 95 2.94 65.12 1541.33
ner-05 7 103 97 2.81 50.83 1532.20
ner-06 81 107 99 2.50 41.54 1544.41
ner-07 84 110 105 2.24 26.18 1565.01
ner-08 87 113 113 2.04 20.06 1953.43
ner-09 90 116 118 1.89 13.8 2649.30
ner-10 92 118 115 1.80 15.44 5270.06
Pack (55 instance) (allopt: 20 instances)
ner-01 32 53 54 3.17 15.34 4869.35
ner-03 26 47 55 3.51 39.76 13043.95
ner-04 26 47 55 3.45 36.39 12058.80
ner-05 29 53 49 3.62 18.62 5876.30
ner-06 27 53 44 4.54 13.16 5577.55
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Figure 2.9: Number of optimally solved
energetic reasoning.

10t 102

Distribution for a time limit of 600 sec.

instances by different strengths of performing

reasoning algorithm denoted by ‘ner-01’ though the average number of nodes increases
by a factor of up to three. Nevertheless, on the Pack instances, we observe a speed-up
factor of two when using a factor of 0.6 or the pure energetic reasoning compared to a
factor of 0.3 and 0.4. Here, the number of nodes for factors around 0.3 and 0.4 increases
by a factor of two compared to the other settings and hence, also the running times
increase. As all other parameters between these settings are absolutely the same, we
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Figure 2.10: Ratios of nodes and running times given for all optimally solved instances
from the sets setS, setL and Pack for different strengths of energetic reasoning.

assume that the generic branching rules generate different search trees in which these
two settings explore bad directions first. This thesis is supported by the number of best
primal solutions. On the corresponding settings, the number of best primal solutions is
more than 10% less than by the other settings.

Figures 2.9 and 2.10 emphasize that the lower the approximation factor is chosen, the
fewer nodes need to be explored. But considering the running time, it is better to choose
a moderate factor of about 0.9 or 1.0 as long as the instances are not highly cumulative.

2.1.4.5 Conclusions

Energetic reasoning is a powerful propagation algorithm but unfortunately, it has a
cubic running time which permits its usage throughout branch-and-bound search. We
presented a necessary condition for energetic reasoning to detect infeasibilities. Using
this condition not all the intervals need to be checked. The condition is based on an
average resource demand of all jobs that might be processed at some point in time
yielding a relative profile over the planning horizon with at most 2n points in time. We
embedded this criterion for detecting infeasibilities into the propagation algorithm. For
all sub-intervals of interest we check the feasibility of the current subproblem and try
to adjust the variable bounds. The relative profile may underestimate the true energy
contribution of all jobs by a factor of 1/3. Nevertheless, the computational results reveal
that this is a good estimator of relevant intervals as long as the instances are not highly
cumulative. The average running time on instances from PSPLib decreases to 1/4 if an
estimation factor around 0.9 and 1.0 is used in contrast to checking all possible intervals.
Though such a factor is best on instances from PSPLib, this does not carry over to highly
cumulative instances (e.g., the Pack instances). On these instances it remains crucial to
check all intervals in order to solve the instances efficiently.

Our approach to make the energetic propagation algorithm more efficient is based
on determining a subset of promising intervals, hence, to use the propagation rules more
efficiently. On the other side, one may also look for stronger arguments in all the different
kinds of energetic algorithms. For example, Kooli et.al. [165] propose to solve MIPs in
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order to detect intervals with high energy consumption and thereby to detect infeasible
nodes early. Within their more elaborate approach it seems to be to expensive to perform
variable bound adjustments, hence no results in that direction are reported yet.

2.2 Hybrids of CP and SAT

During a CP search, propagation algorithms are executed in order to tighten the variables
bounds. At some stages the problem may become infeasible. The idea from SAT is to
find an explanation for this infeasibility, which is usually given by the domains of a
subset of the variables. Then, similar to a SAT solver, conflict analysis can be applied
which enables the solver to use non-chronological backtracking and to learn new clauses
or constraints.

In a CP-SAT hybrid solver, propagation algorithms can be performed on the con-
straints, in particular on those that capture a lot of logical structure and cannot be
efficiently encoded otherwise. The most important constraint for which we develop ez-
planation algorithms for the corresponding propagation algorithms, is the cumulative
constraint. The techniques for this constraint are described in Section 2.3. In Sec-
tion 2.3.1 we analyze the hardness of delivering optimal explanations. It turns out
that it is strongly N'P-hard to compute minimum-size explanations for bound changes
derived from time-tabling propagation, while for energy-based propagation algorithms
polynomial-time algorithms are known.

The computational study reveals that by applying conflict analysis, an additional
number of instances of about 10% can be solved to optimality within 600 sec. The
average number of nodes for the optimally solved instances decreases by 90%, while the
computational overhead limits a decrease of the running time to 33% on average. The
more efforts are spent to deliver ‘good’ explanations during conflict analysis, the better
for the overall solving process. Further studies per propagation algorithm, on the conflict
lengths, or on bound-widening techniques are presented in Section 2.3.3.

We start this section by describing the process of conflict analysis in detail.

2.2.1 Conflict analysis on integer variables

Conflict analysis is an important technique in SAT solvers. When during search a node
is encountered to be infeasible, it enables the solver to backtrack to a higher node in
the search tree where the infeasibility no longer holds. This procedure is called non-
chronological backtracking. Additionally, further clauses, called conflict clauses, can be
derived and added to the global set of clauses.

Conflict analysis on binary variables has been generalized to integer variables and
to MIP solving which enables CP and MIP solvers to apply this technique, see Achter-
berg [1] or Sandholm and Shields [216]. In CP, the concept is used to learn no-goods, a
selection of variable bounds that lead to infeasibility, see e.g., [120, 213, 244]. In SAT,
these are called conflict clauses. In our case with integer variables, the goal is to create
bounddisjunction constraints, i.e., constraints of the form ({x1 > 7T} U{xe < 5}U{zs >
8}). If no variable assignment satisfies one of these disjunctions, the problem is infea-
sible. These constraints are used throughout branch-and-bound as domain propagation
rules, e.g., if {x; < 7} N {x2 > 5} holds, then {x3 > 8} can be immediately propagated.
If additionally {z3 < 8} already holds, then an infeasibility is detected. The purpose
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of storing and propagating these constraints is to detect an upcoming infeasible state
earlier than by performing all or similar propagations and branching decisions again.

During conflict analysis a conflict graph is constructed. Special cuts in that graph
correspond to the desired conflict clauses. We now describe this procedure in more
detail. During a branch-and-bound search, the lower and upper bounds of variables are
updated by various propagation algorithms or by branching decisions that generate new
subproblems. There are several reasons for a subproblem to become infeasible. E.g., the
lower bound of the start time variable of some job is updated to a value larger than the
current upper bound; the resource demand of all jobs for some interval is larger than the
available capacity; or a relaxation, like the LP relaxation, becomes infeasible. Analyzing
such infeasibilities is captured in the notion of explaining them.

Recall from Section 2.1.1 that given a propagation algorithm P over a set of vari-
ables S together with all bound changes B performed so far and a constraint C'(S) over
these variables, we denote the set of feasible bound adjustments by fp(S, B, C(S)). Ob-
serve that for infeasible problems, any bound adjustment is feasible for the state. But
there is at least one induced by the applied propagation algorithm that detects the in-
feasibility.

To explain, bound adjustments or infeasibilities means to analyze the domains of the
variables given by B. We introduce this notion formally for lower bound changes, upper
bounds are treated equivalently.

Definition 2.13 (Explanation). Given a propagation algorithm P over a set of vari-
ables S, their domains in form of halfspaces B and a constraint C(S). Let S; be a
variable and est’; be a domain reduction of P, hence {S; > est’;} € fp(S,B,C(S)).

A set B' C B is an explanation for {S; > est’;} iff {S; > est’} € fp(S,B',C(9)).

Intuitively speaking, an explanation of an infeasibility or of a bound update is a set
of lower and/or upper bounds of variables that, whenever they occur in that combina-
tion, lead to an infeasible state or to that bound update. Observe that B is always an
explanation for a domain reduction and an infeasibility but does not yield a reasonable
conflict clause.

Starting with an initial explanation for an infeasibility, a conflict graph is constructed.
This graph connects each element of the initial explanation via a directed edge with a
super sink (symbolizing the infeasibility). Each node in that graph that corresponds to a
domain reduction found by some propagation algorithm (besides branching decisions or
global bounds) need to be explained, and this explanation is again added to the conflict
graph via new nodes and connecting edges.

We remark that for each variable, at most one halfspace out of L and at most one
halfspace out of U7 is part of an explanation, since if there were more than one lower
bound, one would dominate the others. In the conflict graph itself, several bounds of
one variable may appear.

When considering propagation algorithms of the cumulative constraint we show in
Section 2.3.2 that these explanations are in general not unique and bear a huge potential
to speed up the solving process. we are able to propagate a clause in the SAT model if all
but one literal are false, then the remaining literal must be set to true in order to satisfy
the clause. The current assignment of the other variables (being either true or false)
of this clause are an explanation for this domain reduction. Hence, the explanation is
unique. Already in case of a knapsack constraint, if several items are picked and one huge
item does not fit anymore into the knapsack without violating the capacity, there may
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be several subsets of the items by which an overload can be detected. For the cumulative
constraint, it often becomes hard to compute a set of minimum size, as we show later.
We call algorithms that deliver an explanation if multiple explanations may be present,
an explanation algorithm.

Definition 2.14 (Explanation Algorithm). An explanation algorithm is an algorithm
that computes an explanation (a set of halfspaces B') for a domain reduction from Defi-
nition 2.13 under certain objective criteria.

Some properties are desirable for an explanation algorithm. Since these are carried
out frequently, it should have polynomial running time with a low order polynomial
though we do not restrict the definition to polynomial time algorithms. The explana-
tions B’ should be of minimum size, since their size correlates to the width of the conflict
graph and a small width is expected to create smaller clauses, which are more general
and hence more likely to detect bound changes or infeasibilities themselves. Intuitively,
the fewer nodes in the graph, the fewer calls to an explanation algorithm are needed.
This leads to an objective function in which the total number of bounds is minimized.
Similarly, the reported halfspaces should belong to bound changes performed high in
the search tree, which makes clauses valid in higher nodes, allows backtracking to a
higher node and leads to less calls of explanation algorithms. Hence, we may weight the
halfspaces of the explanation with respect to the height in the tree.

Furthermore, since for each variable multiple bound changes may be discovered
throughout search, not only the current bounds can be part of the explanation B’, but
also earlier bound changes. Imagine that for variable S; the sequence L},L?, ..,L;‘? of
lower bound changes is given. The local lower bound of variable S; corresponds to L;‘?.

In an explanation any bound L;, ey L;?_l instead of Lf can be contained. Using these
bounds for explanations is called bound-widening. Then, for each variable multiple alter-
natives per bound are given. Since bound changes that lie higher in the tree are more
desirable, we can weight for each variable the chosen bound differently. Then, we are
looking for an optimal explanation with respect to this weighted objective function.

Example 2.4. This example uses propagation algorithms that will be formally intro-
duced later, but are easy to follow with profound knowledge in CP based scheduling
algorithms.

The branching decision from Example 2.1 lead to the following deductions according
to fully propagated precedence constraints:

o {Sp>1} = {S¢c>2} = {Sp>5} = {Sg>8},
o {Sg <5} = {Sr>2}, and
o {Sp <8} = {Sp <8} = {S¢c <2} = {Sp<1}.

According to the time-tabling algorithm, see Section 2.1.3.2, which could not detect
any bound changes before, the halfspace {S4 > 11} can be deduced which contradicts
{S4 < 8}. Hence, the current subproblem after three branching decisions is infeasible.

Different explanations for this update are possible: The cores of the jobs (G, D, E),
(C,E) or (B,C,D,E,F,G) lead to possible explanations. A minimum-size explanation
for the infeasibility is given by: {S4 < 8}N{Sc > 2} N{Sc <2}N{Sg > 8} N{Sk < 8}.
Where, {S4 < 8} is a global bound and can be omitted.
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Figure 2.11: A conflict graph for the initial explanation
{{S4 <8} N{Sc>2}N{Sc <2}n{Sp >8}N{Skg <8}}. Yellow vertices are
branching decisions, cuts that separate the infeasibility from the frontier of the
branching decision are called conflict clauses.

Figure 2.11 shows the resulting conflict graph. All cuts in that graph that separate
the branching vertices from the infeasibility 4 yield conflict clauses. Two cuts, marked
by the dotted lines, are of no interest: Conflict clauses induced by the green line (‘A’)
will never occur again, since this combination of branching decisions is pruned. The
red line (‘C’) corresponds to a direct implication of the propagation algorithm and is in
general more efficiently encoded in the corresponding propagation routine than by a new
bounddisjunction constraint.

The blue line ‘B’ indicates ({S¢ > 2} N{Sp <5} N{Sg <8}) = 4. Since {Sg <
8} = {Sp < 5}, we can learn the bounddisjunction constraint {Sc < 1} U {Sg > 9}
which is the negation of ({S¢ > 2} N {Sk < 8}). Due to this constraint in depth level 2,
we can immediately add the halfspace {Sg > 9} because {S¢ < 1} is violated.

Now, we illustrate the concept of bound-widening using the initial explanation con-
sisting of the jobs C' and E. We observe that using the global lower bounds for C
({Sc > 1}) and E ({Sg > T}), the cores are given by v- = [2;4] and v = [8;10],
by which time-tabling would also deduce an infeasible halfspace {S4 > 10}. Then, the
initial explanation (without global bounds) is {S¢c < 2} N {Sg < 8}, which, due to the
implication, can be reduced to {Sg < 8}.

Besides creating the conflict graph itself, different methods (UIP, FUIP, 1-FUIP, All-
FUIP) are known for generating conflict clauses. Some of them are explained next while
we refer to [1, 270] for further details. The nodes of the conflict graph can be arranged
in depth-levels according to the node in the tree where the bound change happened.

Definition 2.15 (Unique implication point [1]). A unique implication point (UIP) of
depth level d is a vertex £ € V representing a bound change in depth level d, such
that every path from the branching vertex of depth level d to the conflict vertex 4 goes
through 5 € V' or through a UIP Eg,/ € V of higher depth level d’ > d. The first unique
implication point (FUIP) of a depth level d is the UIP (Y # 4 that was fized last, i.e.,
that is closest to the conflict vertex 4.

The 1-FUIP scheme only considers the last depth level, whereas All-FUIP considers
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every single depth level. The FUIP of the first level corresponds to {Sp < 5} which is
necessary to induce the infeasibility besides vertices on higher depth levels and branching
decisions. The FUIP of the last level is given by {Sg > 8}. The indicated cut ‘A’ is the
set of branching decisions on a path from the root node and will never be visited again.
Cut ‘B’ is of interest as it induces only three variable bounds, while cut ‘C’ is directly
encoded in the propagation routine that detected this infeasibility.

2.2.2 Explanations for the basic constraints

Recall from Section 2.1.2 the propagation and infeasibility detection algorithms for the
precedence and disjunctive constraints. We summarize how the explanations are created
w.r.t. each constraint. These explanations are pretty intuitive and there is no room for
optimization as there are no choices which bounds to report. They are implicitly given
by the lemmata derived in Section 2.1.2.

2.2.2.1 The precedence constraint

The bound changes per precedence constraint can be easily explained:

Lemma 2.16. Given precedence(S;, Sj,p;).
(i) A lower bound change from est; to est); can be explained by {S; > est’, —p;}.
(ii) An upper bound change from lst; to lst; can be explained by {S; < lst; +p;}.

If the problem is infeasible w.r.t. a precedence constraint, then the two jobs must
be scheduled in parallel according to their variable lower and upper bounds. This is
explained by one lower and one upper bound as condensed in the following lemma.

Lemma 2.17. Infeasibilities according to Lemma 2.2 are explained by the following set:
{SZ > esti} N {SJ < lstj}.

2.2.2.2 Explaining the disjunctive constraint

The disjunctive constraint of a disjunctive pair (i,7) can only propagate if one of the
jobs must be scheduled locally before or after the other job. The conditions under which
Lemma 2.4 can be applied yield directly the explanation.

Lemma 2.18. Given a disjunctive pair (i,7).
(1) An update from est; to est’; is explained by {S; <lst;} N {S; > est;}.
(i1) An update from lst; to lst; is explained by {S; <lst;} N {S; > est;}.

If the problem is detected to be infeasible due to a disjunctive pair (i,7), then
Lemma 2.5 already includes the reason how the variable bounds are related to each
other.

Lemma 2.19. Given a disjunctive pair (i,7). An infeasibility due to this constraint is
explained by
{Sz < lsti} N {Sz > esti} N {S] < IStj} N {S] > estj}.
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2.3 Explanations for the cumulative constraint

In contrast to the precedence and disjunctive constraint, the propagation algorithms
of the cumulative constraint use more elaborate procedures to update variable bounds.
Here, we will see that different choices of which bounds or even which jobs are reported
play a crucial role for a CP-SAT-hybrid to be efficient.

In Section 2.3.1 we carry out an analytical study on the hardness of explaining e.g.,
the domain reductions detected by time-tabling and other algorithms. It turns out that
for energy-based algorithms such as edge-finding or energetic reasoning, explanations of
minimum size can be delivered within reasonable running time O(nlog(n)), while ex-
plaining updates detected by time-tabling is strongly NP-hard. For this propagation
algorithm, we propose an efficient greedy algorithm. The proposed explanation algo-
rithms are presented in Section 2.3.2.

The computational study in Section 2.3.3 shows that using conflict analysis remark-
ably reduces the average number of nodes in the branch-and-bound tree (by about 90%),
while the average running time decreases to 33%. This holds in particular for time-
tabling. For the energy-based propagation algorithms, the speed-up factor is only close
to two.

2.3.1 Complexity of delivering optimal explanations

In this section we discuss explanation algorithms for the bound changes that are derived
by time-tabling, edge-finding and energetic reasoning. Explanation algorithms identify a
set of relevant halfspaces in order to explain infeasibilities or bound changes. In case of
the cumulative constraint, this is equivalent to identifying a subset of jobs 2 C J that
led to the deduction. This holds, because the three propagation algorithms are based on
the lower and upper bounds of each job that belongs to the relevant peak in time-tabling
or to the interval in energetic reasoning. Since this set of jobs or bounds is in general
not unique, we weight the single halfspaces of an explanation differently. Global bounds
do not enlarge the conflict graph, hence, we assign a value of zero to the corresponding
halfspaces and for all local bounds we assign a value of one. Thus, a job that is part of
an explanation will have objective value 0 if both bounds are global, one if exactly one
bound is global and two if both bounds are different from the global ones. Furthermore,
we will weight the single bounds of a job by the depth level in the tree where they occur.
This is done to find out whether it is good to prefer decisions that have been made early
during search and whether it is good to use branching decisions in conflicts, as these are
at the boundary of the conflict graph and cannot be explained.

2.3.1.1 Problems for the reductions

We start by defining two basic problems and presenting the known complexity results.
These two problems will be used in our reductions to show AP-hardness of finding
optimal explanations.
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Problem: Minimum Knapsack Covering Problem (MKCP)
Instance: A set of n items with weight w; and cost ¢; € Z for each
item j =1,...,n. Positive integers ¢, W and C.
Cardinality version: Is there a subset S of ¢ items such that 3, g w; > W?
Weighted version: Is there a subset S of the items such that ) ._qw; > W and
D jesCi <C7
Though MKCP is equivalent to the Knapsack problem, when looking for an optimal
solution, approximability results do not carry over, see [46]. E.g., if in an optimal solution
to Knapsack, all items are picked, the equivalent MKCP solution will pick none of the
items. An FPTAS works for both, whereas the LP-IP duality gap has ratio two for
Knapsack and W for MKCP. We summarize the main hardness results for MKCP.

jeS

Proposition 2.20.
(i) The cardinality version of MKCP can be solved in polynomial time.
(11) For wj € {1,2} the weighted MKCP can be solved in O(nlog(n)).
(iii) For general weights there exists an FPTAS.

Proof. To show case (i), we sort the items by non-increasing weight w;, in O(nlog(n)).
According to the sorting we add the items to S until ) jeswj =W holds. The number
of items is minimum since exchanging any element with another one will not increase
the weight, due to the sorting.

In the weighted cases (iii), the problem can be equivalently regarded as a maximum
Knapsack which is known to be weakly N'P-hard and an FPTAS can be obtained by using
the results from Ibarra and Kim [146]. For the special case (ii), in which the weights are
chosen from {1, 2}, we first choose jobs in order of non-increasing demands with weight 1
until the capacity is exceeded or no jobs with weight 1 are left. Then, we pick jobs
with weight 2 in non-increasing order of their demands until the capacity is exceeded.
After that, some of the picked jobs with weight 1 with lowest demand may be eliminated
from the set of picked jobs. Last, some (at least two) of the jobs with weight 1 can be
exchanged with larger jobs with weight 2 if the demand of the jobs with weight two is
larger. This way, we obtain a minimum weight cover with maximum demand. O

Problem: Minimum Resource Covering Problem (MRCP)

Instance: A set of n jobs fixed in an interval [s;,¢;) with a band-
width ¢; € Z and a weight w; € R for j = 1,...,n . A
demand profile h : [min; s;, max; t;) — Z. Positive integers
LW

Cardinality version: Is there a subset S of £ jobs such that for every t
ZjeSZSjSt<tj c¢; > h(t) holds?

Weighted version: Is there a subset S of the jobs such that for every t :

S jesis,<ter, G = h(t) and g w; < W holds?

In case that there is only one point in time to be covered, this problem is a minimum
knapsack covering problem. For more than one point in time to be covered, Chakar-
avarthy et al. [52, 51] show that there exists a 4-approximation algorithm based on a
primal-dual scheme for instances with arbitrary cost coefficients.
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As one can easily verify, the problem can be equivalently reformulated as a packing
problem. Then, a maximum number (weight) of jobs must be selected such that at no
point in time the capacity is exceeded. A standard IP formulation for this problem is
given by:

max Zwiﬂfi | Z riw; < (Tg(t) — (R—7rj+1))TVt,z; € {0,1} Vi
icJ e,

Note that (a)* = max{0,a}.

The matrix of this IP has the nice structure of demands occurring consecutively. If
all demands are equal, the obtained matrix can be scaled to zero-one entries which finally
leads to a network matrix. This problem has been studied under the names bandwidth
allocation [24, 56, 172], admission control [206], temporal knapsack [26], multi-commodity
demand flow [55], unsplittable flow problem [16, 17, 34, 53, 54], interval packing [60], and
resource allocation [10, 23, 40, 72, 101, 206].

For a long time the complexity status of the cardinality problem has been open, until
Darmann et al. [72] showed weak N P-hardness by a reduction from Partition in 2010.
Later, Chrobak et al. [60] prove strong NP-hardness by a reduction from Vertex Cover
for a case where demands and weights are equal and both values can get arbitrarily
large. The same hardness result holds if all demands are from {1, 2,3} and the capacity
is a constant, see [34]. In this reduction, only the weights become arbitrarily large. To
this end, Bonsma et al. [34] give a constant factor approximation algorithm, but the
existence of a PTAS and whether the problem becomes harder if the processing time of
the updated job is larger than one remain open.

According to these results, we summarize for MRCP:

Proposition 2.21.
(i) The cardinality version of MRCP is strongly N'P-complete, see [60].

(ii) The weighted version of MRCP is strongly N'P-complete even if w; = ¢; for all j,
see [60].

(iii) The weighted version of MRCP is strongly N'P-complete even if ¢; € {1,2,3},
see [34].

We point out that the cases where there exist only a constant number of different
weights and where the cost have bounded ratio remain unattended by the known complex-
ity results. Furthermore, for the cardinality version of MRCP, strong N P-completeness
holds for arbitrary large demands whereas weak NP-completeness holds if the cores omit
some ‘proper’ interval structure, see [72], a case which we can usually not assume. The
problems MKCP and MRCP will be used in the next section to prove complexity results
of the explanation algorithms.

2.3.1.2 Time-tabling — complexity of optimal explanations

In order to perform conflict analysis, we must explain infeasible states and bound changes
by sets of variable bounds that induced an update or infeasibility encountered by the
propagation algorithm. As remarked before, in an explanation for propagation algorithms
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of the cumulative constraint, we are looking for a set Q2 C J or equivalently a set of
halfspaces B’ (Definition 2.13) that led to the deduction.

When time-tabling detects an infeasible state according to line 3 of Algorithm 2, then
the sum of demands of all cores at some point in time ¢ exceeds the capacity R. This
can be easily explained.

Lemma 2.22. An infeasibility due to T 7(t) > R at a point in time t is explained by a
set QQ C J such that
Z Ty > R.

JEQtEY,

Proof. Follows directly from Lemma 2.6 that states that an infeasibility of a peak is
determined by the cores of a set of jobs. O

Theorem 2.23. Given cumulative(S,p,r, R) and an infeasibility due to T 7(t) > R.

(i) An explanation Q@ C J of minimum size for the infeasibility can be computed

in O(nlog(n)).

(i1) There exists a polynomial time algorithm that computes an explanation B' of min-
imum size for the infeasibility running in O(nlog(n)).

(i11) Given a weight w; per job j € J. There exists an FPTAS that computes an
explanation Q C J of minimum weight ZjeQ w; for the infeasibility.

Proof. The explanation of Lemma 2.22 asks for a set of jobs such that their cores overlap
point in time ¢ and such that the sum of their demands exceeds the capacity R. This
problem is equivalent to MKCP. Hence, Proposition 2.20 applies. O

Observe that the cores can be detected in O(n) and usually only a small subset of the
jobs needs to be sorted and reported. Computing minimum-size explanations for bound
updates according to line 9 in Algorithm 2 is much more challenging.

Lemma 2.24. A lower bound update of job j from est; to est;» can be explained by
the previous lower bound of j and a set Q@ C J \ {j} such that for all intervals I €
{[est; —1,est’)} U {[a,b) C [est;,est}) | b—a = p;} the following condition holds
dtel: Z Ti>R*T‘j. (2.5)
ieQtey,

Proof. Follows directly from Lemma 2.7 that describes how the bound change is per-
formed. O

According to Lemma 2.24 we need to report a set of jobs at t = est;. —1 as the updated
job j can be scheduled no earlier than at t = est;. Then, for an update from est; to est;
each interval in between these two values of size p; must be covered, as otherwise, the
job could be scheduled there. Recall from Figure 2.4 that different peaks may be used
in the explanation.

Now, we formulate an integer program to compute an explanation for the bound
change of some job j. This IP is used in our experimental study. We assume we are
given some weight w; for each job i # j. These weights can be chosen according to the

57



depth level in the search tree, where the bound change has been discovered, or according
to the frequency a variable has been involved in former propagations.

(IPf) min Z wiT; (2.6)
i€T\{j}

Z riz; > (R—rj+ 1)y Vite [est),est)) (2.7)

ey,

t—1
Z Yr > Yt Vit:iestj+p; <t < est;» -1 (2.8)

T=t—pj

yr =1 t=est; -1 (2.9)
xz; € {0,1} Vie J\{j} (2.10)
v € {0,1} Vite [est),est). (2.11)

Variables y; denote the decision whether point in time ¢ is reported or not and x; is one if
job i is part of the explanation and zero otherwise. Constraint (2.7) models that at each
reported point in time the necessary capacity according to Lemma 2.24 is exceeded by the
cores of the reported jobs and constraint (2.8) ensures that at least a peak every p; time
units is reported. Finally, constraint (2.9) guarantees that the point in time before est;
is reported.

In order to approach the complexity status of this problem, we restrict the problem
to the case in which the processing time of the updated job is equal to one (p; = 1).

Theorem 2.25. Computing an explanation Q C J of minimum size to explain a bound
update detected by time-tabling is strongly N'P-hard.

Proof. In case that the updated job j has processing time p; = 1, the problem corre-
sponds to MRCP and is according to Proposition 2.21 strongly N P-hard. O

In order to use bound-widening techniques, multiple modes that reflect the different
combinations of lower and upper bounds are introduced for each job. For this problem
we consider the following IP formulation.

(IPy™) min Y > wiewi (2.12)

i€T\{j} ¢
» wp=1 VieJ\{j} (2.13)
l
> rimie > (R—rj+ Dy Vte [est),est]) (2.14)
e,
t—1
> v zu Vit:est;+p; <t <est)—1 (2.15)
T=t—p;
y =1 t = est; —1 (2.16)
zy € {0,1} VieJ\{jh! (2.17)
y € {0,1} Vite [esty,est)). (2.18)
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Here, z;y models whether combination ¢ of lower and upper bounds of job ¢ is chosen.
All other constraints are similar to the IP formulation without multiple modes. We omit
the number of different combinations per job for readability.

2.3.1.3 Energetic reasoning and edge-finding — complexity of optimal expla-
nations

As indicated in Section 2.1.3.2 we use the same formulas for energetic reasoning and
edge-finding in order to update variable bounds or in order to detect infeasibilities. We
only need to use the correct definition of the energy requirement e;(a,b) of variable j
in interval [a,b). We denote by e;(a,b) that energy requirement, which can be replaced
ER EF

by e; (a,b) or ej (a,b) for the corresponding propagation algorithm.

Lemma 2.26. An overload of interval [a,b), with a < b, can be explained by a set Q@ C T
such that

Zej(a,b) >R-(b—a). (2.19)

JjEQ

Lemma 2.27. A lower bound update of job j to est;- due to interval [a,b), with a < b,
intersecting with [estj, ect;) can be explained by the previous lower bound of job j and a
set Q C T\ A{j} such that

Zei(a, b) > (R —r;)(b— a) + (est; —a) - 15 — 1. (2.20)
1€Q
The lemmata expect an explanation such that a certain threshold is exceeded by the

sum of the reported demands. Hence, it is possible to compute such an explanation in
polynomial time as stated in the next theorem.

Theorem 2.28. We consider a cumulative constraint cumulative(S,p,r, R).

(i) A set Q C T of minimum size for infeasibilities or bound updates derived by ener-
getic reasoning can be computed in O(nlog(n)).

(i) An explanation of minimum size for infeasibilities or bound updates derived by
energetic reasoning can be computed in O(nlog(n)).

(iii) There exists an FPTAS to compute an explanation Q C J of minimum weight for
infeasibilities or bound updates derived by energetic reasoning.

Proof. We observe that the problem is equivalent to MKCP and hence the results from
Proposition 2.20 apply. 0

Summary of complexity results

From the former study we have seen that there are polynomial explanation algorithms
that explain infeasibilities detected by the time-tabling algorithm and by energetic argu-
ments as used in edge-finding, time-table edge-finding and energetic reasoning. In con-
trast, computing explanations of minimum weight becomes weakly N'P-hard. Moreover,
it is strongly N'P-hard to deliver an explanation of minimum size for bound adjustments
performed by time-tabling. The results are shown comprised in Table 2.3.
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| Time-Tabling (Infeas) Time-Tabling (Update) Energetic algorithms

min |Q| P strongly A/P-hard P
min |B| P strongly N'P-hard P
weighted weakly NP-hard strongly N'P-hard weakly N'P-hard
widening weakly N'P-hard strongly NP-hard weakly N'P-hard

Table 2.3: Complexity results for explaining propagation algorithms for the cumulative
constraint.

2.3.2 Explanation algorithms

As we have seen, computing optimal explanations for bound changes derived by the time-
tabling algorithm is a challenging research direction, whereas for the energetic propaga-
tion algorithms straight-forward procedures exist. Now, we present some heuristics and
exact approaches for that task and evaluate them in order to show the effectiveness of
minimum size explanations.

Exact explanation algorithms for time-tabling. The first approach to be pre-
sented is the direct solving of the MIPs (IP}) or (IP,""’). In the second approach, we
compute a shortest path in an elaborated network of non-polynomial size.

The formulation (IP}) can be immediately used to solve the problem. A drawback
of this formulation is that its LP relaxation is quite weak if p; is larger than one. This
can be seen as follows: Consider a lower bound update, to from est; to est;- > est;.
The variables (if well-defined) from Yest!,—p;—1 1O Yesp —1 can take value 1/p;, such that
the variables Yest! —2p,;—1 to Yest! —p;—2 can take value 1/ p?, and still constraint (2.8) is
satisfied. Hence, in order to strengthen the LP-relaxation we add the following valid
inequality:

Zyt >1 for all I C [estj, est}) : |I| = p;.

tel
The advantage of the MIP lies in the ability to include multiple alternatives per job,
as they occur in the context of bound-widening. Hence, we use IP,""’ to evaluate the
maximum outcome that can be achieved by delivering optimal explanations.

Combinatorially, the problem can be solved via a shortest path computation in an
elaborated network of non-polynomial size. Our analysis shows that it is of reasonable
size in most cases and can therefore be used instead of solving a MIP. The approach has
been introduced by Arkin and Silverberg [10] who considered the maximization variant.
We show how to construct a suitable graph in order to also handle the minimization
variant for delivering explanations for bound updates where the updated variable has a
processing time larger than one.

We define a directed acyclic graph for the weighted variant of MIP (2.6)-(2.11) as
follows. For each event point e;, t = 0, ...,n, we define a layer V; of nodes for all jobs J;
whose core intersects with event point e;. Only event points e; € {lIst; };c 7\ ;) U{est; —1}
need to be considered, i.e., the left bounds of the cores and the latest point in time must
be explained. By FEj:11 we denote the set of jobs j such that e; € v; and er1 € 7,
hence Et 11 = JyNJi41. Each node v € V; corresponds to a set Jy(v) of jobs i with e; € ;,
such that >, 7; > R — ;. There is an edge between two vertices u € V; and v € Vi4q
if Ji(u) N Eypp1 € Jip1(v). We associate a distance value d,,, with each edge, that is
set to |Jeq1(v)| — [Je(v) N Epgq| in the cardinality case and 3 e ()\Jy(w) Ws i the
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Figure 2.12: A layered graph for the bound update {S4 > 11}. Each additional variable
bound adds one to the edge cost.

weighted case. A shortest path in that network corresponds to an optimal solution for a
minimum (weight /size) explanation.

In general, there can be exponentially many combinations per layer (exponential
in R). But, if the demand r; of the updated job j is small, we expect only few com-
binations, since ), 7; > R —r; and ) ,r; < R hold. Figure 2.12 illustrates the con-
structed graph from Example 2.1. E.g., edge (0,{C, F'}) has value 3 as there are three
bound changes {Sc > 2}, {Sc < 2},{Sr < 2} of interest that form the core at event
point e; = 2. Observe that {Sr > 0} is a global bound and can be omitted. The first
layer of nodes with ({C, F'}) and ({C}) corresponds to all combinations of jobs at event
point e; = 2 that result in a capacity violation if job A was scheduled in parallel.

Heuristic explanation algorithms for time-tabling. In the following, we describe
three different heuristic approaches to derive an explanation for a lower bound updated
by time-tabling. These approaches differ in their computational effort. Consider the
lower bound update of job j from est; to est;».

Variant 1
Add all variables to © whose core intersect with the interval [est;, estg»).

Variant 2

1. Sort jobs in non-decreasing order w.r.t. their demands.
2. For each t € [est;,est}) with I' y\(;;(t) > R —r; add jobs i € J \ {j} with
t € 7; to  until Condition (2.5) is satisfied.
Variant 3

Sort jobs in non-decreasing order w.r.t. their demands.

Set t = est’; —1.

If t < est; stop.

Explain T 7 53 (2).

Find smallest point in time ¢’ € [t — pj,t) such that I 7\ (;1(t') > R —r; holds.
Set t = t' and goto (3).

S ot W=

Note that in Variants 2 and 3 we are starting with the largest point in time, i.e., est;» -1,
and report all cores until we satisfy Condition (2.5). For the remaining peaks we first
compute the contribution of previously reported jobs and only add as many new jobs
to the explanation until we fulfill Condition (2.5). Variant 1 runs in linear time and
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collects all jobs that intersect the interval of interest. Variant 2 explains each peak larger
than R — r; greedily, and Variant 3 tries to report as few peaks as possible. For the last
two variants we need O(nlogn) for sorting the jobs in non-decreasing order w.r.t. their
demands. Observe that the number of points in time that need to be considered is linear
in the number of jobs.

2.3.2.1 Explanation algorithms for energetic reasoning and edge-finding

Recall, that energetic reasoning and edge-finding can be explained similarly. A set Q2 C 7
needs to be computed such that equations (2.19) or (2.20) are satisfied. To construct
such a subset of jobs 2 for a lower bound update we compare in our experimental study
three different algorithms:

Variant 1
Add all jobs ¢ € J \ {j} with e;(a,b) > 0 to Q.

Variant 2
Add jobs i € J \ {j} with e;(a,b) > 0 to £ until the Condition (2.20) is satisfied.

Variant 3
First, sort the jobs with respect to their energies e;(a,b) in non-increasing order
and add jobs to € until Condition (2.20) is satisfied.

We assume that the interval [a, b), which inferred the lower bound change, is known a
priori. These values can be computed during the execution of the propagation algorithm.
Variant 1 corresponds to a simple explanation where all possibly responsible jobs are
reported and runs in linear time. Variant 2, which additionally needs a pre-computation
of the necessary energy, but still runs in linear time. Because of the sorting step, Variant 3
runs in O(nlogn). Observe that Variant 3 reports a minimum-size explanation with
respect to interval [a, b).

Note that in case of an overloaded interval (Lemma 2.26) the above explanation
algorithms can be easily adapted by using condition (2.19) as stopping criterion.

2.3.2.2 Time-table edge-finding

In order to explain bound changes derived by energetic propagation algorithms, such
as edge-finding, time-table edge-finding or energetic reasoning, we need to identify a
set of jobs or variable bounds, that induce enough energy requirement for a certain
interval. Observe, though we run a time-efficient algorithm (edge-finding / time-table
edge-finding) an execution of energetic reasoning would have deduced the same or even
stronger bound updates. Hence, it is possible to explain bound changes by time-table
edge-finding or edge-finding by using the energy requirements as given in energetic rea-
soning.

2.3.3 Computational study
In this computational study we answer the following questions:

e By how much does the use of conflict analysis pay off compared to a pure CP
search?
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e To which extend should explanation algorithms be carried out?

e How strong is the impact of bound-widening?

We also need to fine-tune the SAT solving capabilities and thereby answer the fol-
lowing questions.

e How many variables to keep in the conflict clauses, and how many conflict clauses
shall be kept for propagation?

e To which extend shall the conflict graph be created (1-FUIP, All-FUIP)?

2.3.3.1 Computational environment

For the propagation algorithms time-tabling, edge-finding, and energetic reasoning we
have presented explanation algorithms of different strength and different running time.
Now, we will compare their ability in order to solve the problems efficiently. As a measure,
we consider the number of solved instances and how often the best dual bounds are
obtained. Recall, that all algorithms start with the same primal bound, that remains
fixed until an optimal solution is found by the destructive search. A destructive search is
chosen since SAT techniques work well in that case. On those instances that are solved to
optimality by all solvers, we measure the running time and the number of nodes needed.
We additionally consider the setting of a pure CP search (“cp”) without using conflict
analysis in order to measure the outcome of using conflict analysis. For each run we
only use the propagation algorithm of interest for retrieving domain reductions due to
the cumulative constraints and due to the precedence constraints. All other scheduling
specific techniques are disabled.

As mentioned earlier, SCIP has a SAT-like conflict analysis mechanism that builds the
conflict graph backward, i.e., when an infeasibility occurs, the conflict graph is created
on the fly. To avoid an overhead by constructing explanations for bound changes, it is
possible to store additional information for each bound change. Since the number of
stored bound changes is quite large during the search, the space for such information is
restricted to 32 bits each.

In case of energetic reasoning and edge finding we use these bits to store the respon-
sible interval. Otherwise, we would need to search in worst case over O(n?) interval
candidates. Hence, we can use the explanation algorithms stated in the previous section
without any additional effort.

2.3.3.2 Computational results

In the following, we use the standard figures and tables as described in Section 1.5.3.

Results for time-tabling

We consider the following proposed variants to explain bound updates and infeasibilities
detected by time-tabling compared to a pure CP approach.

e cfttcp: No conflict analysis is applied.

e cfttl: Corresponds to variant 1: each job is reported that intersects the inter-
val [est;, est).
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e cftt2: Corresponds to variant 2: greedily each peak is explained.

e cftt3: Variant 3: greedily peak after peak is explained by making steps between
the peaks as big as possible.

e cfttbw: Update in single steps and use bound widening to report bounds that are
placed higher in the tree

Table 2.4: Comparison of explanation algorithms for time-tabling.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 89 instances)
cfttep 93 107 102 1.89 34.23 269041.08
cfttl 91 105 100 1.87 14.63 30857.54
cftt2 95 109 106 1.52 15.27 25957.31
cftt3 97 111 108 1.32 9.93 19227.90
cfttbw 100 114 114 1.04 11.46 18478.27
setL (119 instance) (allopt: 96 instances)
cfttep 102 113 117 0.93 29.11 141660.59
cfttl 101 112 113 0.98 19.95 30491.49
cftt2 104 115 117 0.71 10.54 15959.95
cftt3 104 115 117 0.69 10.57 15063.92
cfttbw 108 119 119 0.40 7.36 9225.35
Pack (55 instance) (allopt: 27 instances)
cfttcp 35 54 55 2.49 1.71 19691.85
cfttl 29 48 48 3.24 20.86 73058.85
cftt2 29 48 48 3.16 14.34 53571.00
cftt3 29 48 48 3.19 8.41 52798.26
cfttbw 27 46 48 3.33 10.0 26655.78
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Figure 2.13: Ratios of nodes and running times given for all optimally solved instances
from sets setS, setL and Pack for different explanation algorithms for time-tabling.

From Table 2.4 we see that on instance sets ‘setS’ and ‘setlL’ using more elaborate

explanation algorithms pays off in total. The number of instances solved to optimality
from set ‘setS’ increases from 93 instances to 97. This number increases to 100 instances
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Figure 2.14: Ratios of nodes and running times given for all optimally solved instances
from set Pack for different explanation algorithms for time-tabling.

if the bounds are updated step-wise and bound-widening is applied in the explanation
algorithms. Similar on instance set ‘setL’” up to 108 instances can be solved in contrast
to 102 in the CP setting. The average running time decreases by more than one half
sometimes even to one-third, and on average 90% fewer nodes need to be explored.
Compared to the decrease in the number of nodes, the decrease in the running time
is low. There are several reasons for this lower decrease in the running time. First,
using conflict analysis, branching variables are chosen according to a conflict score and
hence, the branching decisions are guided into directions where more bound changes per
node can be detected. Hence, the running time per node increases as the propagation
algorithms are executed more often. Second, both, constructing the conflict graph and
propagating conflict clauses, induce computational overhead. As the reductions in the
running times show, this overhead is worth to be made.

On the Pack instances the results reverse. Here, fewer instances can be solved to
optimality, 35 in a CP search, with conflict analysis less than 29. The average number
of nodes and running time both increase on these instances when using conflict analysis.
The running time increases by a factor between 5 and 10 depending on the explanation
algorithm used. The reason is that for the highly cumulative instances the conflicts and
conflict scores learned are not meaningful enough. Hence, bad branching decisions are
made over and over again.

The fact that on instances from PSPLib minimum size explanations work well and
on Pack instances do not is once more supported by Figures 2.13 and 2.14. These show
that on the Pack instances the CP approach performs well on average while the CP-SAT
hybrids are able to solve several instances with fewer nodes and several others needing
many more nodes. In contrast, even on average over all instances, the distribution
functions concerning running time and number of nodes among those instances that
have been solved to optimality in all settings, favor minimum size explanations and
bound-widening techniques.
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Results for edge-finding

We now evaluate the impact of the presented explanation algorithms when time-tabling
(without bound-widening, variant 3) and edge-finding are used. We need to execute
the time-tabling algorithm additionally, as without much less instances can be solved to
optimality.

e cfefcp: no conflict analysis is applied,
e cfefl: use variant 1 in which all jobs in the considered interval are reported,

o cfef2: use variant 2 in which we stop reporting jobs if enough energy is reported,
and

e cfefd: report a minimum size set and use energy requirements as in energetic rea-
soning.

From Table 2.5 we observe that more instances from instance sets setS and setL can be
solved to optimality in about half the running time if conflict analysis is applied. For the
Pack instances we experience a reduction in the number of nodes needed to about 1/3,
while the running time increases by a factor of almost two and less instances can be
solved to optimality if conflict analysis is used.

Table 2.5: Comparison of explanation algorithms for edge-finding.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 85 instances)
cfefcp 86 106 98 2.52 47.68 152336.56
cfefl 92 112 113 1.86 21.74 17776.33
cfef2 92 112 111 1.88 26.06 20968.84
cfef3 93 113 114 1.79 17.87 16740.15
setL (119 instance) (allopt: 93 instances)
cfefcp 97 113 112 1.30 43.45 84151.91
cfefl 102 118 117 0.91 25.02 14770.60
cfef2 102 118 117 0.88 28.42 16049.36
cfef3 101 117 118 1.00 27.01 15624.29
Pack (55 instance) (allopt: 29 instances)
cfefcp 30 55 55 2.80 18.67 154822.89
cfefl 29 54 48 3.21 22.01 54092.50
cfef2 29 54 49 3.13 22.08 55673.25
cfef3 28 53 49 3.19 29.33 65364.61

Results for time-tabling edge-finding

We consider the following settings. Again, the time-tabling algorithm is additionally
used.

o cfttefcp: no conflict analysis is applied,
e cfttefl: all jobs are reported,

o cfttef2: jobs are reported until enough energy is reached, and
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e cfttef3: a minimum size set of jobs is reported.

Results on Pack instances in Table 2.6 look similar to edge-finding. It is better to
just use domain propagation and not necessarily applying conflict analysis. In particular,
now 39 instances from the Pack set can be solved to optimality using a pure CP approach
but only 29 or 30 if conflict analysis is applied. For set Pack, it is better to use time-table
edge-finding instead of the edge-finding procedure. In contrast to these results, again on
instances from ‘setS’ and ‘setL’ more instances can be solved to optimality when using
conflict analysis while needing 90% fewer nodes and often only half the running time.

Table 2.6: Comparison of different variants to explain time-table edge-finding.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 83 instances)
cfttefcp 84 109 90 2.87 68.28 118452.31
cfttefl 89 113 112 2.21 29.83 14262.48
cfttef2 89 113 113 2.20 28.51 14034.35
cfttef3 89 113 112 2.20 29.93 13914.35
setL (119 instance) (allopt: 88 instances)
cfttefcp 90 108 109 1.73 59.43 60779.76
cfttefl 100 118 116 1.06 25.48 T721.27
cfttef2 97 115 117 1.25 26.72 7483.07
cfttef3 97 115 116 1.31 28.65 7849.10
Pack (55 instance) (allopt: 29 instances)
cfttefcp 39 54 55 2.46 26.73 157412.52
cfttefl 30 45 49 3.09 30.43 50891.97
cfttef2 29 44 49 3.18 19.91 38545.00
cfttef3 30 45 49 3.13 29.01 54677.07

Results for energetic reasoning

Turning to the strongest propagation algorithm, energetic reasoning, that usually suffers
from high running times, we can see from the tables that fewer instances can be solved
and the average running times increase. We compare the following settings:

e cfercp: no conflict analysis is applied,

e cferl: all jobs are reported,

e cfer2: jobs are reported until enough energy is reached, and
e cferd: a minimum size set of jobs is reported.

Here, we see the same picture as for the other propagation algorithms. On instance
sets ‘setS’ and ‘setL’ more instances can be solved to optimality when using conflict
analysis, with a huge decrease in the average number of nodes and needing about half
the running time on set ‘setS’. On set ‘setL’ the average running time slightly increases
the stronger the explanations are. In contrast, on the Pack instances, fewer instances
are solved to optimality and the average number of nodes and running time increase by
about a factor of 3.

We show two further comparisons between the instances from PSPLib and the Pack
instances that are typical for all the three energy-based propagation algorithms and their
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Table 2.7: Comparison of the impact of explanation algorithms for energetic reasoning.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 83 instances)
cfercp 52 103 74 6.85 217.99 23275.22
cferl 62 112 103 5.62 131.42 4123.25
cfer2 61 111 108 5.64 131.23 4087.04
cfer3 61 111 104 5.69 127.27 4080.80
setL (119 instance) (allopt: 88 instances)
cfercp 64 114 104 3.84 47.96 2430.56
cferl 67 117 113 3.57 51.85 843.39
cfer2 66 116 107 3.67 55.27 879.18
cfer3 67 117 114 3.56 53.62 880.63
Pack (55 instance) (allopt: 24 instances)
cfercp 33 54 55 3.10 2.97 1489.63
cferl 24 45 54 3.70 8.39 6737.29
cfer2 26 47 54 3.54 8.82 6688.79
cfer3 26 47 54 3.48 9.07 6638.29
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Figure 2.15: Number of instances solved to optimality within time limits of 2, 10, 60, 300
and 600sec. for different variants to explain energetic reasoning.

explanation variants. Figures 2.15 show the number of instances solved to optimality
within different time limits. While on setS, conflict analysis helps to solve more instances
as time increases, on the Pack instances, a pure CP approach performs even better over
time. Similarly, Figure 2.16 compares the ratios between the number of nodes needed
per instance divided by the minimum number of nodes needed in one of the settings.
Again, on instances from PSPLib using conflict analysis highly decreases the number of
nodes, whereas on the Pack instances, the CP setting performs better with respect to
the highest ratio needed. The 20% of the highest ratios are needed by the settings using
conflict analysis with a ratio of about 100, in contrast to the highest ratio for the CP
approach with a factor of about four.
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Figure 2.16: Ratio of nodes for all optimally solved instances by different variants to
explain enregtic reasoning.

The choice of objective coefficients

In order to deliver good explanations for the time-tabling propagator, we set up two
integer programs one with and one without bound-widening. Given that each bound
change in SCIP is stored together with the depth level and position in the node where
it occurred, we experimented how to best combine bound changes in the explanations.
As we will see from the vastly varying results, there are a lot of different choices which
bounds to report in a conflict set. In particular if the job whose bound changes has a high
demand, in some search states there are several jobs with low demands of which only some
need to be reported in order to induce the bound change. In short notes we summarize
some choices for the objective coefficients. For each job we need to report a core, hence
the lower and upper bound is needed. For each bound, we compute a valuation and
obtain a valuation for the job by averaging both valuations. In few settings, we also use
the maximum plus the average valuation. If we do so, we state this explicitly. Here are
the settings with their objective coefficients.

o cfttd-0: 1+ 2—(average percentage of domain compared to global domain)

e cftt4-1: 100- (depth + average position)

o cftt4-2: 100- (depth + average position), we punish branching decision by adding
+2

e cftt4-3: 2 — (ublocal-Iblocal) / (ubglobal-lbglobal)

e cftt4-4: 100- (depth + average position); value of a variable is given by maximum
valuation of both bound changes plus the average

e cftt4-5: 100- (depth + average position), +2 if branching decision; val = MAX +
average

e cftt4-6: 1 + depth/maxdepth + 0.1 - average position

o cftt4d-7: 1 4+ depth/maxdepth + 0.1 - average position + 0.5 for branching decisions
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e cftt4-8: 1000 + depth + average position

e cftt4-9: 1000 + depth + average position; value of a variable is given by maximum
valuation of both bound changes plus the average

Now, that MIPs need to be solved, the number of optimally solved instances does
not play a role anymore and similarly the average running time is dominated by setting
up and solving several MIPs. Hence, we concentrate on the average number of nodes but
still give the other numbers for the sake of completeness.

In Table 2.8 we see that the average number of nodes does not vary by more than 10%
and considering the different instance sets, there is no clear objective to be preferred.
E.g., setting cftt4-4 and cfttt4-7 perform good with respect to that criterion on set setL
but cftt4-1 performs best on set setS. We observe from Table 2.8 and Figure 2.17 that
the number of nodes needed on set setlL is much in favor for the setting cftt4-2 but in
contrast this setting is worst on the Pack instances, where cftt4-3 performs best. There
seems to be a slight hint that branching decisions should not be used in an explanation,
as e.g., cftt4-7 needs between 10 to 20% fewer nodes than cftt4-6. But as this cannot be
observed for cftt4-1 and cftt4-2, we cannot experimentally verify this in general.

Table 2.8: Comparison of different objective functions for minimum weight explanations
from time-tabling.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 65 instances)
cftt4-0 71 112 103 4.55 108.45 5623.98
cftt4-1 72 113 96 4.57 107.94 5356.65
cftt4-2 71 112 103 4.54 110.63 5548.17
cftt4-3 72 113 104 4.48 107.27 5465.52
cftt4-4 73 114 106 4.41 101.7 5562.25
cftt4-5 71 113 96 4.56 125.45 5574.51
cftt4-6 69 111 94 4.73 126.75 5488.34
cfttd-7 71 112 93 4.72 128.7 5621.80
cftt4-8 67 109 93 4.84 122.21 5637.46
cftt4-9 69 111 95 4.71 118.31 5591.54
setL (119 instance) (allopt: 73 instances)
cftt4-0 81 114 111 2.51 41.13 1812.07
cftt4-1 82 115 116 2.43 39.12 1877.26
cftt4-2 74 107 103 3.08 67.9 1732.34
cftt4-3 81 114 112 2.49 36.78 1790.93
cfttd-4 81 114 113 2.49 33.44 1655.41
cftt4-5 84 117 114 2.35 36.36 1777.78
cftt4-6 83 116 110 2.44 44.69 1930.89
cfttd-7 83 116 113 2.40 39.95 1695.73
cftt4-8 83 116 113 2.42 39.44 1797.84
cftt4-9 82 115 113 2.44 39.03 1827.41
Pack (55 instance) (allopt: 22 instances)
cftt4-0 22 55 55 3.87 4.53 165.50
cftt4-1 22 55 54 3.90 3.93 153.64
cftt4-2 22 55 54 3.90 3.38 153.55
cftt4-3 22 55 54 3.90 4.94 148.59
cftt4-4 22 55 54 3.90 3.88 154.73
cftt4-5 22 55 54 3.90 4.30 154.32
cftt4-6 22 55 55 3.87 3.42 155.36
cftt4-7 22 55 55 3.87 3.52 127.14
cftt4-8 22 55 55 3.87 3.97 153.64
cftt4-9 22 55 55 3.87 4.16 153.09
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Figure 2.17: Ratios of nodes for different objective coefficients for sets setL and Pack.

Number of variables per conflict

Tuning the conflict analysis tool that is used in SCIP is certainly one of the main compo-
nents here. We start with an evaluation of the maximum number of variables that can
be part of the generated conflict clauses. Recall that the more variables are in a conflict,
the more bound changes are needed until such a constraint itself detects a bound change
or an infeasibility. Furthermore, the more variables are allowed, the more conflict clauses
can be generated which occupy memory and may slow down the solving process. We use
the following settings.

o cfX: where X gives the maximum number of variables bounds per conflict, or in
terms of SCIP, the number of variable bounds in a bounddisjunction constraint.
We use X € {0,6,8,10,12, 14, 16}.
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Figure 2.18: Distribution of the percentages of optimally solved instances on sets setS
and Pack for time limits 2, 10, 60, 300 and 600 sec.

Table 2.9 shows that on instance sets setS and setl, the more variables are allowed
per conflict clause, the fewer nodes are needed. In particular, if no conflict clauses are
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Table 2.9: Comparison of results if the maximum number of variables in the conflict

clauses is bounded differently.

ratios of running times compared
to best running time per instance of setS

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 94 instances)
cf0 96 110 101 1.62 42.36 295727.62
cf6 97 111 105 1.31 26.40 44627.70
cf8 100 114 108 1.03 19.99 34256.85
cf10 99 113 110 1.11 15.21 24873.97
cf12 99 113 108 1.13 18.50 25469.24
cfl4 98 112 110 1.12 18.56 24005.99
cf16 98 112 107 1.23 18.84 23740.52
setL (119 instance) (allopt: 103 instances)
cfo 104 114 115 0.77 44.53 194749.94
cf6 108 118 116 0.40 12.76 16526.40
cf8 108 118 116 0.40 12.75 16526.40
cf10 108 118 118 0.38 12.99 16563.82
cf12 109 119 118 0.33 14.54 16408.48
cf14 107 117 116 0.48 15.38 15733.69
cf16 108 118 117 0.42 14.40 15496.35
Pack (55 instance) (allopt: 26 instances)
cfo 31 55 55 2.67 1.88 16315.08
cf6 27 51 48 3.33 2.69 10044.23
cf8 27 51 48 3.36 3.02 10461.85
cf10 27 51 48 3.40 3.86 12373.88
cf12 27 51 48 3.42 4.53 11006.65
cfl4 27 51 48 3.42 5.11 12438.38
cf16 27 51 48 3.42 4.76 10573.23
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Figure 2.19: Ratios of running times if the maximum number of variables per clause is
bounded.

generated (setting cf0), then up to ten times more nodes are needed to solve the same
amount of instances to optimality. This is almost similar to using a pure CP approach.
We also observe that the running time decreases to a third if conflict clauses are created
and propagated. On set setS the best average running time is obtained with an upper
bound of 10 variables, while using an upper bound of 8 variables one more instance can
be solved to optimality. On set setL, most instances are solved if up to 12 bounds are
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part of a conflict clause, whereas the best average running times are obtained for 6 to 10
variables.

Again the results on the Pack instances show a completely different conclusion, see
Figures 2.18 and 2.19. Here, it is best in terms of average running time and in the
number of solved instances to generate no conflict clause. The slightly lower number of
solving nodes when conflict clauses are generated indicates their weakness in contrast to
the other two instance sets.

To conclude, on instances from PSPLib it is worthwhile to allow up to between 8
and 10 variable bounds per conflict clause and we chose 10 for our study. On the Pack
instances, a pure CP approach currently performs best.

Impact of propagating conflict clauses

The former results already indicate that it does not always pay off to keep conflict
clauses for propagation. In particular on the Pack instances this can be observed on each
instance.

Some other decisions that need be be made when using conflict analysis and generat-
ing conflict clauses is the amount of conflict clauses that are kept. E.g., all conflict clauses
that have less than the indicated number of variables or only one clause per depth level
can be stored. Conflict analysis can be applied until the first unique implication point of
the first depth level is found or all depth levels are considered. This again has an impact
on the generated conflict clauses and their capability to propagate. Additionally, if some
of the conflict clauses do not propagate they are subject to aging and it is possible to
delete them from the search space or to still keep them. If they can be deleted, they are
called dynamic conflict clauses. Table 2.10 summarizes the settings. The settings are
denoted by “cfXYZ”. Some combinations can be naturally omitted. If no constraints are
stored, we do not need to care whether the conflict clauses are dynamic or not. But it
makes a difference if all fuip levels are considered or only one even though no conflict
clauses are stored as conflict analysis allows backtracking and collects conflict scores per
variable that are updated whenever a variable bound is reported to the conflict graph.

Table 2.10: Settings for conflict analysis denoted by “cfXYZ”.

X maximum number of conflict | Y FUIP levels 7 dynamic
clauses stored per iteration conflict
clauses
0 none 0 no
1 at most one 1  one level 1 yes
-1 all -1 all levels

We first elaborate on the usage of dynamic conflict clauses indicated by the third
component Z of each setting cfXYZ. Over all instance sets we observe in Table 2.11 that,
if the conflict clauses are dynamic, between two and five more instances can be solved
to optimality independent of how the other parameters X and Y are set. Though the
average number of nodes increase between 10% to 30% (cf110 vs. cf111) if the conflict
clauses are dynamic, the average running time decreases between 5% and 20%. Hence,
it is better to use dynamic conflict clauses.

If no conflict clauses are generated, then on the set setL it turns out that it is best
to perform conflict analysis until the first unique implication point is reached and it
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Table 2.11: Comparison of SCIP parameter settings for conflict analysis.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 89 instances)
cf010 96 111 103 1.61 21.47 140735.64
cf0-10 95 110 101 1.74 22.78 143423.56
cf-110 92 107 98 1.86 13.79 16685.79
cf-111 96 111 104 1.48 7.43 22013.74
cf-1-10 92 107 100 1.80 10.51 13864.30
cf-1-11 93 108 103 1.81 9.29 18002.62
cf110 91 106 98 1.94 10.49 17787.26
cfl11 96 111 102 1.54 8.14 25436.54
cf1-10 93 108 101 1.72 12.83 17553.35
cfl-11 94 109 105 1.68 10.80 22003.78
setL (119 instance) (allopt: 95 instances)
cf010 106 118 116 0.61 21.31 79250.72
cf0-10 98 110 112 1.32 29.86 112970.42
cf-110 103 115 116 0.81 8.98 11032.54
cf-111 105 117 117 0.64 8.49 15497.58
cf-1-10 103 115 114 0.77 11.86 8534.00
cf-1-11 103 115 115 0.79 11.46 10923.60
cf110 104 116 115 0.78 12.37 15090.55
cfl11 104 116 115 0.72 9.46 18801.40
cf1-10 103 115 113 0.79 14.66 10913.29
cfl-11 104 116 114 0.74 11.65 14551.72
Pack (55 instance) (allopt: 26 instances)
cf010 29 53 54 2.81 2.15 24400.85
cf0-10 31 55 55 2.68 3.35 43404.81
cf-110 26 50 48 3.52 4.38 15528.38
cf-111 28 52 48 3.18 2.55 16936.42
cf-1-10 28 52 48 3.35 4.77 18656.38
cf-1-11 28 52 48 3.30 8.87 33802.62
cf110 27 51 48 3.48 4.68 17168.69
cfl1l 29 53 48 3.16 3.20 19275.23
cf1-10 28 52 48 3.40 5.67 19311.88
cfl-11 28 52 48 3.30 3.16 18549.31
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Figure 2.20: Number of optimally solved instances obtained by different parameter set-
tings of conflict analysis.

often does not pay off to collect scores on higher depth levels. In contrast, on the Pack
instances, creating the whole conflict graph to higher depth levels pays off, as two more
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Table 2.12: Comparison of SCIP parameter settings for conflict analysis.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 91 instances)

cf010 96 112 104 1.61 27.08 185958.90
cf-111 96 112 105 1.48 14.39 33852.65
cf-1-11 93 109 104 1.81 14.20 23090.45
cfl11 96 112 104 1.54 11.06 32357.18
cfl-11 94 110 106 1.68 15.16 27337.46
setL (119 instance) (allopt: 101 instances)
cf010 106 118 116 0.61 41.85 169177.14
cf-111 105 117 117 0.64 14.99 29867.33
cf-1-11 103 115 115 0.79 17.51 22987.39
cfl11 104 116 115 0.72 20.60 40055.12
cfl-11 104 116 114 0.74 20.40 29972.90
Pack (55 instance) (allopt: 28 instances)

cf010 29 55 55 2.81 6.11 105131.46
cf-111 28 54 49 3.18 9.98 80272.14
cf-1-11 28 54 49 3.30 11.45 64788.46
cfl11 29 55 49 3.16 6.53 47973.96
cfl-11 28 54 49 3.30 5.89 50488.29
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Figure 2.21: Ratios of nodes and running times given for all optimally solved instances
from sets setS, setL and Pack using different parameter settings for conflict analysis.

instances can be solved and half the number of nodes is needed. This again reveals that
the information gained on these instances is bad and misleading and that’s why it is
worthwhile on these instances to collect information on the whole path to the root node
and not to stop after the fuip is reached.

As seen, it is better to set the bounddisjunction constraints dynamic. Table 2.12
compares more compressed the remaining settings. The most instances are solved if all
conflict clauses with at most 10 variables are kept and we only search up to the first
fuiplevel. This corresponds to setting ‘cf-111°. The number of best primal and dual
bounds obtained are also in favor for this setting. Concerning the average number of
nodes needed, the setting ‘cf-1-11 performs much better on instance sets setS and setlL
but not on the Pack instances where ‘cf111’ is the best choice, also in terms of running
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time on set setS, see Figures 2.18 and 2.19. Though ‘cf010’ is able to solve one more
instance on set setL than the others, it needs much higher average running times on set
setS and setL, more than twice as high on set setL.

Again, the tables show that there is no outperforming setting and much depends on
the chosen branching decisions. But it can be observed that the more efforts are put
into conflict analysis, the number of nodes can be often reduced to less than 80% and
the average running time decreases by about one-half.

Impact of bound-widening

In the first setting we compute an explanation of minimum size for updates over maybe
multiple points in time starting by the last peak to be reported and choosing largest
possible steps back to the peak before. Similarly, we reimplemented the updating process
by updating the lower bound by as few peaks as possible. Then, we only need to explain
exactly one peak. The last setting uses the same approach but when computing an
explanation it widens the bounds as much as possible. In a pure CP search this would
not influence the solving process.

From Table 2.13 we can see that already the step-wise explanation needs on average
less nodes though the time per node slightly increases. Using bound-widening techniques,
the number of nodes decreases further, i.e., 50% on the Pack instances. For the other two
test sets only a slight decrease in the number of nodes, about 10%, and running times
can be found.

Table 2.13: Comparison of different strengths of explanations. 1: use minimum size
set; 2: explain a a minimum size set peak-wise; 3: propagate peak-wise and explain a
minimum-size set. A variable that is shifted over several peaks is reported more often.
This seems to result in less nodes needed per instance in particular on instances where
many nodes are needed.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 97 instances)

cpsatttl 99 113 110 1.08 35.27 50048.99
cpsattt2 929 113 112 1.04 35.60 46015.84
cpsattt3 98 112 113 1.09 28.97 42126.08
setL (119 instance) (allopt: 108 instances)
cpsatttl 111 116 119 0.38 21.85 27051.62
cpsattt2 111 115 119 0.39 21.51 26586.49
cpsattt3 113 117 119 0.32 16.87 21264.06
Pack (55 instance) (allopt: 35 instances)

cpsatttl 39 52 54 1.70 9.62 32458.29
cpsattt2 38 51 55 1.74 6.59 16075.09
cpsattt3 39 52 54 1.72 2.84 8524.86

Conclusion and discussion

At this point we discuss the difference of the way conflict analysis works in SCIP in contrast
to most SAT solvers like G12. scip performs its explanations backwards. That means
if the problem becomes infeasible, the conflict graph is created from scratch starting
with the infeasibility. In contrast, SAT solvers usually perform a depth-first search, their
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branching tree is always a path, and they deliver the explanations on the fly whenever a
bound change is performed. Hence, the information gathered is different in both solvers.
A SAT solver updates the conflict scores immediately when a bound change is performed
and hence also on variables that might not be involved in a conflict but are part of the
implication graph that has stored all implications between the bound changes. In scip,
the conflict graph is only set up as soon as an infeasibility is detected. Then, only bound
changes that are related to that infeasibility will be given a higher conflict score. This
might lead to worse scores in our solver.

Furthermore, in the model used by Schutt et al. [227] the conflict scores are calculated
per variable and per value. Hence, the branching decisions are based on value scores per
variable and are therefore more exact than ours. First experiments with adapted scores
that are collected per value proved useful. A remark on this is given in Section 3.3.2.4.

2.4 A continuous relaxation of the cumulative constraint

Throughout the literature, it can be observed that CP approaches outperform IP ap-
proaches on most instance sets for RCPSP, especially when the makespan becomes large.
The main reason is that the solving times of the LP relaxation take most of the running
time. Until now, various IP formulations have been proposed that model the cumula-
tive constraint. For an overview on exact formulations we refer to Koné et al. [164], who
present time-indexed, event-based and flow-based integer programming formulations and
experimentally evaluate the effectiveness of the gained lower bounds in a branch-and-
bound search. They show that the event- and flow-based formulations are able to handle
larger instances but the provided lower bounds are too weak to efficiently solve even
small instances (up to 60 jobs). On the other hand, time-indexed formulations provide
strong lower bounds but require high computation times.

In an exact IP formulation, an integer feasible solution to the LP relaxation yields a
feasible schedule. On the other hand, inexact formulations can play an important role,
as we will see here. Recall that the main roles of a relaxation are to provide dual bounds,
to guide the search (e.g., branching on fractional variables) and to serve as an input for
heuristics.

We propose a continuous relaxation of the cumulative constraint that is based on the
integer start time variables and does not introduce any additional variables, in particular
no binary variables. This relaxation supports the incompleteness of the propagation
algorithms, i.e., it adds inequalities to the model when the propagation algorithms are
no longer able to detect further bound adjustments. Hence, these inequalities are well
suited to be implemented as a cutting plane procedure that is applied after the variable
bounds are propagated. Let J C J be a set of jobs and S; integer start time variables.
The goal is to find valid inequalities of the form:

> 8 =W, (2.21)
jeJ

The start times can be weighted by weights w; € Q. Then, we are looking for
inequalities of the form:
> wiS; =W (2.22)
jeJ
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Upper bounds on the sum of start times can be derived as well. Due to the symmetry,
we will only consider the lower bound case here, whereas in the implementation we also
generate these cuts to derive upper bounds on the sum of start time variables.

Related work Valid inequalities of that kind can be found by Queyranne and follow-up
papers [122, 124, 211, 212] and Hooker and Yan [143]. Yalaoui and Chu [265] and Baptiste
et al. [20] pursue a similar approach in order to derive dual bounds (not cutting planes)
for parallel machine scheduling problems. Baptiste et al. evaluate the effectiveness of
dual bounds derived from several relaxations in a branch-and-bound framework. But
they do not consider the case where demands can be greater than one. We will relate our
inequalities to these works in Section 2.4.2.3. Continuous relaxations have already been
used by Jain and Grossmann [150] in a logic-based Benders decomposition framework,
where the subproblem decomposes into a single machine scheduling feasibility problem
with time windows. Thorsteinsson [248] shows that the continuous relaxation is crucial
in their approach.

The search for valid inequalities of the form (2.21) and (2.22) can be described as a
machine scheduling problem. Recall from Section 1.2 using the notation of the «|S|y-
scheme [127])%, the capacity R corresponds to the number of machines m, the lower
bounds est; are release dates r;, the upper bounds lct; are deadlines d; and the resource
demands r; are denoted by size;. Then, checking whether a feasible solution to the
cumulative constraint exists, corresponds to the problem Pm|r;,d;,sizej|—. Now, using
that the completion time Cj is given by C; = S; + p; (p; is constant), finding a good
lower bound W corresponds to Pmlrj,d;, size;| > Cj.

Next, we will review complexity results for that problem. After that, we present
general separation procedures for the desired inequalities. Lower bounds on W in (2.21)
are computed for P|r;, size;|— and for a one-machine relaxation 1|rj, pmtn|—. Then, these
procedures will be related to the aforementioned works. Finally, the effectiveness of the
different procedures is evaluated in a computational study.

2.4.0.3 Complexity of Pm|r;j,d;,size;| > w;C;

The hardness of Pmlrj,d;,sizej| > w;C; stems from the fact that most relaxations of the
problem are already NP-hard. Table 2.14 gives an overview on those problems related
to Pmlrj,d;,size;| >~ C; that are polynomial solvable or A'P-hard.

Taking job sizes (demands) size; into account is already strongly N'P-hard for P|p; =
1,sizej| > C; [97]. Scheduling on a single machine with release times 1|r;| > C; is also
strongly N'P-hard, see [171]. Such problems become easier if we allow preemption.
Whether a feasible schedule for Pm|r;,d;, pmtn|— exists, can be decided in O(n?) us-
ing flow algorithms [142]. For 1|d;| )" C; the Smith-rule (scheduling last the job with
largest available processing time) [240] runs in polynomial time and Baker [14] shows
that 1|rj, pmtn|)_ C; can be solved in polynomial time by the shortest remaining pro-
cessing time rule (SRPT-rule). In contrast, even if we allow preemption, the prob-
lem 1|rj,dj, pmtn| > C; is weakly N'P-hard [100] (but no pseudo-polynomial time algo-
rithm has been given yet) and P|r;, pmtn|Y_ C; is strongly AN'P-hard [18]. A weighted

2We abuse notation in this section to be consistent with the notation from machine scheduling, see
Section 1.2. We use the term m machines instead of capacity R, deadline d; for latest completion
times Ict; and the resource demands 7; are denoted by size;. Lower bounds or earliest start times est;
correspond to release times r;.

78



objective function turns most problems into strongly NP-hard ones, e.g. 1]r;, pmtn| > C;
lies in P, but 1|rj, pmtn| " w;C; is strongly N'P-hard [167]. To conclude, finding good
bounds on W or W’ is a challenging task on its own.

We point out that the hardness results for the weighted version holds for arbitrary
weights, the case w; = p; seems open. Similarly, hardness for the multi-machine case
where all release dates are smaller than the earliest completion time is open — a case that
is of practical interest in our algorithms.

NP-hard problems polynomial solvable
single machine  1|rj,d;, pmtn| )" C; [100] 1|r;j,d;, pmtn|— [142]
1513 Cy(s) [171] 1]r;, pmtn] 32 C; [14
1ld;| >~ C; [240]
weighted Llrj, pmtn| > w;Cj(s) [167] 1| > w;C;
m > 1 machines P2[rj, pmtn| > C; [99] Pmjrj,d;, pmtn|— [142]
Plrj,pmtn| > Cj(s) [18]

P2[sizej| >~ C; [170]
Plpmtn,size;| Y C; [97]
Plp; = 1,sizej| >~ Ci(s) [97]
open: P2[d;, pmtn| )" C;

Table 2.14: NP-hard and polynomial solvable problems closely related
to Pmlrj,dj,size;| > w;C; presented in a|f|y-scheme [127]. An (s) indicates strong
N'P-hardness.

2.4.1 Separation procedure and an example

We will evaluate different separation procedures and different algorithms to derive lower
bounds on Pm|r;,d;,size;| Y C;. First, we describe the following three separation pro-
cedures before we present the algorithms that actually compute the bounds on W.

1. All jobs J are relaxed to a single machine scheduling problem.

2. An earliest start schedule with respect to the lower bounds and without resource
constraints is built. For each point in time ¢ € {est;}; where the resource capacity
is exceeded, the bound W is computed.

3. An earliest start schedule is build without resource constraints for all jobs that are
scheduled at their earliest start time in the LP solution. Again, only a necessary
subset of the earliest start times is considered to compute W.

Now, we go into more details. A first attempt is to relax the whole problem to a
single-machine environment. Then, we use lower bounds derived from 1|r;, pmtn|}" C;
to identify a subset of jobs J C J that violate inequality (2.21).

In the second approach, we evaluate an earliest start schedule, i.e., we assume all jobs
start at their earliest start time. Let J; := {j € J | est; <t < est; +p;} be the set of jobs
running at time ¢ in this schedule. Clearly, we only consider points in time ¢ € {est;};,
as our relaxations directly operate on the earliest start times. If Zje 5,7 > R holds,
the capacity constraint is violated in this schedule and an amount W can be computed
by which the jobs must be shifted away from their lower bounds. This bound can be
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computed by a single machine relaxation or by packing arguments, the former will be
denoted by W™, the latter by Weize,

In the third approach, we consider an earliest start schedule obtained by all jobs
that are still at their lower bounds in the LP solution S* and use the same procedure
as in the second case for that restricted set of jobs, ie., Jy := {j € J | est; <t <
est; +p; and S; = est;}. By that refinement, we often catch those jobs that are on a
critical path and might not be shifted in the LP solution by the second procedure.

The following example will be used to illustrate the computation of the different
lower bounds on W. Recall that upper bounds on the start times are computed in our
experiments by symmetric arguments.

Example 2.5. We are given four jobs as depicted in Figure 2.22 using one resource with
capacity 5. Figure 2.22a shows an earliest start schedule, the input data in Figure 2.22b
and an optimal schedule, see Figure 2.22c, for Pml|rj,size;| >~ C;. A trivial lower bound
on the sum of start times is given by Zj rj = Zj est; = 8, whereas a maximum lower
bound on the sum of start times is given by 27, which is obtained from the optimal
solution.

job | est; p; r; ect;

A 0o 7 4 7
B 2 6 3 8
C 3 5 2 8
D 3 7 2 10

(b) Input data of the instance.

R

01 2 3 45 6 78 9

(a) Instance with all tasks starting at their est.

0 2 4 6 8 10 12 14 16 18

(¢) An optimal schedule.

Figure 2.22: Illustration of example 2.5 with 4 jobs.

2.4.2 Relaxations and bounding techniques
2.4.2.1 Lower bounds from the single-machine relaxation W™

An instance of Pm|r;, size;| > C; can be relaxed to 1|r;, pmtn| > C; by keeping the release
dates r; as they are and setting the processing times to p; - size;/m. This way, we
compute a lower bound W1 by scheduling the jobs preemptively according to SRPT-
rule for 1|r;, pmtn|>" C;. In order to improve the bound, we complement the obtained
completion times with the i-th smallest completion time, see [20] for a similar approach
in parallel machine scheduling where a proof of correctness has already been given.

Lemma 2.29. Let ect[j] be the j-th smallest earliest completion time among all jobs
and CP™"[4] be the j-th smallest completion time obtained in the preemptive schedule
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of 1|rj,pmtn| )" C;. Then,

W=y max{CP™j], ectlj]} = > p;

is a valid lower bound on W in (2.21).

Later, we use this relaxation in all three separation procedures. In the implementa-
tion, we consider some special cases for the three separation routines (relaxing all jobs,
only est-peaks and only LP-est-peaks). In case that we relax all jobs at once, then in
the preemptive schedule obtained from SRPT, holes may occur, if the release time of a
job is larger than the latest completion time of all jobs with smaller release times in the
preemptive schedule. In this case, we treat these jobs separately and only generate cuts
on these subsets. In case that we only look at peaks of an earliest start schedule, we
additionally adjust the release times of the single machine relaxation, i.e., we compute
to, the point in time at which the jobs first exceed the capacity. The release times r; are
adjusted to r;- := max{r;,to}. Then, for each job we create a machine-job with release
time r;. and processing time p;» := min{p;,p; — (to — r;)}sizej/m and run SRPT plus
ect-adjustment. This is exemplarily shown in the following example.

rj p; 1G] ceet
A2 5-4/5=4 1b 15 R
B|2 6-3/5=36 8 8 1 — 1
C| 3 5-2/5=2 5 7 TB«C B| D | A4
D|3 7-2/5=28 11 11 , B . . .
>=39 Y =41 0 2 4 6 8 10 12 14 16 18
(a) Calculations for W™, C°°* are the completion (b) Solution of the preemptive relaxation.

times after adjustment.

Figure 2.23: Computation of W™ for example 2.5.

Example 2.6 (Example 2.5 continued). When splitting the set of jobs at ¢ = 3, we obtain
a one machine relaxation with release times, processing times and optimal completion
times as tabulated in Figure 2.23a according to a preemptive schedule obtained by the
Smith rule, see Figure 2.23b.

Without adjustment, we obtain W > 39 — 25 = 14, whereas after the adjustment, we
get W™ = 41 — 25 = 16. Altogether, this yields the inequality Sa + Sg+ Sc + Sp > 16.

We remark that job A is splitted at ¢ = 2 where the first demand peak exceeds
the capacity such that A only needs to be processed for 5 units of time after ¢t = 2.
Nevertheless, its processing time of 7 needs to be respected when W™ is computed.

Further adjustments prior to computing the SRPT schedule turned out to be effec-
tively. In particular, strengthening the coefficients, see Section 3.2.1, for such small sets
of jobs turns out to be no computational bottleneck at all and often yields much better
bounds. In our example, since job A with size4 = 4 cannot be scheduled in parallel
to any other job, we can strengthen its resource demand to sizey := 5 which yields a
processing time of 5-5/5 = 5 instead of 4. Without earliest completion time adjustment,
we obtain the lower bound W > 15 which is already better than the initial value of 14.
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Example 2.7 (Example 2.6 continued). For ¢ = 2 an optimal bound is obtained on the
jobs A and B when coefficient strengthening is used: As A and B cannot be scheduled in
parallel, we can relax the problem to a single machine relaxation and obtain S4 + S >
Wlm =7 413 — (74 6) = 7. Whereas without coefficient strengthening in the single
machine environment we calculate with py = 4 and pp = 18/5, and only obtain after
ect-adjustment: W™ =17 — 13 = 4.

To conclude, for the refinements of the single machine relaxation we learned the
following. Adjustments of the earliest completion times are helpful if jobs have high
processing times but small demand as this induces a low energy requirement in the
single machine relaxation. Coefficient strengthening works particularly well if jobs are
disjunctive, because holes in the capacity profile are filled this way.

2.4.2.2 Lower bound W= based on Pml|r;,size;|—

In this relaxation, we consider sets of jobs [J that are pairwisely scheduled in parallel
in an earliest start schedule while the sum of their demands exceeds the capacity. We
call them concurrent jobs. This set can be characterized as follows: for each pair (i, j)
of jobs i,7 € J, rj +p; > r; and r; + p; > r; hold. The following inequalities take
the different sizes of the concurrent jobs into account and delay those that cannot be
scheduled first behind the lowest earliest completion time.

Lemma 2.30. Let J be a set of n concurrent jobs. For J C J we set ect(J) :=
minjes{r; + p;}. Then, we have the following lower bound on W :

Wiz .= D rit (n—|J]) - ect(J)

JCJ: ZJGJS|ze]<m el

Proof. On the right hand side of the inequality, we compute the minimum over all sets J.
Now we prove the lemma statement by showing that this inequality holds for any feasible
solution. Let S be a feasible solution to P|rj,size;|. Let J C J be a set of jobs that are
scheduled first, i.e., for all j € 7\ J : St > minge {S; + pr} and for j,k € J,j # k:
Si+pj > S Then: 37,87 > 3. 1y and 37 c 7 S; > minge { Sy + pi} = ect(J).

This yields:
DS =8+ D 8= v+ (n—|J]) - ect(J).

jeTJ jeJ JEIT\J jeJ
]

This bound is weak at first sight, but helpful in our separation procedure. Certainly,
only inclusion maximal sets J need to be considered in the minimization. Instead of
checking all inclusion maximal sets J, we use a lower bound in which we sort the job
sizes size; in non-decreasing order and find a valid minimum delay for the sum over all
jobs.

Theorem 2.31. Given a set of concurrent jobs J. Let size[j] be a sorting of non-
decreasing sizes sizej, and r[j| a sorting of the release times r; in non-decreasing order.
Let k' = argmaxk{2§:1 size[j] < m}. Then:
kl
Wz =3 "r[j] + (n — k') min{r; + p;}.
. J
7j=1
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Proof. Recall the notation and the proof of Lemma 2.30. Let J be a set of jobs for which
the minimum is attained. The case k¥’ > |J| is impossible, as k¥’ is the maximum number
of jobs that can be scheduled in parallel, hence in J at most &’ jobs can be scheduled at
their release time. For k' < |.J| we use the fact that ect(J) > ect(J) = min{r; + p;} and
rlj] < ect(J) as all jobs are concurrent and calculate:

y
S ot (n— ) ect(J) =D rlil+ (n— k) minr; +p;}.
jeJ j=1

O

The correctness of Theorem 2.31 is pretty intuitive: The first summand contains the &’
smallest release dates, where &’ is the largest number of jobs that can be scheduled at
their release times, if these jobs would have the k&’ smallest resource demands. All others
must be postponed after the smallest earliest completion time min;{r; + p;}.

Example 2.8. For point in time ¢t = 3, we obtain r[1] = 0,r[2] = 2,r[3] = r[4] = 3,
and size[1] = size[2] = 2, size[3] = 3,size[4] = 4; then k&’ = 2. Since at most two tasks can
be executed in parallel (the two smallest release times are 0,2) and two tasks must be
postponed after the earliest completion time. We calculate:

2
Wweizer — E rlj] + (n — k') - min{r; + p;} = (04 2) + (4 — 2) - min{7, 8, 8,10} = 16.
, J
Jj=1

Hence, Sy+Sp+Sc+Sp > 16. Equivalently, at ¢ = 2 we obtain the valid inequality S 4+
Sp>T1.

If the set of concurrent jobs is large and only few can be scheduled in parallel we
give an improved lower bound. Knowing that all jobs in J are available at time ¢ as in
our separation procedure, let N := max;c s {|J| | > ;c;size; < m}. Then, these jobs
can be scheduled in at least B := [{] groups of at most N jobs each. We conclude
that the first IV jobs can be scheduled at the N smallest release times. The next N
jobs in the i-th (i = 2,..., B — 1) block can be scheduled at the (i — 2)N + 1-th earliest
completion time, since (i —2)N jobs have been scheduled two blocks before. A job of the
i-th block can start after the first job of the ¢ — 1-st block finishes. In the last block i = B
only n — [ ]N jobs are scheduled after the (B — 2)N + 1-st earliest completion time.
This observation is condensed in the following corollary.

Corollary 2.32. Given a set J C J of concurrent jobs. Let r[j] be a sorting of the release
times in non-decreasing order and denote by ect[i] the i-th smallest earliest completion
time among {r; +pj}jej' Then, a valid lower bound on W in (2.21) is given by:

N B—-1
W= >N "r[j] + N - <Z ect[(i — 2)N + 1]) +(n — NL%J) -ect[(B — 1)N +1].
j=1 i=2

2.4.2.3 Relation to other known valid inequalities

We presented different bounds on W in (2.21). Next, we discuss the relation to similar re-
sults from the literature. We start with a presentation of inequalities by Queyranne [212].
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Next, Hooker and Yan’s [143] inequalities are presented. Afterwards, we relate our lower
bounds from the single machine relaxation to those that have been used in the context
of parallel machine scheduling, see e.g. [20, 265].

Queyranne’s valid inequalities One of the first valid inequalities presented in the
literature that focuses only on the start time variables (without binary variables) are the
shifted parallel inequalities [122, 124, 211, 212]. They hold for the one machine case with
release times and arbitrary processing time. We denote by rmin(J) = minjes{r;} and

by p(J) = Zje]pj-

Lemma 2.33 ([122, 124, 211, 212]). In a 1|rj|— environment, for any set of jobs J C J
and any preemptive schedule with completion times Cj;, the following inequality holds

S niCs 2 o rwinlD) + 5 | 7+ (wa) | (2:23)

je€J Jje€J Jje€J

and equality holds if and only if all jobs in J are scheduled without interruption
Jrom roin(J) to rmin(J) + p(J).

We remark here that Goemans et al. [124] stated the lemma for the mean busy
times M; for which M; < C; — p;/2 holds. Then, the authors show that a list schedul-
ing algorithm, using the weighted shortest remaining processing time rule (WSRPT,
preemptive Smith rule [240]), yields an optimal solution for

. 1 1
min § Y w;(M; + 2Pi) | > piCy = p(J)rmin(J) + 3 i+ p)?| . vIcT
€T JjeJ jeJ jeJ

Observe that this list schedule derives an optimal solution for 1|r;, pmtn | w;M; and
due to C; > M; + p;/2 it provides a lower bound for the problem 1|r;, pmtn |} w;C;
and hence also for 1|r;| > w;C;. The separation problem to inequalities (2.23) can be
solved in O(n?) [211] by trying all possible values for ruyi,(J) (at most n) and finding a
maximum violating set, see [210]. Nevertheless, these inequalities are not facet-defining
in general. In our context, the bounds generated are quite weak after scaling from a
RCPSP environment when applied to all jobs J. That’s why, we apply a separation
procedure to identify a promising subset of jobs.

Cuts presented by Hooker and Yan A special class of facet-defining inequal-
ities has been introduced by Hooker and Yan [143]. They give valid inequalities
for the case where all start time variables have the same lower bound. Their lower
bound is related to a bin-packing relaxation. These inequalities are facet-defining
for Pm/|size; = size,p; = p|—. The authors also present (not facet-defining) inequalities
for the more general case Pm/|size;|—.

Given a set of jobs {j1,...,jx}. Each of the jobs is split into nj, = |p;,/A] segments
of equal duration 0 < A < min;{p;,}. Excess size;, > A|sizej,/A] is ignored. Let k' =
Zle n;; be the total number of segments, each segment j of job j; has demand of size;- =
sizej, and weight w; = 1/n;,. Then the following theorem holds.
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Theorem 2.34 (Hooker and Yan [143]). Given any set of jobs {ji,...,jk}, the inequal-
ity Sj, + ...+ Sjp = hyetax is valid for Pmlsizej|—, where

k/
g —1)m—Q;—
rctaz = 1 (%'_1_((13‘_%’1)(] ) : 1)—E
j=1

size];
and '
Qj . . i 1
g=L I+l Q= Y sizey  E=) 5(nj, = DA,
=1 =1

(2

where A € [0, min;{p;, }].

A line search is performed to determine the best value for A. The maximum on A.qqz
occurs at a value of A that evenly divides at least one of the processing times pj;, or
zero. In case A = 0, the inequality simplifies to:

Corollary 2.35. Renumber the jobs ji,...,Jr using indices ¢ = 1,...,k so that the
products eq = sizeq - pg occur in non-decreasing order. The following is a valid inequality
for the problem, when A — 0:

1, size, 1

)

2" m 2

k
Sj1+...+SijZ((k‘fq+
q=1

In particular, the last corollary is a simplification of Smith’s SPT-rule, that can be
applied here since all release dates are relaxed to zero (there exists an optimal non-
preemptive schedule). The same holds for the value of hejq; in the theorem. The first
summand in brackets computes for each j it’s completion time, assuming that j — 1
segments have already been scheduled. Since each job was partitioned into nj, segments,
the weighting of this summand with w; yields the average of these completion times,
hence a value of at most C; — p;/2. In order to obtain a valid bound on the start times,
the correction term FE, subtracts half of the processing times from each job. To the best
of our knowledge, it has not yet been possible to extend these inequalities successfully
to non-equal release times.

Relation to work on m-machines Baptiste et al. [20] present lower bounds
for Pm|rj|— with different objective functions. They derive heuristic, combinatorial and
exact approaches. Some of the bounds have also been derived by Yalaoui and Chu [265]
for Pm|r;j| > C;. The exact relaxations (based on IP, Lagrangean relaxation,...) as both
paper show in their experiments are too time-consuming and hence not applicable to
large instances as a subroutine throughout branch-and-bound search. Hence, they use
combinatorial lower bounds in order to prune unpromising nodes. No cutting planes are
generated in these works. Their combinatorial relaxations are based on:

(i) Relaxing all release times to the smallest one or a value in between,

(ii) On job-splitting: preemptively schedule the job according to SRPT-rule and more
than one unit of a job can be processed at a point in time,

(iii) Horn’s theorem [145] for solving Pm|r;, pmtn|Cpax, and
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(iv) Combinations of these with improvement to the i-th smallest completion time.

These approaches differ from ours in the assumption that all jobs have uniform re-
source demand. Our single machine relaxation implicitly contains the splitting of the
jobs (since we only have one machine and allow preemption and maybe more than size;
units can be processed at one point in time). Their usage of Horn’s theorem as a re-
laxation for the N'P-hard problem Pm]r;,pmtn|)_ C; is obsolete in the single machine
case since 1|rj, pmtn| > C; can be solved in polynomial time, as in our lower bound W™
presented. An open question remains whether the capacity demands of the jobs can be
closer incorporated into the works [20, 265] in order to derive better or similar bounds
as presented here.

2.4.3 Computational study

X separation method || y relaxation

1 1-machine a Wim

2 est and sol peaks b Wiz

3  est peaks c Wsize

4 sol peaks d  Wim yysize
6 standard IP

Table 2.15: Encoding of different settings used for the continuous relaxation denoted by
“sepaDXy”.

In this section, we evaluate the presented separation procedures for our continuous
relaxation in a branch-and-bound framework on RCPSP instances. Recall the standard
tables and figures from Section 1.5.3, where time is given in seconds and gaps in percent-
ages.

We start by describing the settings. We compare our continuous relaxation to the
results obtained with a MIP model as presented in Section 1.3.1, denoted by “sepaD6”,
and a pure CP-SAT hybrid “sepaCPSAT”. The different ways of separating the cuts,
such as relaxing each cumulative constraint into a single machine problem, respecting all
points in time where an earliest start schedule of all jobs violates the capacity, or only of
those jobs where the LP start time corresponds to a lower bound. The different kinds of
relaxations, i.e., single machine relaxation W™, or the packing relaxations TW/sze1 Jy/size2
and their combinations are also studied next. For ease of reading, we denote each setting
by “sepaDXy”, where ‘X’ corresponds to the separation method and ‘y’ to the relaxation.
Both parameters are specified in Table 2.15.

Table 2.16 presents the numerical results. In general, none of the chosen settings
outperforms the other. Hence, there is no final clue which method is best to use. We
observe that all methods are slightly better than the pure CP-SAT approach and much
better than using the standard IP formulation.

Figure 2.24 shows that the IP approach “sepaD6” is able to solve about 10% fewer
instances than the other approaches and needs already after 50% of all instances more
than 100 sec. to solve these, whereas all other approaches need more than 100 sec. only
for 25% of the instances. Looking carefully into the graphics, the difference between
the continuous relaxation and a CP-SAT approach is only small. But all indicators are
favorable for the continuous relaxation as there are slightly more instances solved to
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optimality if a continuous relaxation is used and the total running times are also slightly
better.

In particular, there are several settings, where a continuous relaxations needs about
half the number of search nodes and half the running time on average compared to a CP-
SAT approach. On the other hand, on the Pack instances there are settings like ‘sepaD2¢’
and ‘sepaD3d’ (in both the bound Ws7Z¢2 is used), where the number of nodes drastically
increases. This might be due to the fact that these instances are highly cumulative and
energetic propagators should be used. Next, we evaluate the impact of the branching
rule to the results observed here. There, we use an energy based propagation rule, i.e.,
time-table edge-finding, on the Pack instances and we will see that by doing so, the
continuous relaxation becomes better compared to the CP-SAT approach.

Having this huge amount of different kinds of separation techniques and different
relaxations, looking at one-to-one comparison of running time and number of nodes
(not presented here), there is no advice we can give which combination is the best. It
seems that a pure single machine relaxation, W™, provides too weak bounds and not
many nodes can be fathomed this way. On the other hand, sometimes the strongest
relaxation due to the job sizes (W57%2) needs too much computation time. In the next
experiments we separate cuts on earliest start time peaks and peaks of the LP solution
using the bounds W™ and W72 which corresponds to setting ‘sepaD2d’ and makes a
fair tradeoff between running time, the number of best primal and dual bounds obtained
and the number of optimally solved instances.
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Figure 2.24: Number of optimally solved instances for different kinds of continuous
relaxations.

Impact of pseudocost branching When solving a linear relaxation of the problem
throughout search, an LP solution is available in each node of the search tree. This
can be used to guide the branching decisions, e.g., by performing reliable pseudocost
branching, i.e., pseudocosts per variable are initialized by strong branching if a variable
is a fractional branching candidate and has not been branched on so far or for a longer
time. See Section 3.3 for more details on this. As our relaxation is rather weak, not the
pruning capabilities of the relaxation should be most helpful but rather different scores
on the variables that are used as branching decisions or the way the domains of the
integer variables are split. To see whether this is true or not, we next compare the CP-
SAT approach against the continuous relaxation with and without reliable pseudocost
branching in order to evaluate the impact of this branching scheme.
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Table 2.16: Comparison of different continuous relaxations with a CP-SAT and a stan-
dard IP formulation.

setting nopt bprimal bdual gap avtime avnodes
setS (114 instances) (allopt: 79 instances)

sepaD1 101 101 109 0.80 5.55 8575.43
sepaD2a 99 99 105 1.06 6.41 7531.14
sepaD2b 102 103 110 0.82 4.85 5986.67
sepaD2c 101 102 107 0.89 5.14 6244.08
sepaD2d 100 101 109 0.92 5.34 6506.35
sepaD3a 98 98 108 1.04 5.64 7707.10
sepaD3b 101 101 109 0.86 4.87 6901.25
sepaD3c 101 101 110 0.82 4.87 6917.54
sepaD3d 98 98 107 1.02 5.23 7005.34
sepaD4a 100 100 107 0.92 4.82 6862.11
sepaD4b 101 102 108 0.78 4.39 5941.84
sepaD4c 102 103 110 0.77 4.27 6038.71
sepaD4d 101 102 110 0.82 4.08 5772.57
sepaD6 79 94 79 5.38 76.98 9370.47
sepaDcpsat 97 97 102 1.21 6.23 10001.22
setL (119 instance) (allopt: 76 instances)

sepaD1 114 114 118 0.30 5.50 5410.59
sepaD2a 111 111 116 0.56 3.43 2489.16
sepaD2b 113 114 116 0.41 3.19 2216.16
sepaD2c 115 116 117 0.24 2.94 2234.49
sepaD2d 114 114 117 0.32 3.18 2228.96
sepaD3a 111 111 116 0.50 4.83 3674.32
sepaD3b 112 112 118 0.48 3.29 2601.78
sepaD3c 114 114 118 0.39 3.00 2501.76
sepaD3d 112 112 118 0.47 3.30 2620.49
sepaD4a 113 113 117 0.41 3.04 2610.36
sepaD4b 115 115 118 0.26 4.54 3589.41
sepaD4c 113 113 117 0.44 5.25 3907.95
sepaD4d 114 114 118 0.31 4.63 3831.45
sepaD6 81 91 83 3.80 64.17 3144.25
sepaDcpsat 109 109 115 0.53 7.16 6404.54
Pack (55 instance) (allopt: 30 instances)

sepaD1 38 41 54 1.72 1.95 3743.93
sepaD2a 36 39 54 1.81 1.51 2021.23
sepaD2b 37 40 53 1.74 1.39 1458.77
sepaD2c 38 42 53 1.66 6.31 14790.47
sepaD2d 38 42 52 1.59 1.98 3515.00
sepaD3a 40 43 53 1.61 1.76 3329.17
sepaD3b 38 41 53 1.73 3.26 7269.33
sepaD3c 40 43 53 1.60 1.35 1631.23
sepaD3d 40 43 53 1.64 7.16 14041.40
sepaD4a 37 40 54 1.68 1.50 2205.07
sepaD4b 37 40 54 1.88 1.53 2491.33
sepaD4c 34 37 54 1.92 4.38 9990.07
sepaD4d 37 40 55 1.67 2.06 3812.87
sepaD6 40 51 52 1.33 8.05 3127.80
sepaDcpsat 40 43 53 1.65 3.04 7184.13

Figure 2.26 shows the percentage of optimally solved instances per instance set and
the percentage of instances solved within different time limits. We observe that a CP-
SAT approach solves fewer instances to optimality of the whole set than a continuous
relaxation. For the Pack instances, we point out that it is crucial to use the time-tabling
edge-finding propagator and not only time-tabling. Without this propagator on the Pack
instances, the CP-SAT approach performs by far best. This can be easily explained.
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Figure 2.25: Ratios of nodes and running times given for all optimally solved instances
from sets setS, setL and Pack obtained by using different continuous relaxations compared
to a CP-SAT approach and a standard IP formulation.
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Figure 2.26: Percentage of optimally solved instances using a CP-SAT hybrid, or the
continuous relaxation with and without reliable pseudocost branching.

When the propagation algorithms are no longer able to update variable bounds, but
some jobs are running concurrently, the continuous relaxation provides a mean to tell
the framework that these concurrent jobs must be shifted. If no energetic arguments
are used to tighten the variable bounds, the information provided by the continuous
relaxation is rather poor and misleading.

To conclude, the reliable pseudocost branching rule has only a small impact on the
solving process. There are more instances solved on instance sets setL and Pack with this
rule and on instance set setS fewer instances as well. We rather assume that the slightly
better performance stems from the different domain splitting schemes that are applied,
if an LP solution is available. Without an LP relaxation the SCIP internal branching
rules split the domain of a variable in two equally sized domains. Whereas given an
LP solution, the domain is split in two sections that are determined by the LP solution
value. The branching variable itself is chosen according to a hybrid score, again we refer
to Section 3.3.1 for further discussion.
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Discussion and conclusion In order to detect promising search spaces within reason-
able running time, and thereby make good branching decisions, our results are slightly
in favor of using a continuous relaxation. That way, pseudocost values can be used as
branching decisions and the domain of the variables can be split according to the LP
solution values.

Latest experiments with scip show that collecting branching scores not only per vari-
able but also per value leads to smaller branching trees, mainly due to better branching
decisions. This idea is worth-while to be transferred to MIP solving where pseudocost
per variable are collected. This may even improve on our results presented here. A
remark on our preliminary experiments can be found in Section 3.3.2.4.
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Chapter 3

Lower bounds, presolving
techniques and branching schemes

for RCPSP

Propagation techniques that reduce the domains of the variables are important to solve
hard combinatorial problems efficiently, as they shrink the size of the problem and usually
lead to smaller branching trees. Of similar importance in a branch-and-bound framework
is to efficiently compute strong dual bounds to prune unpromising search spaces early.
Several of such techniques are nowadays well established for RCPSP, e.g., several lower
bounds are known, adding redundant constraints (disjunctive and cumulative ones) using
transitive precedence relations, different IP formulations and valid inequalities are key
techniques in this area.

In this section we first introduce well known lower bounds for RCPSP in Section 3.1.
These bounds give a lower bound on the makespan for a particular set of jobs with
their domains. Hence, this lower bound can also be used when other objective functions
than makespan minimization are considered. These bounds can also be applied to sub-
networks and will be used during a presolving step to add new constraints or to strengthen
transitive precedence relations, as described in Section 3.2.

In presolving, which is done prior to branch-and-bound search, several more complex
propagation rules are executed. During this step, the constraints try to tighten their
coeflicients in order to strengthen the LP relaxation or to yield better bound adjustments
throughout search. The problem may also be decomposed, or new constraints may be
added in order to fasten the search later. We give an overview on presolving techniques,
like adding redundant resources, and present coefficient strengthening techniques that
adjust the demands and capacity of the cumulative constraint in order to improve the
bound changes derived by edge-finding, energetic reasoning and time-table edge-finding.

We show that using an elaborate presolving pays off on all the given instances, as 21
more instances can be solved already within presolving due to better dual bounds. Some
open instances from the Pack set can be closed for the first time within less than 10 min.
By just applying coefficient strengthening, the dual gap in the root node, i.e., the dif-
ference of dual value in the root node minus the final dual value divided by the final
dual value, decreases from 3.3% to 0.4% on average. Sub-networks can be detected on
1,129 of 2,095 instances. Applying all the proposed presolving techniques on the Pack
instances and using the standard MIP formulation from Section 1.3.1 throughout search,
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the running time decreases by one-half and the number of nodes decreases even to 10%.
In Section 3.3 we discuss scheduling specific and generic branching schemes for
RCPSP. Given the presolving techniques derived in this section and the strengths from
CP, IP and SAT, we evaluate these branching schemes and elaborate on the different
strengths of the developed solving techniques. On PSPLib instances, a CP-SAT hybrid
(often together with the continuous relaxation) and on Pack instances, a hybrid of CP,
IP and SAT using the binary MIP formulation perform best. In particular for the Pack
instances of which 69% are closed, we are able to increase this number to 78%.

3.1 Lower bounds

Lower bounds are used throughout search to cutoff infeasible nodes early. These lower
bounds can be combinatorial, based on IP formulations or may stem from integrated
approaches. Often they are also used as subroutines during presolving. We start with an
overview of several lower bounds on the makespan Cpax for RCPSP in Section 3.1.1 and
present an efficient procedure to compute a preemptive bound. In our computational
experiments this bound does not yield strong propagations throughout search. But
applied to sub-networks as done in Section 3.2 it helps to tighten coefficients of transitive
precedence relations.

3.1.1 Known lower bounds

Critical path bound A trivial lower bound on the makespan is given by a longest
path calculation in the precedence network. The longest path can be calculated in O(|E|)
with a breadth-first search and is often called critical path (shifting any job on that path
increases the makespan). This lower bound is denoted by LBg := max;{ect;}.

Observe that the critical path is in general not unique. Stinson, Davis and Khu-
mawala [245] improved this lower bound by considering all jobs that are not part of a crit-
ical path. For each critical path and each such job, they compute the maximum amount
of time ¢, that this job can be executed in parallel along a critical path P from the set of
all critical paths P. They derive LBg := LBy + maxpep max ;¢ p{max{0,p; —t;}}. This
idea has been improved by Demeulemeester, see Brucker [38]), by augmenting a critical
path via a second node-disjoint path. Then, a two-path relaxation is solved by dynamic
programming.

Volume bound Another rather simple lower bound can be deduced by computing the
total demand of all jobs of one resource. This demand is divided by the capacity and
can be rounded up to the next larger integer value.

This lower bound is denoted by LB, (J) := maxyer{[>_;c; 75 - pj/Ri !}

Disjunctive graph Here, we consider all pairs of jobs that cannot be executed in
parallel due to some resource constraints. For each such pair (i,7j), two subinstances
are created in which temporarily either a precedence constraint precedence(S;, S, p;)
or precedence(S;, S;,p;) is added. For each subinstance the longest path in the prece-
dence network is calculated and the minimum over both yields a feasible lower bound.
This bound has been used e.g. by Klein and Scholl [159]. Brucker et al. [39] improved
this bound by considering a longest path and a disjoint path. Then, a job-shop scheduling
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problem is solved where pairs of jobs that are in a resource conflict also need to be
scheduled disjunctively in the job-shop instance.

Node packing bound Mingozzi et al. [186] propose to relax and reformulate the
standard IP formulation for RCPSP. A weighted node packing problem remains that is
still NP-hard. They introduce variables which indicate that a (resource-feasible) subset
of jobs is in process at a certain time t. This formulation is clearly of exponential size.
They derive other lower bounds that are faster to compute. Their lower bound LBj
identifies a clique of disjunctive jobs. Then, the sum of the processing times of these
jobs leads to a lower bound. Several procedures to identify these cliques and further
extensions have been developed, see e.g., [84, 159, 186].

Brucker and Knust [37] extend the formulation by Mingozzi et al. [186]. In their
formulation, resource-feasible subsets of jobs must be scheduled preemptively in time
intervals. Still, the number of variables is exponential and they propose a column gen-
eration approach. With this refinement they obtained the best known bounds on the
majority of instances from PSPLib [162]. However, their algorithm requires very high
running times. Baptiste and Demassey [19] use this formulation together with new valid
inequalities in order to derive tight lower bounds, still with high computational efforts
successful on small sized instances but not on the large ones.

Lower bounds from Pm]|r;,dj|Ciax [45]. For machine scheduling problems! several
priority rules exist that often optimally or approximately solve the problem. In Jackson’s
rule [149], the jobs are sorted in non-decreasing order of their due dates. Then, maxi-
mum lateness is minimized for 1|d;| max(C; — d;)*. This rule and variants thereof have
been used algorithmically for makespan minimization problems. Though 1|r;, d;|Cpax
is strongly ANP-hard [117], its preemptive version 1|rj,d;, pmtn|Cpax can be solved
in O(nlogn) by scheduling among all available jobs the one with minimum remain-
ing latest start time and possibly preempting a job when a new release date is reached
and another job has minimum remaining latest start time. It has been shown that
the minimum makespan of the preemptive and non-preemptive schedule differ by at
most Pmax 1= max;{p;} [41, 45].

The preemptive generalization to m machines Pm/|rj,d;, pmtn|Cpax can be solved
in O(n3(logn + 10g pmax)) [145]. This time complexity forbids its usage throughout a
branch-and-bound algorithm. A further relaxation leads to a pseudo-preemptive sched-
ule where a job can be executed by a rational number of machines and maybe more
than one machine at once. This schedule is called Jackson’s pseudo-preemptive schedule
(JPPS) by Carlier and Pinson [45] who propose an O(n? + nm?) algorithm for JPPS
and an O(nlogn + nmlogm) algorithm for computing the optimum makespan of this
pseudo-preemptive schedule. It has been confirmed that the optimality gap compared
to an optimal non-preemptive schedule is at most 2 - pyax. This property makes its use
interesting throughout branch-and-bound.

Furthermore, Carlier and Pinson [45] present propagation algorithms for
Pm|rj,dj|Cnax and for the cumulative constraint that make explicit use of this
rule and run in O(n?). Klein and Scholl [159] derive a similar bound by creating
an m-machine relaxation where they introduce several copies of a job. They give
an O(n?)-algorithm. We remark here that energetic reasoning [22] is an extension of

'Recall the notation for machine scheduling problems from Section 1.2.
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Algorithm 5: Algorithm to compute the preemptive lower bound LBpmtn for one
cumulative constraint.

Input: Resource capacity R, set J of jobs.
Output: Lower bound on the makespan LBpm¢n.
Sort events {est;, ect;};, denoted by e[].
to:=0,D:=0,t=0,V =0.
while t <n do

Set t1 1= to.

to := next event e]].

Set V :=max{0,V + (D — R) - (ta — t1)}.

Add demand of jobs that start at ¢ to D.

Subtract demand of jobs that end at ¢ from D.

9 if to + [V/R] > ub(Cpax) then
10 L return infeasible.

11 if V > 0 then
12 | LBpmtn := max{LBpmtn, t2 + [V/R]}.

o N O O A W N

their rule to the cumulative scheduling problem, but it is less efficient. Second, we
note that we use a similar technique in preprocessing in Section 3.2.3 where distances
between pairs of jobs are updated globally by computing a preemptive lower bound. Our
algorithm runs in O(nlogn) for a particular pair of jobs given all the jobs in between.
Hence, we do not use the algorithms proposed by Carlier and Pinson.

3.1.2 A new preemptive lower bound in O(nlogn)

We propose an efficient lower bound that combines the knowledge from precedence and
resource constraints. This algorithm is sketched in Algorithm 5 and works as follows. We
create an earliest start schedule according to the local lower bounds. This schedule may
violate the capacity of some constraints. Next, we consider each cumulative constraint
separately. Its resource-profile which has at most 2n changes can be built in O(nlogn)
from the earliest start schedule. Then, we sequentially scan the profile from left to
right. During this scan, we collect the work that exceeds the capacity and shift this work
into the holes not earlier than before where the capacity is not exceeded. If the end
of the earliest start schedule is reached, all remaining work is divided by the capacity
and rounded up to the next integer value. This way, we obtain a lower bound on the
makespan. If this lower bound is larger than a given upper bound on the makespan, an
infeasibility is detected. Symmetrically, we use a latest start schedule and run through
the profile from right to left in order to shift the earliest possible start time of the project.
We denote this lower bound by LBpmtn.

Explaining bound updates of the preemptive propagator In order to use conflict
analysis efficiently throughout search, any derived bound change must be explained. In
case of the preemptive lower bound, a set of jobs with their accumulated demand V is
responsible for updates of the lower bound of the makespan variable.

Finding this set of jobs can be easily done by calculating the last point in time when
the value V has been set larger than zero. This point in time can be easily tracked during
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Algorithm 6: Algorithm to explain a propagation by the preemptive lower bound
LBpmtn-

© 0w N O oA W N

10
11
12

13

Input: Resource capacity R, set J of jobs, new bound b to be explained.
Output: An explanation J C J for LBpmtn = b.
Set V:i=(b—ecty—1)- R+ 1.
Sort event points {est;,ect;};, denoted by efl.
ty :=ecty, D :=0.
while V >0 do
Set ¢ to next smaller event in ef].
Add demand of jobs that start at ¢t to D.
Subtract demand of jobs that end at ¢ from D.
Set V :=max{0,V — (D — R) - (t2 — t)}.
Set to :=t.

// Now, ts is the point in time for which the update can be derived.
Sort all jobs j with ect; > to by min{r; - p;,r; - (ect; —t2)}.

Collect J C J jobs in that order until

to + {ZjeJ r; - min{p;, ect; —tg}/R—‘ > LBpmtn -

return J.

the execution of Algorithm 5 in line 6. As we are using backward-checking and do not
store that point in time with the bound change, we give an algorithm to compute the
explanation. Furthermore, there may exist a smaller set of jobs that induces the same
update or an update large enough to detect that the problem is infeasible. To find such

a

set of jobs, we execute the algorithm from right to left and track how much demand

or volume of the jobs is still needed in order to derive this update. As soon as enough
demand has been collected, we stop and report the corresponding set of jobs. Algorithm 6

fo

re

rmalizes these ideas. Recall that ects := max;{ect;}. Similar to explaining energetic
asoning propagation, we use in lines 11 and 12 that the set J of jobs must contribute

enough energy such that the new bound LBpmtn is reached, i.e., it must hold that:

to + er -min{p;, ect; —t2}/R| > LBpmtn -
JjEeJ
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Figure 3.1: On the left, a profile of an earliest start schedule and on the right the shifted
profile of all peaks that exceed the capacity are shown. The lower bound of the makespan

in

creases from 11 to 13.
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Preemptive lower bound vs. energetic reasoning The preemptive propagator is
stronger than the edge-finding procedure, as this would only consider jobs that are fully
contained in an interval [a,b). The bound cannot be established by energetic reasoning,
as in energetic reasoning (see Section 2.1.3.2), the energy contribution of a job j is given

by
ER

€

(a,b) = max {0, min{b — a,pj;,ect; —a,b —Ist;}} - r;.

In the preemptive propagator, we assume that all jobs start at their earliest possible
start time and that the makespan Cl,.x is also shifted to the left immediately after the
completion of all jobs. By that assumption, the energy contribution of a job is calculated
assuming that each job is scheduled as early as possible. Thus, all demand that exceeds
the capacity is shifted to the right.

mtn
e’

; (a,b) = max {0, min{b — a,pj,ect; —a,b —est;}} - r;.

Hence, our preemptive propagator uses the same arguments as energetic reasoning,
but is restricted to shift the lower bound of the makespan variable. On the positive
side, it runs in O(nlog(n)) instead of O(n?), the running time of energetic reasoning for
one variable and all necessary intervals. On the one hand, we also use intervals that
energetic reasoning could not consider with the same amount of energy, on the other
hand, energetic reasoning spans a much larger range of intervals and is able to update
all variables.

Impact on the solving process Initial experiments showed that this propagator
does not cut off many nodes and if it does, the explanation consists of too many jobs
as that reusable conflicts can be generated. This propagator reveals its strength as a
preprocessing routine used on sub-networks. On these sub-networks, it is able to further
improve the coefficients of transitive relations as we will see in Section 3.2.3. There,
on average 17 transitive precedence relations can be strengthened on 660 out of 2,095
instances.

3.2 Presolving techniques

Prior to branch-and-bound search, most solvers perform a presolving in which simple or
complex reduction techniques are used in order to fix variables, to tighten their bounds or
to strengthen the constraints. The hope of its usage is that a much smaller problem with
less redundant information remains to be solved. Often, inefficient but strong methods
are applied here, since their usage throughout branch-and-bound does not overcome the
high running times when used as propagation algorithms in every node.

In presolving, sometimes more than one constraint is considered at once. The prop-
agation algorithms that have been presented in Section 2.1.3.2 concentrate on single
cumulative constraints. It can certainly be expected that additional knowledge about a
particular instance can be gained when precedence and resource constraints are consid-
ered together. In such an integrated presolving step, new constraints (stronger precedence
relations or additional cumulative constraints) can be created.

We will introduce the following presolving techniques in the remainder of this section:

e Coefficient strengthening for cumulative constraints, see Section 3.2.1.
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e Adding redundant resources with capacity one to the model, see Section 3.2.2.

e Stronger precedence constraints by volume arguments, preemption or disjunctive
jobs, see Section 3.2.3.

3.2.1 Coefficient strengthening

Coefficient strengthening is a technique used in IP to strengthen the LP relaxation.
Therefore, some coefficients in the linear inequalities are changed without changing the
set of feasible solutions. E.g., inequality 23x1 + 245 + 25z3 < 60 can be strengthened
to x1 + @9 + 23 < 2 for x; € {0,1},i = 1,2,3. Then, the point (1,1,13/25) is cut off.

Strengthening coefficients has proven very helpful in integer programming in order
to yield better dual bounds. Andersen and Pochet [7] show that strengthening the co-
efficients sequentially proves useful in integer programming for production scheduling
problems and on MIPLIB instances. They strengthen the Gomory cuts that are sepa-
rated by CPLEX. Other authors considered constraints of the knapsack and subset sum
type [89, 107] and report impressive results. We omit further references on this topic
which spawns its own research direction. The advantage of strengthening coefficients is
clearly that no additional inequalities or constraints are introduced such that the model
is not overloaded with redundant constraints.

From a CP point of view it is not always clear what to gain from this technique.
Strengthening the coefficients of a knapsack constraint would not have much impact as
the following example shows.

Example 3.1. We consider a simple knapsack constraint:
J

Here, each weight is equal to some integer value k. In case that K =p-k+ (k — 1) for
some integer p we know that in any feasible solution an amount of at least k — 1 will be
left open. Hence, K can be decreased to p - k. That would certainly ‘only’ give a better
LP relaxation. In CP no further deductions could be made.

In case of scheduling, strengthened coefficients may result in stronger bound changes
detected by propagation algorithms. In particular, energetic reasoning, edge-finding and
time-table edge-finding or the preemptive lower bound use volume arguments to update
the variable bounds or to detect infeasibilities. On the contrary, time-tabling cannot
profit from this as no energy arguments are used. Hence, tightening the capacity of the
resource or the resource demands of the jobs may improve the derived bound changes.
This line of research may find further interesting applications in CP’s constraints.

In the following, we consider a cumulative constraint: cumulative(S,p,r,R).
Let J = {1,...,n} be the index set of the jobs watched by this constraint. For the
cumulative constraint two kinds of coefficients can be tightened: the resource demands r;
and the capacity R. We now start from easy to more elaborate coefficient strengthening
rules.

One of the easiest ways to update the resource demands works as follows. Compute
the value r™® := min{r; | j € J : 0 < r; < R} which is the minimum resource demand
of all jobs j with non-zero demand smaller than the capacity. If any job has a resource
demand that together with the minimum resource demand would exceed the capacity,
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then it cannot be scheduled in parallel with any other job of this constraint and therefore
its demand can be adjusted:

n

Corollary 3.1. All resource demands r; > R — ™0 can be updated to ri = R.

Another simple coefficient strengthening technique can be applied by dividing all
demands and the capacity by the greatest common divisor ged.

Lemma 3.2. Let d :=ged({r; | j € J : 0 <r1j < R}). Then, r}; := [r;j/d] and R’ :=
|R/d]| are valid coefficients for all j € J.

Proof. Let S be a feasible solution of a cumulative constraint. Then, for each point in
time ¢, ijsj§t<sj+pj r; < R must hold. Division by d yields: ijsj§t<sj+pj rj/d < R/d.
For the left part of the inequality is integer, we can round the right part to |R/d]|. For
infeasible schedules S we verify: ijsj§t<sj+pj rj/d > R/d> |R/d]. O

Besides these rather simple procedures, we establish next more sophisticated ap-
proaches. Using a knapsack routine, the resource capacity R can be adjusted to the
maximum possible sum of demands less or equal to R. This can be accomplished by
creating a knapsack instance with n items where the size and profit of item j correspond
to r; and the capacity is given by R. Again, only jobs with non-zero demand smaller
than the capacity need to be considered. This approach never found an update in our
experiments. Hence, we sharpened this idea.

A more elaborate approach to tighten the capacity R works as follows. If at any point
in time t every feasible combination of jobs J; := {j € J |est; <t <lct; A0 <1; < R}
needs at most a capacity of R/, then R can be reduced to R’. This can be checked
for one point in time t by solving a knapsack problem for set J; in which as above the
capacity of the knapsack is set to R and the weights and profits of the knapsack problem
are set to rj. Observe that only values for ¢t with ¢t = est; for j = 1,...,n must be
checked. We assume that a routine knapsackdp(w, p, W) is available, that solves the
maximum knapsack problem and returns the maximum value for a given set of items
with weights w, profits p and knapsack capacity of W in O(n - W). This coefficient
strengthening technique is sketched in Algorithm 7 and runs in O(n? - R).

Lemma 3.3. Given cumulative(S,p,r, R). Algorithm 7 correctly strengthens the ca-
pacity in O(n? - R).

Proof. Only points in times ¢ with ¢t = est; for j = 1,...,n must be checked since at any
intermediate point the set of jobs is not increased. Each value needs to be checked once.
We define Ry := max;c{D jc;7j | D_je; 7 < R} which is computed for every point in
time ¢ in line 4 via a dynamic program for the knapsack problem. The tightest possible
capacity that this algorithm can achieve is obtained through R’ := max; R; in line 13.

It is easy to see that any infeasible combination J of jobs at some point in time ¢ is
still infeasible since the resource capacity has been decreased, hence, > jesTi 2 R =
Z jed Ty > R/.

The fact that every feasible combination of jobs is still feasible is invoked by the
algorithm by choosing R’ as the maximum over all cumulated demands that may occur
at any point in time. Especially, every resource demand r; = R is set to rj := R’
afterwards in line 11.

Algorithm 7 needs O(nlog(n)) for the sorting step. There are at most n points in
time to be considered and setting up one DP and solving it requires O(n - R) time. [
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Algorithm 7: Coefficient strengthening for capacity R of cumulative(S,p,r, R).

Input: cumulative(S,p,r, R).

Output: Strengthened capacity R’ < R.
Set R :=1.
for t e {est;}; do
Compute J; := {j € J | t € [est;, lct;[}.
R; := knapsackdp(r,, T, R).
if R; = R then

‘ return.
end
Set R’ := max{R/, R;}.
end
foreach job j € J with r; = R do

Set rj :== R'.

end
Set R:=R/.

© 00 N O ks W N -

I O
W N = O

In a similar fashion as the capacity is tightened in Algorithm 7, the demands can be
tightened. In the following update, no temporal or precedence constraints are used.

Lemma 3.4. Let cumulative(S,p,r, R) be given with index set J = {1,...,n}. All
resource demands 71, ..., can be strengthened in O(n? - (R — r™n)).

Proof. To perform this update we need to exclude in each step one job j and execute
algorithm knapsackdp on all jobs that may be run in parallel to j. This can be done
in O(n-(R—7j)) <O(n-(R—r™")). We have n jobs, setting up the sub-instance and
running knapsackdp takes O(n? - (R — r™)), O

Observe that the coefficient strengthening technique of Lemma 3.4 must be performed
sequentially. Otherwise, the resource demands may not be valid.

We now mention some further refinements. Somewhat stronger than Corollary 3.1 we
can increase a resource demand r; to R for some job j if no other job i can be executed
in parallel to this job. Here, not only resource but also precedence constraints can be
respected in order to restrict the set of jobs. Observe that only pairs 7, j with [est;, lct;) N
[est;,lct;) # 0 and such that ¢ is no predecessor of j according to the whole precedence
graph need to be respected. Algorithm 8 states an algorithm to perform these coefficient
strengthenings.

Lemma 3.5. Let cumulative(S,p,r, R) be given with index set J = {1,...,n}. All
resource demands r1,...,r, can be strengthened in O(nm +n? - (R —r™"))) with respect
to precedence and temporal constraints.

We omit the correctness proof here. Line 6 of Algorithm 8 can be implemented
in O(m + n) by using a BFS in the precedence network.

Again, the resource demands must be strengthened sequentially. Hence, the order
in which the jobs are considered plays an important role. Maybe, a whole optimization
problem wants to be solved in order to strengthen all resource demands at once and as
good as possible with respect to some measure. Nevertheless, we must be careful with
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Algorithm 8: Coefficient strengthening for resource demands r; of
cumulative(S,p,r, R) using time intervals and precedence relations.

Input: cumulative(S,p,r, R).

Output: Strengthened resource demands ;.

1 foreach job j € J do

2 ifrj:OORrj:Rthen

3 ‘ continue.

4 end

5 Compute J; := {i € T\ {j} | [ests, lct;) N [est;, lct;) # O}.
6 Erase from J; all jobs i that are precedence related to j.
7 Set R’ := knapsackdp(ry;,rj;, R — ;).
8 Set rj ;== R—R'.
9 end

the updates in order to get good ones. For example, a job may be updated that will
not be involved in propagation or explanations, while another job cannot be updated
any more. Intuitively, it is better to first reduce the capacity and then select jobs to
be updated, as this fairly distributes the adjustments over all jobs. To this end, we
execute these coefficient strengthening techniques in the following order: Corollary 3.1,
Lemma 3.2, Lemma 3.3 and last Lemma 3.5. By using Corollary 3.1 first, we set the
demands of very large jobs equal to the capacity. These won’t be considered in the latter
strengthening approaches. Then, we compute the greatest common divisor of all jobs
with smaller resource demand than the capacity, see Lemma 3.2. Next, we strengthen
the capacity according to Lemma 3.3 and last, we strengthen the single demands in an
arbitrary order as indicated by Lemma 3.5.

We show that by these simple but highly efficient coefficient strengthening techniques,
20% more of the Pack instances can be solved to optimality if propagation algorithms such
as edge-finding, time-table edge-finding or energetic reasoning are used. The strength-
ened coefficients lead to stronger volume arguments. The gap in the root node and the
final gap can be decreased by 3% using this technique.

Related work Similar ideas have been proposed by Carlier and Néron [43] who com-
pute maximum redundant functions (MRFs) that induce higher volume ratios. A redun-
dant function f maps {0,..., R} to {0,..., R'}. The function f is applied to all demands
and the capacity of one cumulative constraint while preserving resource feasibility. The
authors show that only maximal redundant functions are of interest and that their num-
ber is low for R < 10 (at most 48 such maximal redundant functions) but high already
for R = 20 where 393 such functions exist.

3.2.2 Redundant resources

In many benchmark instances, jobs are present with resource demands larger than half
the capacity. These are pairwisely not allowed to be executed in parallel. A disjunctive
constraint can be created for such pairs, see Section 2.1.2. Even better, if a whole clique
of jobs can be detected that cannot be executed in parallel, then a cumulative constraint
with capacity one can be introduced. Thus, volume arguments like in edge-finding or
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Algorithm 9: Building redundant resources.

Input: Set J of jobs and their disjunctive graph, a minimum cardinality ¢ and
minimum load factor L.
Output: Additional cumulative constraints of capacity one.

1 foreach job j sorted by non-decreasing lct; do

2 Set S :={j}.

3 foreach job i sorted by non-increasing lct; do
4 if lct; <lct; then

5 ‘ continue.

6 end

7 if i disjunctive with j OR ¢ < j then

8 foreach k € S do

9 if k is not disjunctive with i and (i £ j and j 4 i) then
10 ‘ continue.
11 end
12 end
13 Set S := S U{i}.
14 end
15 end
16 if |S| > ¢ and p(S) > L - (Ictg — estg) then
17 | Store S.
18 end
19 end

20 Remove redundant and irrelevant sets S from storage.
21 Create cumulative constraints for each set .S from storage.

energetic reasoning can be applied in order to fasten the search and to detect stronger
bound changes, see e.g. Carlier and Néron [44].

Building such redundant cumulative constraints with capacity one can be done
constraint-wise or by taking into account all disjunctions that are implicitly given by
the set of all cumulative constraints. Recall that jobs need several resources at once
and may therefore not be allowed to be executed in parallel according to different
cumulative constraints. Additionally, precedence constraints can be taken into account
in order to increase the size of the set of jobs in disjunction and also the domains of the
variables can be used. If two domains do not overlap, the jobs are disjunctive.

In Algorithm 9 we sketch how the redundant resources of capacity one are build. We
sort the jobs by non-decreasing latest completion time and set up for each job j a large
disjunctive clique S greedily. A job i is added to S if it is in disjunction with all elements
so far added to S.

In our experiments, we keep at most the ten largest such sets S with at least ¢ = 6
variables and only if the sum of the processing times is at least L = 70% of the total
interval length induced by these jobs. Note, that lctg = maxjeg{lct;} and estsg =
minjeg{estj}.

Redundant resources have already been used in other studies [19, 21, 44]. In par-
ticular, Baptiste and Demassey [19] propose to solve MIPs and build many redundant
resources that maximize the sum of the processing times on the redundant resource.
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They build one redundant constraint for each cumulative constraint and one for all con-
straints. In contrast, we use the disjunctive cliques to build redundant resources as it
turned out that redundant constraints from a single cumulative resource constraint yield
not much improvement after the propagation algorithms of the cumulative constraints
are executed.

3.2.3 Strengthening transitive precedence constraints

In this section we consider precedence and resource constraints simultaneously in order
to derive precedence relations that are beyond longest distance computations in the
precedence graph.

With the following presolving techniques, we tighten the minimum distance between
the start times of two jobs. We consider pairs of jobs that are in a transitive precedence
relation. Hence, their order is given and a longest path from the predecessor to the
successor yields the minimum distance between these two jobs that must be respected
in every feasible schedule. This minimum distance can be strengthened by considering
the set of jobs that must be scheduled between these two job. In particular, we will use
knowledge about disjunctive relations and volume arguments to strengthen the minimum
distance.

The pair of jobs is denoted by (i, ), with 4,j € J and i # j. We denote by J;; the
set of all jobs k that succeed job i (k € Succ(i)) and precede job j (k € Pred(j)) in the
precedence graph. Formally, we write J;; := {k € J : k € Succ(i) AN k € Pred(j)}.

All jobs k € J;; must be scheduled before the start of job j and after job ¢ has been
completed. Hence, a schedule of minimum length (or makespan) for the subset of jobs
yields a valid lower bound on the minimum distance between jobs ¢ and j in any feasible
schedule. Because solving this problem is hard, bounds are sought after. In the following
we derive lower bounds by (i) a simple volume argument, (ii) a preemptive schedule and
(iii) by disjunctive jobs.

For simplicity we consider one cumulative constraint and omit the index of this re-
source in this section.

Distance by volume arguments The energy (or work volume) of set J;; is given by

E(Jij) == Z Tk - Dk

kGJi]'

A lower bound on the completion time of the subset J;; is obtained by dividing the
energy by the capacity as summarized in the following lemma.

Lemma 3.6. In any feasible schedule, the minimum distance between jobs i and j is at
least dij = E(J; ;)/R. Hence, S; > S; + p; + d;j holds.

Observe that this bound can be computed in linear time O(n) given the set of jobs J;;.

Preemptive distance Computationally more expensive but very often much stronger,
the distance can be updated with respect to a preemptive schedule.

Lemma 3.7. In any feasible schedule, the makespan of a preemptive schedule for the set
of jobs Jij is a valid bound on d;;. Hence, Sj > S; + p; + LBpmen(Jij) holds.
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We compute this preemptive schedule by computing LBpmtn for the set of jobs J;; as
already done in Section 3.1.2. We point out that the earliest start times must not be
based on the global bounds of the variables as in general jobs ¢ and j can be slided in
their time windows. Hence, we must recompute the earliest start times for each set J;;
according to the precedence constraints to obtain a valid bound.

Additionally, we reverse the precedence structure and compute the preemptive sched-
ule for that order. Then, the maximum over both orders yields a valid lower bound on
the distance d;; between the completion of job i and the start of job j.

Distance by disjunctive relations Let ki,k2 € J;; such that kp is in disjunction
with k2. Then, by two simple longest path calculations, a lower bound on the makespan
for the set of jobs in J;; can be computed. Therefore, the disjunction is temporarily
resolved by imposing once each precedence relation and computing the length of a critical
path in that precedence graph. The minimum of both makespans yields a valid lower
bound on d;; as summarized in the next lemma.

Lemma 3.8. Let C! be the length of the longest path in the precedence graph for the

set J;; where precedence(Sy,, Sk,, Pk, ) is imposed and let C* be the length of the longest

path in the precedence graph for the set Ji; where precedence(Sk,, Sk, ,Dk,) is imposed.
Then, min{C*, C?} is a valid lower bound on the minimum makespan of Jij.

This way a minimum distance between jobs ¢ and j is only improved if in an earliest
and in a latest start schedule the jobs k1 and kg are scheduled in parallel. Then, both
longest paths are increased with the imposed precedence constraints.

Figure 3.2 depicts a typical network, as contained in instances from PSPLib, with
disjunctive relations between jobs 75 and i3 by which the distance between jobs i1 and i4
can be updated. Several sub-networks, such as Jg,;,, := {i1, 14, 6, 97,98 }, can be found in
the graph to which volume arguments can be applied. For the pair (ig,711), a disjunctive
bound between jobs ig and 19 might be of interest as well as volume arguments or the
preemptive bound of all jobs between ig and i1;. Between i4 and Cpax depending on the
processing times of jobs i4, 15,410 and 411 transitive relations due to disjunctions may be
obtained.

02
i1 gy —— 15

i3
. 10
7 Cma.x
i8 11

()

Figure 3.2: A precedence network indicating potential sub-networks for transitive prece-
dence relations.
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3.2.4 Computational study

In the preceding section, we recapitulated lower bounds on the makespan and adding
redundant resources to the model. Furthermore, we developed a preemptive propagator
to derive lower bounds on the makespan and we derived sufficient conditions under which
the demand coefficients and the capacity can be strengthened per cumulative constraint
without adding any redundant constraints. We proposed to detect sub-networks on which
these lower bounds can be applied.

With the following study we evaluate the impact of these procedures on the solving
process. In particular, we present how often the single presolving steps occur and by
how much the dual bounds in the root and after solving can be improved this way.

3.2.4.1 Occurrences of presolving techniques

Table 3.1 shows the number of occurrences of the different presolving techniques on
all instances from PSPLib and Pack which together are 2,095 instances. The first row
‘all” shows the results on all instances while the second row ‘min’ shows the results on all
instances that are not solved to optimality after presolving using the proposed techniques.

There are only few instances on which the coefficient strengthening techniques oc-
cur, here, most often capacity and demands can be normalized. On about half of the
instances we find jobs that are pairwise in disjunction. Among the PSPLib instances
with 120 jobs, there is an instance that even contains 2619 disjunctive pairs, while the
average value is 193. Only on 109 instances we are able to find constraints of capacity
one that contain at least 10 variables or fill up the space between the earliest start and
latest completion time by at least 70%. On more than half of the instances we detect
sub-networks, on average 60 per instance. Using these, we are able to tighten transitive
precedence relations according to volume arguments on 577 instances, according to dis-
junctions on 618 instances and to further improve the distance on a transitive edge via
the preemptive propagator on 660 instances. We point out that on each sub-network
we first compute the bound by volume arguments, then by disjunctions and finally by
the preemptive propagator, hence there may be some more counters for the preemptive
propagator where it cannot improve the bounds derived from the other techniques.

Using all presolving techniques, we are able solve 1,164 of all 2,095 instances in the
root node. This is only a slight improvement of 21 instances, as without presolving
already 1,143 instances are solved in the root node. This does not yet indicate any huge
gain when performing exhaustive presolving. We will see that the impact on the overall
solving process is much higher.

3.2.4.2 Impact of coefficient strengthening

As the time-tabling propagation algorithm does not use volume arguments, it does not
benefit from strengthened coefficients. In contrast, the energy based propagation algo-
rithms, such as edge-finding ‘coefEF’, time-table edge-finding ‘coef TTEF’ and energetic
reasoning ‘coefER’, and the binary relaxation ‘coefBinvar’ may potentially take advan-
tage of this technique. Settings, where the presolving steps are used, are marked by a ‘w’.
We run all these algorithms in combination with time-tabling on the Pack instances and
on PSPLib. On the latter, not much effects can be seen, hence, we omit the results.
The influence of coefficient strengthening procedures besides normalization is hard
to measure, as most of the given instances are easy to solve except for 4 instances from
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Table 3.1: Occurrences of the presolving techniques on all instances. Column ‘total’
gives the number of instances where the presolving technique applied, ‘max’ the maxi-
mum number of occurrences per instance and ‘av.” and ‘dev.” the arithmetic mean and
standard deviation of those instances where the technique applied.

coef strengthening cap tightening normalize disjoint cuml by disj

total max av. dev. total max av. dev. total max av. dev. total max av. dev. total max av. dev.

all 134 11 23 1.8 34 313 06 35 72 14.1 154 957 2619 193.0 347.8 109 515 0.8
min 57 724 17 9 316 0.7 5 36 20.2 9.7 532 2619 319.5 423.9 97 515 0.8

sub-networks prec by volume prec by disjunction prec by pmtn

total max av. dev. total max av. dev. total max av. dev. total max av. dev.

all 1129 100 60.7 35.9 577 100 14.7 224 618 50 9.6 8.9 660 78 169 17.5
min 930 100 68.1 33.4 543 100 15.6 22.8 582 50 9.8 9.0 623 78 176 17.7

Table 3.2: Impact of coefficient strengthening: This technique enables us to solve about
ten more instances per propagation routine from the set Pack; where Pack(045 is solved
for the first time.

setting nopt bprimal bdual gapRootDual gapRoot gap avtime avnodes
Pack (55 instances) (allopt: 15 instances)

coefEFw 29 54 52 -0.42 7.02 3.28 6.87 25035.8
coefEF 19 53 41 -3.31 10.52 6.61 6.87 25035.8
coefTTEFw 29 54 55 -0.42 7.02 3.24 7.52 24247.8
coef TTEF 18 52 43 -3.31 10.52 6.59 7.52 24247.8
coefERw 25 50 52 -0.42 7.02 3.60 47.71 23372.8
coefER 15 49 40 -3.31 10.52 7.02 47.71 23372.8

set Pack. Hence, in Table 3.2 all instances that have been solved to optimality with
and without coefficient strengthening do not differ enough to show an impact. On the
one hand, the success of this technique is supported by about ten more instances that
can be solved additionally by whatever propagation algorithm is used. On the other
hand, we also see that using strengthened coefficients decreases the gap in the root node
from 10.52% to 7.02%. This gain is due to the better dual bounds and not due to better
primal solutions, as the dual bound in the root node decreases from 3.31% to 0.41% (as
column ‘gapRootDual’ reveals). Finally, this gives an overall improvement on the final
gaps by about 3% if coefficient strengthening is applied due to generally better dual and
few (one or two) better primal bounds.

Considering the binary relaxation, we not only strengthen the coefficients of the
cumulative constraint, but we also strengthen the capacity cuts per point in time. Such
a strengthening occurs at least once per instance.

The results as shown in Table 3.3 are weird at a first glance. On the Pack instances
using coefficient strengthening, we solve two instances less (Pack 23, Pack 24) than before,
though this procedure does not need much running time. A closer look reveals that the
final dual bound on these instances is optimal and that the optimal solution is not found
though about 10 times more nodes are explored within the remaining time limit. Hence,
this outcome must be due to different branching decisions. Second, using strengthened
coefficients the LP solutions may get more degenerated which is a reason why the LP
solving times on several instances (such as the two above) increase by about 25% per
node whereas the propagation times remain the same. On set setL, the average number of
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Table 3.3: Impact of coefficient strengthening on the binary relaxation.

setting nopt bprimal bdual gapRootDual gapRoot gap avtime avnodes
setS (114 instances) (allopt: 89 instances)

coefBinvar-w 91 114 109 -18.55 37.74  2.17 51.57 6975.99
coefBinvar 89 112 107 -18.60 37.85 2.35 52.92 7149.04
setL (119 instances) (allopt: 90 instances)

coefBinvar-w 93 117 113 -7.34 18.63 2.22 64.59 3176.99
coefBinvar 92 116 111 -7.36 18.71 2.33 67.54 2781.28
Pack (55 instances) (allopt: 36 instances)

coefBinvar-w 36 53 55 -0.72 7.02 241 31.1 7050.08
coefBinvar 38 55 55 -0.76 7.06 247 31.1 7050.08

nodes even increases by more than 10% whereas the running time decreases slightly. On
setS and setl, we see that strengthening the coefficients does not make much difference,
only on two more instances a better primal or dual bound can be found. Neither the
average final gap nor the dual gap in the root node decrease noticeably.

3.2.4.3 Impact of the presolving techniques

Table 3.4: Impact of presolving techniques.

setting nopt  bprimal bdual gapRootDual gapRoot gap avtime avnodes
setS (114 instances) (allopt: 98 instances)

nopresol 99 111 109 -19.88 39.77 1.03 32.46 43081.11
subnets 101 113 107 -19.07 38.21 0.95 28.98 41597.62
disj 100 112 108 -19.88 39.77 0.98 34.15 39773.10
subdisj 101 113 109 -19.07 38.21 0.91 25.88 32604.19
subcum1 99 111 102 -19.07 38.21 1.27 51.51 41597.62
all 102 114 111 -17.95 36.22 0.84 30.58 35286.18
setL (119 instances) allopt: 101 instances)

nopresol 105 114 117 -8.32 19.55 0.66 27.12 25177.59
subnets 107 116 116 -8.01 19.06 0.50 22.24 21094.31
disj 107 116 117 -8.25 19.48 0.51 26.54 24095.87
subdisj 107 116 118 -7.94 18.97 0.49 24.57 22108.62
subcuml1 105 114 115 -8.01 19.06 0.63 36.18 21059.46
all 108 117 119 -7.78 18.73 0.43 24.67 21406.66
Pack (55 instances) allopt: 27 instances)

nopresol 27 51 46 -1.59 7.06 3.38 3.58 6650.37
subnets 28 52 47 -1.54 7.02 3.31 3.61 7727.26
disj 28 52 47 -1.59 7.06 3.31 3.04 5269.48
subdisj 28 52 47 -1.54 7.02 3.31 3.48 6758.67
subcum1 28 52 46 -1.54 7.02 3.38 6.33 7727.26
all 36 55 54 -0.44 5.67 1.86 2.31 4058.15

We consider the following settings. Initially, all presolving techniques are turned off
in setting ‘nopresol’. Then, we run our CP-SAT framework with strengthened transi-
tive precedence relations on the sub-networks, denoted by ‘subnets’, or with additional
disjunctive constraints, denoted by ‘disj’. Redundant resources that suffice our criteria
are only found if transitive precedence relations are strengthened on the sub-networks.
Combination of these settings are given by the settings ‘subdisj’ (combination of ‘sub-
nets’ and ‘disj’), ‘subcuml’ (a combination of ‘subnets’ and redundant resources) and
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Figure 3.3: Percentage of optimally solved instances within different time limits for the
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Figure 3.4: Comparison of nodes and running times for the different presolving techniques
on all instances from setS, setL and Pack.

‘all” where all presolving techniques are enabled. Time-tabling is used as propagator.

Table 3.4 shows that using presolving on the PSPLib instances only decreases the
gap in the root node slightly, usually when sub-networks are considered. On the negative
side, computing improved distances on the transitive relations combined with the redun-
dant resources, i.e., setting ‘subcuml’, even needs much more running time on average
than without presolving. In this setting on set setS, the average running time on all
optimally solved instances is twice as high as the best average running time obtained
when combining sub-networks with disjunctive constraints. From an instance to in-
stance comparison we see that almost twice as many conflicts are generated, which do
not propagate much more. Here, several of these conflicts may be redundant, which is
not checked in the scip framework. There are several runs in which using the presolv-
ing techniques increases the number of nodes needed, in particular if sub-networks are
considered.

The highest improvements when considering the number of optimally solved in-
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stances, best primal and dual bounds, and the lowest final gaps are achieved when all
presolving techniques are turned on. The average number of nodes on those instances
solved to optimality by all settings is decreased by 20%, while the average running time
is only decreased by less than 10% in contrast to not applying any presolving technique.

Figures 3.3 and 3.4 show that using sub-networks and redundant resources, the aver-
age number of nodes cannot be decreased much. The running time distribution becomes
even worse than without any presolving. Adding disjunctive constraints yields most
of the reductions in the running time and number of nodes, while using all techniques
together remarkably improves the node distribution function.

3.2.4.4 Impact of presolving techniques on the propagation algorithms

Table 3.5: Impact of presolving techniques on the propagation algorithms.

setting nopt bprimal bdual gapRootDual gapRoot gap avtime avnodes
setS (114 instances) (allopt: 75 instance)

ttpres 102 112 110 -17.98 36.22 0.84 3.47 4283.83
tt 99 109 109 -19.9 39.77 1.03 3.38 5116.89
efpres 101 111 109 -17.98 36.22  0.87 4.28 3618.41
ef 98 108 105 -19.9 39.77 1.21 5.44 5301.45
ttefpres 99 109 105 -17.98 36.22 1.13 6.84 3714.63
ttef 96 106 102 -19.9 39.77  1.47 9.21 5467.91
erpres 81 91 84 -17.98 36.22  3.33 94.22 3949.45
er 76 86 82 -19.9 39.77  4.22 126.19 5185.85
binvarpres 90 100 93 -17.6 35.55 2.44 32.15 2351.91
binvar 91 101 94 -19.5 39.07 2.21 24.41 3400.75
setL (119 instances) allopt: 70 instances)

ttpres 108 113 119 -7.78 18.73 043 2.19 1452.89
tt 105 110 117 -8.32 19.55 0.66 2.23 1686.45
efpres 103 108 116 -7.69 18.62 0.87 3.03 1405.77
ef 104 109 115 -8.32 19.55 0.71 3.33 1780.13
ttefpres 103 108 115 -7.69 18.62 0.83 3.78 1136.03
ttef 103 108 114 -8.32 19.55 0.79 4.52 1541.28
erpres 80 85 98 -7.69 18.62 2.44 57.69 1017.85
er 74 79 95 -8.31 19.54  3.02 80.64 1489.37
binvarpres 92 97 102 -7.06 17.74 2.01 50.81 1046.39
binvar 92 97 99 -7.72 18.7 2.29 41.51 1165.24
Pack (55 instances) allopt: 27 instances)

ttpres 36 46 49 -0.62 5.67 1.86 2.31 4058.15
tt 27 42 43 -1.77 7.06 3.38 3.58 6650.37
efpres 38 48 51 -0.62 5.67 1.65 3.29 7006.74
ef 28 43 43 -1.77 7.06 3.34 3.26 5629.22
ttefpres 40 50 51 -0.62 5.67 1.52 7.08 15847.41
ttef 31 46 45 -1.77 7.06  3.09 6.4 12503.22
erpres 38 48 49 -0.62 5.67 1.78 10.76 3717.96
er 30 45 43 -1.77 7.06 3.31 10.36 3527.78
binvarpres 41 51 55 -0.62 5.67 1.33 3.37 144.89
binvar 38 52 49 -1.77 7.06 247 8.33 2971.93

Finally, we show how the presolving techniques influence the search if different propa-
gation algorithms are applied. We remark that using only time-tabling propagation is the
best choice on the PSPLib instances, while on the Pack instances, time-table edge-finding
or the binary relaxation are worth being used. The propagation algorithms time-tabling
(‘tt”), edge-finding (‘ef’), time-table edge-finding (‘ttef’) and energetic reasoning (‘er’)
and the use of the binary relaxation (‘binvar’) are evaluated. If presolving is applied, we
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7 — — — T
n wn
& 100 - a & 100 - etk
g =]
3 3
- +
g g
:-5 (G ttpres .-; 750 —o— ttpres
2 e tt L —— tt
'_‘8 —o—  efpres é —o—  efpres
. 50 —— ef 7 . 50 —— ef 7
= =
= —o— ttefpres = —6— ttefpres
g e ttef g —fe— ttef
Ua 25 |- —o— erpres || E 25 |- —o— erpres ||
o e er o e er
3 —o— binvarpres 3 —o— binvarpres
NS | —s—  binvar | NS | —s—  binvar |

0 Ll Lol Lol L1 0 Ll Lol [N Lol T

10° 10 102 10° 10 102 103
ratios of running times compared ratios of nodes compared to best
to best running time per instance number of nodes per instances

Figure 3.6: Ratios of nodes and running times given for all optimally solved instances
per propagation algorithm with all presolving techniques turned on (‘pres’) and off.

append ‘pres’ to the settings.

Table 3.5 shows the results per instance set. Using presolving decreases the gap within
the root node by 2% on setS and about 1% on setL and Pack. Considering the final gap,
this is sometimes even increased, e.g., on setlL in setting ‘efpres’ and ‘ttef’ due to higher
propagation times. Considering those instances solved to optimality by all settings, the
use of presolving results in 10 to 20% fewer nodes on average but only slight decreases
in the running times on setS and setL. On the Pack instances, the average running time
slightly increases for ‘efpres’, ‘ttefpres’ and ‘erpres’ and the average number of nodes
increase by even 10%. Here, the propagation algorithms detect 10% more adjustments
per node and 20% more conflicts are generated on average. The best solution is found
much later which explains the increased number of nodes on some instances.

Considering the number of optimally solved instances and the number of best primal
and best dual bounds, we see that these are usually increased between one and six
instances if presolving is used. A few negative results remain. For ‘efpres’ we solve one
instance less to optimality on setL, but ten more on Pack.

Using the binary relaxation combined with presolving, the average running times of

109



all optimally solved instances from PSPLib increase which is due to higher LP solving
times and the additional time spent in presolving. On the Pack instances, the average
running time decreases by one-half and the nodes to about 10% which is remarkable.

From Figures 3.5 and 3.6 we see that with respect to the running times and the
number of optimally solved instances within certain time limits, the distribution functions
are in favor of using the proposed presolving techniques. In total, we see that in particular
on the highly cumulative Pack instances, using presolving is essential to improve the dual
bounds.

Summary & conclusion

Generating optimal solutions for instances of RCPSP is challenging due to its hardness.
In order to cope with this intriguing hardness, we propose to tighten the coefficients of
the cumulative constraints which enabled us to solve some very hard instances from the
Pack set already within few nodes. Furthermore, we decomposed the precedence network
and identified sub-networks on which lower bounds based on volume arguments, due to
disjunctive jobs and based on a new preemptive propagator can be derived.

Extending coefficient strengthening techniques from IP to CP’s constraints poten-
tially leads to further fruitful research in that area. In particular, the feasibility tests
and propagation algorithms for machine constraints or minimum resource constraints
may make use of such techniques.

3.3 Tree search algorithms

In this section we discuss different branching strategies that have been used in CP, IP and
SAT solvers for scheduling problems. Some of these strategies are generic while others
are problem specific. Furthermore, we conclude this chapter by comparing the CP, IP
and SAT solving capabilities of our solver against the latest results from the literature.

In a branch-and-bound search, branching means to split the problem in two or more
subproblems while the union of the feasibility spaces must contain all feasible solutions,
or at least one optimal solution. This is done by creating child nodes and imposing
new local constraints which can be lower and upper bounds on variables or new logical
constraints. If n child nodes are created, we speak of n-ary branching, and in case n = 2
we speak of binary branching.

Branching decisions, such as the choice of the branching variable and its value (in
case of non-binary variables) as well as the number of child nodes to be created, have a
huge impact on the solving process. Hence, it is best to choose them wisely. Often, it is
a good choice to create two subproblems that are of eager strength, e.g., the dual bound
is eagerly increased or further propagations can be made in both subproblems.

For RCPSP several branching schemes have been developed throughout the litera-
ture. Knowledge, e.g., from earliest start schedules respecting the local bounds of the
current node, can be used to perform branching on variables that are involved in resource
conflicts. Similarly, new precedence constraints can be posted in a child node to resolve
resource conflicts.

In contrast, generic branching schemes collect information throughout search in order
to decide which variable is selected from the set of branching candidates. Prominent
examples for such rules are given by scores based on (i) the improvement in the objective

110



function (IP), based on (ii) the number of bound adjustments (CP) or based on (iii)
those variables that are often involved in conflict analysis (SAT).

Outline In Section 3.3.1, we start with a presentation of the most important scheduling
specific branching schemes together with a discussion on branching on the makespan
variable. Then, generic branching schemes are presented. In the computational study
(Section 3.3.2) these strategies are compared with each other. Interestingly, on instances
from PSPLib the generic branching schemes outperform the others, whereas on the highly
cumulative Pack instances a scheduling specific branching scheme is able to solve more
instances.

Finally, we compare our approach to the best results obtained in the literature. In
particular, we evaluate the techniques from CP, IP and SAT in our framework SCIP by
presenting the results when using a pure CP solver, a CP-SAT hybrid, with and without
the continuous relaxation and in combination with the standard IP formulation.

Results The computational study shows that generic branching schemes which learn
throughout search from former branching decisions work well on PSPLib instances. In
particular, collecting vsids as done in SAT, i.e., a score how often a variable is involved in
detecting bound adjustments turns out to be useful. This way more than 50% additional
instances can be solved compared to the problem specific branching schemes.

In contrast, on the highly cumulative Pack instances, a problem specific branching
scheme performs much better with respect to the number of optimally solved instances
as well as the average running time and nodes. In this scheme, we branch on a variable
that is involved in a resource conflict based on an earliest start schedule.

3.3.1 Branching schemes
3.3.1.1 Scheduling specific branching schemes

In a schedule generation scheme search (SGS search), we compute an earliest start sched-
ule and the corresponding resource profiles for each cumulative constraint. Then, we find
the first resource conflict and choose one of the conflicting variables. Branching on this
variable is performed by fixing its start time to the earliest start time in one branch.
And second, by fixing the variable to the minimum earliest completion time of all jobs
that are in resource conflict with this variable. This branching scheme has been used by
Baptiste et al. [21] and is also known as time-oriented schedule generation scheme, see
Dorndorf et al. [93].

Liess and Michelon [177] use the following branching rule: Given a valid upper bound
(e.g., from a heuristic) on the makespan Ciax, all jobs must finish before this upper
bound minus one. Any feasible solution found throughout search can be used to fur-
ther decrease the makespan. On the second level, an unfixed variable j is chosen that
maximizes ), 7ji - pj. In the first subproblem, {S; < est;} is added and in the second
subproblem {S; > est; +1} is added. They use a depth-first search strategy.

Schrage [223] uses the left-shift dominance-rule to guide the branching decisions. A
job can be scheduled at its earliest start time if it does not create a resource conflict in
an earliest start schedule. Branching is performed by scheduling a first undecided (not
yet fixed) job as early as possible, or this job is delayed by the minimum of all earliest
completion times of jobs that are executed in parallel to that job. Demeulemeester and
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Herroelen [83] present a branching scheme that resolves conflicts by identifying the first
conflicting set in an earliest start schedule. From the conflict set, minimal delaying
alternatives are identified, i.e., all subsets of jobs that resolve the conflict when they
are delayed at least at the considered point in time. These conflicts are then resolved
by locally adding precedence relations to the subproblem for each minimal delaying
alternative. They also use dominance rules that hold over these cut sets in order to
prune unpromising nodes early.

Lombardi and Milano [179] consider a variant of RCPSP in which generalized prece-
dence constraints are present and variables with processing times that are not known a
priori but are specified in a range. They also post new precedence constraints during
branching in order to resolve resource conflicts.

On instances of small size, such as the PSPLib instances containing 30 jobs, the
dominance cut-set rule by Demeulemeester and Herroelen [84] is very efficient. In this
rule, sets of jobs are stored whose predecessors have already been scheduled. Using these
cut-sets, a node can be pruned if it contains the same cut-set as another node, otherwise,
no better schedule for the same set can be found. This approach has been the first to
close all instances from set J30, but is impractical for medium or large instances because
of the high number of cut sets, as reported by many authors, e.g., [177].

Branching based on cores We propose another branching scheme that borrows ideas
from time-tabling. In time-tabling, resource profiles of each cumulative resource are
created that contain the cores of all jobs. Given some lower bounds on the start times
or, if present, the start times in an LP solution, each job is scheduled as early as possible
with respect to these profiles and the capacity value. In case a variable is shifted above
its local upper bound, we select it as branching variable. In the first branch, we fix
the variable on its upper bound, while in the second branch, its value is bounded by its
upper bound minus one. Intuitively, we repair the earliest start schedule this way: A job
cannot be scheduled due to its local time window and resource constraints. But it seems
likely to be right-shifted. Hence, in the first branch, we fix the job to its latest start time
and thereby create a new core that must be respected in the next branching round and
may also trigger further propagation after the fixing.

Branching based on the cumulative constraint We combine the ideas from SGS
and Liess and Michelon [177] in one scheme. First, we compute an earliest start schedule
without resource constraints. Then, the resource profiles are scanned and the first re-
source conflict is taken. Among those variables that are part of the resource conflict, we
select a variable with largest value ), 71 - pj/Ri. Hence, the chosen variable occurs in
many constraints or has a high energy contribution in at least one cumulative constraint.

Branching on the makespan variable All branching schemes can be combined with
a specified search that prefers branching on the makespan variable. Depending on the
way in which the branching is performed, we speak of a progressive or destructive search.

In a progressive search we compute the middle point between the global lower and
upper bounds of the makespan variable Cpax, i.€.,

M = fbglObal(CmaX) + L(UbglObal(Cmax) . EbglObal(CmaX))/QJ.
Depending on the current local lower bound, we branch on the makespan variable

if b(Chax) # M. In the first branch we set ub(Cihax) < M and in the second branch we
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set £b(Cmax) > M + 1. This branching scheme has been used in [21] and is also called
dichotomizing search.

In a destructive search we branch on the makespan variable in a way that
we always try to find a schedule with the minimum possible makespan, i.e.,
ub(Chax) < 9% (C o) must hold.  Using depth-first-search, either a feasible
schedule is found or this makespan is rejected and we can increase the global lower
bound on the makespan by one.

In case of RCPSP it turned out that a destructive search yields the best dual bounds
if the presolving techniques from the previous section are not used. Whereas using the
presolving techniques, there is only a slight difference in running time and number of
nodes that are highly instance dependent, which means it cannot be decided from the
computational results which technique is better to use. Hence, we do not discuss these
results in detail on RCPSP instances. In Section 4.2, where we apply our techniques to
labor-constrained scheduling problems, we will also compare the progressive and destruc-
tive search as well as a combination of both. There, half of the running time is spent
using a progressive search, combined with a destructive search afterwards.

3.3.1.2 Generic branching schemes

Generic branching strategies analyze the impact of branching on the variables. Combi-
nations of these and a short survey can be found by Achterberg and Berthold [3].

In pseudocost-branching a score per variable is computed that depends on the so far
experienced objective improvement after branching in the corresponding direction. In
the root node, when no branching has taken place so far, these values are uninitialized
and cannot be used, or they are heuristically estimated.

In strong branching the variables are checked concerning which gives the best im-
provement in the objective function. Therefore, both branching decisions per variable
are temporarily evaluated by imposing the corresponding bound and solving the LP
relaxations. If all variables with fractional value are checked, we speak of full strong
branching. Since this is too costly in terms of running time, only a subset with max-
imum cardinality is checked. Then, this rule is called strong branching. Developed by
Applegate et al. [9] for solving TSP.

Pseudocost branching with strong branching initialization combines both ideas by
performing strong branching on variables with uninitialized pseudo costs and then choose
a variable according to the pseudocost score. Reliability branching has been introduced
since over time the estimates on the pseudocosts from strong branching may have become
weak. Hence, these values are reinitialized in this rule.

The inference value measures how many domain reductions could be performed after
branching on a variable. There is a value for the up-branch and down-branch. Again,
ideas from strong branching and reliability branching can be incorporated into this rule.
In CP, yet another score depending on the frequency of propagation has been successfully
applied. Michel and van Hentenryck [184] show that the activity score is competitive
with several other CP-based branching schemes. The activity of a variable is increased
in a node if a bound adjustment on this variable occurs. Before branching all scores of
unfixed variables are subject to aging, i.e., they are scaled down. Then, the branching
candidate is selected as a variable which has highest activity score.

In SAT the VSIDS-branching strategy is used, i.e., variable state independent decaying
sum, see Moskewicz et al. [191]. A score (the vsids) of a variable is increased whenever
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this variable is part of an explanation. This strategy prefers variables by which recent
conflict clauses have been created. Another indicator is given by the conflict length
of a variable, i.e., the average length of all clauses a variable appears in. The cutoff
value measures the number of pruned subproblems after branching on a variable in the
corresponding direction.

Achterberg and Berthold [3] combined the values for pseudocost, conflict values,
conflict length, inference and cutoff values in the so-called hybrid branching scheme.
The values are given per branching direction for each variable and are combined in a
weighted sum. Then, the values for the up-branch and down-branch are combined by
multiplication.

Node selection strategy

Another way to influence the search besides choosing the branching variable is given
by the way the tree is traversed, i.e., which node is selected next. In CP and SAT,
a depth-first search (DFS) is used often, while in IP the node with worst (estimated)
dual bound is selected. Either this dual bound is computed from an LP relaxation or
it is estimated by the gain induced on the branching variable. When applying DFS,
the memory requirements for the tree are low (the tree is always a path). In IP, when
switching from one sub-tree to another, several cutting planes and the LP relaxation
itself must be re-constructed internally along the path from one node to the next. This
often incurs additional switching times and huge memory requirements if only few nodes
are cut-off this way. A good mixture between these two strategies is to perform a DFS
with restarts, where restart does not mean that the whole branching tree is reset but
that after e.g., 100 leaves of using DFS, a node with worst dual bound is selected and
again a DFS is used for the next 100 leaves.

We use this technique in our study as it turns out to work well for RCPSP instances.

3.3.2 Computational study

We start this study by comparing the problem specific and generic branching schemes
with each other. From these results we see that the generic branching schemes perform
best on instances from PSPLib. We conclude our study by evaluating the impact of CP,
IP and SAT techniques in our framework and compare these results to the best results
reported in the literature.

3.3.2.1 Comparison of branching schemes

Problem-specific branching schemes have been used throughout the literature for RCPSP.
One goal when using a CIP framework is to use generic branching schemes that learn
throughout search from former branching decisions in order to guide the search into
promising directions. Our experimental results show that for the RCPSP instances from
PSPLib, generic branching schemes are a fruitful research direction whereas on the highly
cumulative Pack instances, a problem-specific branching scheme outperforms other ap-
proaches. We turn on all presolving techniques and consider the following branching
schemes: First, we use reliable pseudocost branching using the continuous relaxation
from Section 2.4, denoted by ‘relps’. Second, a CP-SAT hybrid search (‘infer’) is per-
formed with inference branching, i.e., a score function is used that prefers vsids over
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Table 3.6: Comparison of different branching schemes.

setting nopt bprimal bdual gap avtime avnodes

setS (114 instances) (allopt: 56 instances)

relps 110 111 112 0.19 2.48 2780.88

infer 110 111 113 0.15 1.97 2471.75

cum 80 90 81 5.93 7.22 13971.50

disj 95 107 97 3.32 18.45 44207.25

core 88 99 88 3.98 3.39 6249.68

Isdr 58 64 59 12.11 47.08 122769.41

setL (119 instance) (allopt: 40 instances)

relps 115 116 119 0.10 1.20 335.20

infer 116 117 119 0.10 1.15 458.68

cum 62 71 ud 6.08 1.93 1924.42

disj 92 99 94 3.55 1.69 1918.50

core 83 94 91 2.74 1.18 512.55

Isdr 40 42 58 10.71 12.98 37049.55

Pack (55 instance) (allopt: 32 instances)

relps 39 44 52 1.43 1.54 1485.00

infer 41 46 51 1.48 1.50 2693.69

cum 46 52 55 0.82 1.05 363.63

disj 34 40 51 1.61 7.13 33355.59

core 40 49 51 1.37 1.91 3886.00

Isdr 39 46 53 1.20 2.07 7099.91
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Figure 3.7: Number of optimally solved instances within given time limits of 2, 10, 60, 300
and 600 sec. depending on the chosen branching rule.

inference values to guide the branching decisions. Third, in setting ‘cum’ branching can-
didates are selected that belong to an earliest peak of an earliest start resource profile.
The branching variable has among all candidates the lowest ratio )", ;i -pj/Ry. Fourth,
we branch by posting precedence constraints in setting ‘disj’. In this case, we build an
earliest start schedule and branch on the first pair of disjunctive jobs that are overlap-
ping. Fifth, setting ‘core’ corresponds to branching on the first variable that needs to be
shifted over its latest start time when building a list schedule with respect to the local
lower bounds obeying the capacity. Last, branching according to the left-shift dominance
rule is performed. This setting is denoted by ‘lsdr’.

Table 3.6 in conjunction with Figures 3.7 and 3.8 shows that the generic branching
rules outperform the problem-specific branching schemes on instances from PSPLib. At
least 20 instances can be solved to optimality that could not be solved before while the
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Figure 3.9: Impact of branching schemes on set Pack.

difference between the settings ‘relps’ and ‘infer’ are rather small. In particular, the final
gaps with 0.1% are lowest for the generic branching schemes.

Branching by posting precedence constraints (‘disj’) yields on several instances better
primal solutions than the other problem specific branching schemes but is not competitive
at all with the generic branching schemes. In further experiments we restricted the set
of instances to all those where at least 300 disjunctive constraints have been detected.
Again, this branching rule was no better than the generic branching schemes. It turns
out to be the best problem specific branching rule on PSPLib instances as most instances
can be solved to optimality. Nevertheless, considering all optimally solved instances, the
average running time (18.45 sec.) is much higher in this setting than by settings ‘cum’
or ‘core’. This is mainly due to the larger number of nodes that need to be explored.
Interestingly on setl, this branching rule performs much better than on setS because
there are more disjunctive constraints present per instance.

Figure 3.9 and Table 3.6 clearly show that on highly cumulative Pack instances, the
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cumulative branching scheme ‘cum’ outperforms even the generic branching schemes. It
solves five more instances to optimality, yields the best dual bound on each instance and
the lowest average final gap. Branching according to a core-heuristic (‘core’) also proves
to be competitive with the generic branching schemes at least on those instances that
can be solved within less than 100 seconds. Intuitively, this rule decides by branching
which job to perform late. It adds a core in the first child node that hopefully yields
more propagation as well as it creates free space during the execution of heuristics. This
seems to be a good technique for cumulative but not for disjunctive instances.

Branching according to the left-shift dominance rule as done in setting ‘Isdr’ performs
worst on PSPLib instances. The branching trees become huge and there is not much
potential for propagation induced by this rule. Due to fewer jobs in the Pack instances,
this rule does not perform that tremendously bad there. But it still needs three times as
many nodes as the reliable pseudo-cost branching rule and about 20 times as many nodes
as in setting ‘cum’. On PSPLib instances, mainly the worse dual bounds are responsible
for the bad results obtained by this rule, whereas on Pack instances the primal bounds
are worse.

3.3.2.2 Comparison to other approaches

We compare our results with those reported by other authors. We impose a time limit of
600 sec. for this matches the other environments best. Other solvers from the literature
and ours are given as follows.

LM Pure CP approach by Liess and Michelon [177] where constraints are added
similar to cuts in IP.
MCS Lower bound is computed via minimal critical sets by Laborie [168].
DH Branching scheme by Demeulemeester and Herroelen [84] using mini-
mal delaying alternative, cut-set dominance rule and bound by Min-
gozzi et al. [186].
HOR A pure SAT approach by Horbach [144].
SFS Latest results obtained by Schutt et al. [227] using time-tabling edge-finding.
CP  Our procedure using time-tabling, overload-checking as propagation algo-
rithms, a pure CP approach.
CPSAT Our procedure using time-tabling, edge-finding and conflict analysis, a CP-
SAT hybrid.
CIPc Our CP-SAT procedure using the continuous relaxation.
CIPB Our CP-SAT procedure using the relaxation by Pritsker et al. [209].

We do not show results by Dorndorf et al. [93], Klein and Scholl [159] or others as these
are clearly outperformed by the latest approaches. Values for the results by MCS and
DH are given as reported in [12] and for LM as reported in [177, 144].

Computational environments The environments of these solvers are as follows.
Liess and Michelon (LM) use a NEC PowerMate running at 2GHz under Debian
GNU/Linux with a time limit of 300sec; for the sets J90 and J120 we display the values
with a time limit of 1,800 sec. Results for MCS are taken from [12] where a time limit
of 1,800 sec was used on 1.4GHz, which corresponds to about 600 sec. on 2.0 GHz. The
method has been implemented in ILOG Scheduler 6.1. The results for DH have been
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obtained on IBM PS/2 Model P75 with a 80486 processor running at 25 MHz under
Window NT. Though, this solver is pretty slow compared to others, it has been the
best for a long time on set J30. Horbach (HOR) obtained his results on Dell Precision
with Intel Core2Duo T6400 2.2GHz with 1GB of RAM running under Windows XP,
compiled with Microsoft Visual Studio C+4 2005 compiler with a time limit of 300
seconds where no initial upper bound on the makespan is given. The machine is about
twice as fast as the one used in LM.

For SF'S we used the latest and best results obtained by Schutt et al. [227] who used
different kinds of branching rules and problem formulations. Usually, the results for a
time limit of 600 sec. are given for a 2.0 GHz run. The authors use an X86-64 architecture
Intel Xeon E54052 processor with 2 GHz running under GNU/Linux compiled with the
Mercury Compiler and grade hlc.gc.trseg.

Comparison As can be seen in Table 3.7, the methods DH and SFS are the only
ones to solve all instances from the set J30 within the time limit. Results on the Pack
instances have only been reported for MCS and SF'S. Method DH has only been used on
sets J30 and J60, due to the huge number of cut-sets. At the moment, SFS solves most
of the instances from PSPLib among all settings. On the Pack instances, our CP-IP-SAT
hybrid (CIPB) using the binary LP relaxation of Pritsker et al. [209] (see Section 1.3.1)
solves more instances from set Pack which are the highly cumulative instances. Again,
the results also depend on the employed branching scheme. Recall from Table 3.6 that a
CPSAT-hybrid is able to solve 46 instances (83,6%) if branching decisions are performed
according to the first resource conflict in an earliest start schedule. Combining this
branching scheme with CIPB solved one instance less than CIPB with generic branching
rule. Here the generic values are reported?.

LM MCS DH HOR SFS CP CPSAT CIPc CIPB
J3o 977 979 100.0 973 100.0 97.2 97.9 98.5 96.9
J60 812 846 81.7 84.0 89.6 829 85.2 85.2 81.9

Joo 788 794 - 79.0 82.7 783 80.0 79.8 78.5
J120 40.0 41.7 - 412  47.0 40.0 42.0 42.3 38.8
Pack - 592.7 - - 69.1 63.6 69.1 76.4  78.2

Table 3.7: Comparison of our method with those obtained in the literature. The per-
centage of optimally solved instances per test set is given.

Observe that all results from the literature have been obtained on different archi-
tectures. Our comparison of the CP, IP and SAT techniques is cleaner in the way that
the same architecture and even the same branch-and-bound framework is used. The last
four columns of Table 3.7 show that most instances from PSPLib are solved in setting
CIPc, using the continuous relaxation in a CP-SAT hybrid. The SAT techniques play a
crucial role as 2% additional instances (9 instances per set from PSPLib) can be solved
in contrast to a pure CP approach. We compare our approaches more closely next.

2If branching on the first resource conflict is used, CPSAT solves 83,6% of the Pack instances.
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3.3.2.3 Impact of CIP techniques

We now elaborate on the strength of the developed solving techniques in the unified
framework. We use the results from the previous comparison to other approaches. Ta-
ble 3.8 shows the numerical values for all four settings CP, CPSAT, CIPc and CIPB.

Table 3.8: Comparison of CP, CPSAT, CIPc and CIPB on all 2,095 instances.

setting nopt bprimal bdual gapRoot gap avtime avnodes
J30 (480 instances) (allopt: 464)
CP 467 468 468 10.77 0.28 3.42 20800.26
CPSAT 470 471 473 10.77 0.18 1.41 1009.01
CIPc 472 473 480 10.70 0.14 1.3 653.68
CIPB 465 480 465 10.06 0.53 5.06 771.28
J60 (480 instances) (allopt: 391)
CP 398 411 435 8.46 3.24 4.02 20050.71
CPSAT 409 422 470 8.46 2.89 1.36 648.09
CIPc 409 426 473 8.41 2.84 1.34 478.07
CIPB 393 466 419 8.23 3.65 8.38 753.8
J90 (480 instances) (allopt: 374)
CP 376 425 449 6.81 4.02 2.85 9271.13
CPSAT 384 433 475 6.81 3.80 1.12 172.97
CIPc 383 440 472 6.79 3.80 1.11 108.64
CIPB 378 466 435 6.72 4.47 2.26 107.62
J120 (600 instances) (allopt: 220)
CP 240 426 531 16.07 10.94 7.24 32060.04
CPSAT 252 437 583 16.07 10.66 3.02 2234.06
CIPc 254 480 570 16.04 10.43 1.47 574.28
CIPB 233 546 462 15.83 11.32 25.72 875.96
Pack (55 instances) (allopt: 33)
CP 35 38 50 5.67 1.94 1.67 13904.27
CPSAT 38 41 50 5.67 1.77 1.43 2386.88
CIPc 42 45 54 5.67 1.37 2.0 776.27
CIPB 43 54 50 5.67 1.22 4.56 368.24
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Figure 3.10: Distribution of running times and nodes for all solvers on all 2,095 instances.
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From Table 3.8 we observe that the SAT part of the solver yields the highest im-
provements compared to its counterpart, the CP solver. The number of solved instances
improves as well as the average number of nodes and running times on those instances
that have been solved to optimality by all solvers. Here, the average number of nodes
decreases by more than 95%, but the speed-up is only a factor between two and three.

Using the continuous relaxation from Section 2.4 on top of CPSAT in setting CIPCc,
we observe on sets J30, J60 and J90 that the average number of nodes further decreases
by about 30% while the average running time remains the same. On instances from
J120 and Pack, the number of nodes decreases to 1/3 on average. While on instances
from J120 a speed-up factor of two is observed, the running time on the Pack instances
increases by 1/3. This is due to the numerous cuts that are separated on Pack instances.
Considering the final gap, we observe that CIPC obtains the best results except for the
Pack instances, but the difference is rather small.

If the binary relaxation, represented by CIPB, is used, in total fewer instances can
be solved to optimality from PSPLib than by using the CP approach. In contrast, CIPB
solves most of the Pack instances. Similar results hold for the final gap. Here, CIPB gets
worst results on instances from PSPLib and best results on instances from Pack. This
solver needs the fewest nodes on average compared to the other solvers on Pack instances.
CIPc is better on PSPLib instances. The distribution functions in Figure 3.10 represent
the ratios of running time and nodes per instance compared to the best value obtained.
We see that the running time in CIPB is often much worse, whereas when considering the
number of nodes this approach yields the best results here. Interestingly, after applying
all the proposed presolving techniques, there is almost no improvement in the dual gap
if the binary relaxation is used.

3.3.2.4 A remark on improved vsids and reversed instances

Some of the computational results presented in this thesis have been rather confusing.
We give few remarks on this.

In our studies on explanation algorithms from Section 2.3.3 on few instances we
observed when using more sophisticated approaches to explain bound changes or infea-
sibilities, there were few instances where solving took much longer. After discussing this
issue with the authors from [229], it turned out that their solver uses vsids per variable
value, not per variable. Here, a score for the ub-branch and down-branch per value of
an integer variable is used to guide the branching decisions. In their solver this way of
collecting vsids is implicitly given by their underlying SAT model. This is one of the
main differences between our solver and the one used in their experiments. In our exper-
iments, where scores are collected per variable, we have made branching decisions based
on possibly misleading values.

Initial experiments have been carried out in a new SCIP version®. In the latest release,
scores per variable value can be used. This is bad in terms of running time if the integer
variables have a high range but good on RCPSP instances where there are not too many
values. This way, we are able to optimally solve between two and three more instances
per set from PSPLib compared to the results shown throughout this thesis. In particular,
the number of nodes per instance seems further decreasing, but the presolving and other

3SCIP 3.0 now contains a Scheduler example with our implementation of the cumulative constraint
and a serial SGS as start heuristic.
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techniques have also changed. We did not reimplement all experiments in the new solver.
The new results are close to the other works but on few instances still worse.

Another experiment has been carried out on which the instances from PSPLib have
been reversed. About the same number of instances can be solved from each set. Some-
times two or three instances can be solved more or less than before. Here, we observe
that the number of nodes per optimally solved instance differs widely. On few instances
more than 1,000 times as many nodes are needed than in the reversed instance, and vice
versa. This observation also holds in the latest release, hence, the vsids seem not to be
responsible for this. The first branching decisions made in a CP-SAT hybrid can be seen
as a lottery ticket because the score values are uninitialized. Then, other score values are
increased based on these first branches. This serves as a simple explanation. Another
way of looking at RCPSP problems is to watch out for the hard parts of an instance. An
instance may be more cumulative in the first part of the precedence network and rather
disjunctive or even trivial in the last part. If the easy part is at the front, this part may
be trivially fixed such that a much smaller instance remains. We cannot easily fix the
last part of the precedence network as the makespan variable corresponds to the last job.
Hence, looking at an instance from this perspective may be helpful in future work.

3.3.3 Concluding discussion

Solving instances of RCPSP remains a challenging task, though a huge amount of tech-
niques has been developed yet. As discussed in Section 1.1.2 the hardness of such in-
stances stems from different characteristics that are included in one model. Hardness
of Bin Packing for highly cumulative instances, comes together with the inapproximable
Graph Coloring characteristic that is hidden in highly disjunctive instances. Processing
times larger than one and precedence constraints further complicate these characteristics.

The huge initial gaps of up to 60% on average on the unsolved instances that reach
about 20% on average after 10 minutes of solving show that there are still many more
efforts to be done in order to close these instances. The reason for these instances to
be hard for CP-SAT hybrid solvers is that after the first branching decisions are made,
not much propagation can be done. E.g., consider the case where a primal, say 100
units of time, and dual bound, say 80 units of time, with an initial critical path bound,
of say 60, are given. Then, most propagation algorithms of the cumulative constraint
are not able to adjust variable bounds if the processing times in these instances are
smaller than ten. Then, the core-profile is empty, and no volume arguments may apply.
Hence, many branchings must be performed—whatever branching scheme is used—until
a conflict is detected. Then, the conflicts may also not carry much useful information
for later propagation as other subtrees are totally different. This seems to be the main
reason why on those instances none of the SAT and CP-SAT hybrid approaches (our
approach, the one of Horbach [144] and the one of Schutt et al. [229]) is able to close the
PSPLib instances containing 60 jobs. Even worse, a few instances with about 25 jobs
from the set Pack which are highly cumulative are still not solvable.

We have seen in our study that using techniques from SAT, about 2% more in-
stances can be solved from PSPLib compared to a pure CP approach within a time limit
of 10 minutes. These are in particular hard instances. Furthermore, the number of solv-
ing nodes as well as the average running times highly decrease between 50% and 90%.
Hence, the generic solving techniques that learn throughout search, by counting score
values per variable, are a valuable step towards better understanding how to solve RCPSP
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instances.

On the highly cumulative instances, our proposed preprocessing routines close several
gaps that have not been closed before. These techniques should be a starting point for
future work as they immediately reduce the search space by simple propagation of the
precedence graph in the beginning as well as after branching. Redundant infeasible states
are passed by this way.

On the unsolved, rather disjunctive instances from PSPLib, it can be observed that
the resource profiles have a lot of free space to shift jobs in their time windows. This
can certainly be used as a heuristic, that first (heuristically) adds precedence constraints
between jobs and second uses an exact solver to solve the resulting instances faster.
By using parallel computation this may lead to improved solution quality in contrast to
genetic algorithms. For disjunctive instances even better exact results would be obtained
if the conflict analysis tool-kit of a solver is able to use constraints within conflict clauses.
Then, branching by posting precedence constraints may become stronger in CP-SAT
hybrids. We performed experiments using this idea by adding the binary representation
for pairs of disjunctive jobs. But the additional linear constraints and variables blew
up the model that much that the solving times slowed down. In particular as several
jobs can be executed in parallel, just posting precedence constraints does not suffice to
reach a state where an earliest start schedule is resource feasible or infeasible. Further
branching must be performed on resource conflicts induced by the non-disjunctive jobs.

A computational study on all different IP formulations known for RCPSP in a CIP
framework is a valuable next step. As observed in several former studies, the cut-set
dominance rule by Demeulemeester and Herroelen [84] only works well on small instances
as the number of cut-sets grows too fast. Either controlling this number or extending the
technique to subschedules, give another direction for future work. In general, schedule
partition procedures that optimally solve subschedules (which is possible due to a smaller
size) and then combining these subschedules to an optimal schedule of the whole instance
might be useful even for large instances from practice. These ideas, from generalizing
dominance rules to schedule partition procedures, go well with the fact that some RCPSP
instances are much easier to solve if the schedule is simply reversed. Parts of a scheduling
instance can be easy for themselves, but may lead to an unnecessary overhead induced
by bad branching decisions or due to useless conflict clauses.

The intriguing hardness of RCPSP and the given benchmark instances that are still
unsolved nowadays will attract more and more researchers over the next decades. While
this thesis sheds some light on the importance of the CP, IP and SAT solving techniques,
it hopefully inspires more researchers to deal with generic solvers and to develop even
better presolving and search techniques.
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Chapter 4

Applications of the CIP
framework for RCPSP

In this chapter we apply the techniques developed so far for RCPSP to two related
problems. First in Section 4.1, we consider the resource-constrained project scheduling
problem with discounted cash flows where a non-linear objective function is introduced
into the RCPSP model. We are particularly interested in the impact of the continuous
relaxation that is proposed in Section 2.4 as now there is more than one variable with
non-zero coefficient in the objective function. We will see that if as well positive as well
as negative coeflicients are part of the objective function, the CIP approach based on
the continuous relaxation outperforms the classical CP approach. In particular, the dual
bounds are much stronger on such instances compared to a pure CP approach.

Second in Section 4.2, we consider another RCPSP related problem in which the
resource demands per job vary over time, called labor-constrained scheduling problem.
Practical instances for these types of problems are taken from the literature and we
evaluate the different branching schemes, as well as CP, CP-SAT and CIP approaches
in this context. Interestingly, the SAT part becomes less important as the generated
conflicts are less reusable and possibly the vsids are less effective in this context.

4.1 Application to RCPSPDC

In several scheduling applications, makespan minimization as in classical RCPSP is not
the major goal. Either because a reasonable makespan is known by which all jobs shall
be completed or because the main cost drivers are independent of the completion of the
project. Often, it must be decided whether job is taken into the schedule or not, like in
just-in-time-production. Then, the objective function models the profit for each job that
is processed.

Another example can be found in an application from the mining industry, where
high cost occur for setting up a stope until the valuable goods, such as ore-bodies, are
reached. Scheduling decisions must be made in order to perform profitable tasks early (to
generate monetary values). Hence, financial considerations must be taken into account
when creating a schedule. For each job or event a cash flow is specified that is to be
paid (cash out-flow) or is gained (cash in-flow) at the occurrence of an event or at the
execution of a job (start or end time). Events may be fixed points in time, or depend on
the progress of the project. Since the value of money decreases with time, the cash flows
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are discounted. The goal is to maximize the net present value, i.e., the sum over cash
in-flows minus cash out-flows. This problem is known as Resource-Constrained Project
Scheduling with Discounted Cash Flows, or RCPSPDC for short.

We consider real-world problems as they arise in the mining industry on a strategical
level of planning. Besides data from publicly available benchmark instances, we obtained
real world data by Chris Alford! on which we evaluate our algorithm. In this application,
positive cash flows model the profit of extracted ore bodies and negative cash flows model
the payments to be done to set up the stope, for grabbing and several other logistic
necessities. Often payments have to be done first, before cash in-flows can be obtained,
i.e., first we need to set up and start grabbing until valuable material is reached.

We present the additional requirements for our CIP framework for RCPSP in order to
solve resource constrained project scheduling problems with the objective to maximize
the net present value. This adapted framework is able to compute optimal solutions if
enough time and memory are at hand. Since this is not the current status in practice, a
heuristic is incorporated that uses the values of LP or CP solutions as a basis for a serial
SGS (see Section 1.4).

We first give a formal problem description and an overview on the research on RCP-
SPDC. Next, we present the CIP-based solution approach in which we iteratively approx-
imate the non-linear objective function via linear equations. Propagation rules, separa-
tion rules, branching strategies and heuristics are then presented in order to speed-up
the branch-and-bound search. In the last section, we evaluate our approach on standard
benchmark instances and on the new data from practice.

4.1.1 Problem description

In Resource-Constrained Project Scheduling with Discounted Cash Flows (RCPSPDC),
we are given a set J of non-preemptable jobs and a set R of renewable resources. Each
resource k € R has a bounded capacity R, € N. Every job j has a processing time p; € N
and resource demands 7, € Ng per resource k € R. The start time S; of job j is con-
strained by its predecessors that are given by a precedence graph G = (J,A). An
arc (i,7) € A represents a precedence relationship, i.e., job i must be finished before
job j starts. We assume that a first and a last dummy job exist that model the start and
end of the project. In a schedule, i.e., an assignment of integer start times S; for each
job 7, at each point in time, the cumulative demand of the set of jobs running at that
point, must not exceed the given capacities.

> rp<R VLVEER
J:8;<t<S;j+p;

The objective is to maximize the net present value (NPV), i.e., 37, f(S;) where the
function f : R — R is determined by the cash flow ¢; € R, a discount rate 6 € (0,1) and
is defined as:

f(S;) = ¢; - e 0SiHPa), (4.1)

The goal in RCPSPDC is to schedule all jobs with respect to resource and precedence

"We thank Chris Alford, Director at Alford Mining Systems, Melbourne, Australia, for providing us
the real-world data.
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constraints, such that the net present value is maximized:

max Z Cj . 6_6(57+pj)

€T
subject to Si+pi <5 V(i,j) € A
> rp< Ry VkeR,Vt
J:8;<t<S;+p;
Sj € Ny VjiedJ.

Observe that initially no upper bound on the makespan is imposed on these instances.
If only negative cash-flows occur at the end of the project, such jobs will not be executed
in finite time in an optimal solution. Closing the stope is a typical example of such a job
that must be performed at the end. Hence, in our study we impose an upper bound on
the makespan.

4.1.2 Related work

RCPSPDC has been well studied and heuristic as well as exact approaches exist. The
problem is classified as PS|prec| ZCJF 5% [36] or m, Llepm, 6y, cj|npv according to the
notation scheme of Herroelen et al. [140]. If no resource constraints are taken into
account, the problem is called Payment Scheduling Problem [129] if cash flows occur at
specified events (that may not correspond to jobs) and Net Present Value Problem [185]
if cash flows are linked to the start or completion times of the jobs. Payment models
as they occur frequently in practice are presented by Ulusoy et al. [252], which cover
lump-sum payment, i.e., payments only occur at the end of the project, payment at
event occurrences, payment at equal time intervals with a final payment at the end and
progress payment where payments are done in regular time intervals until the project is
completed.

Smith-Daniels and Aquilano [241] compare priority based list scheduling rules. They
show that latest start policies lead to better NPV and lower project duration than earliest
start schedules for instances from the Patterson test set containing 110 instances. Ulu-
soy and Ozdamar [200] present forward-backward scheduling based heuristics, whereas
Baroum and Peterson [25] evaluated single- and multi-pass procedures that are used by
project planners. There, positional weight heuristics outperform former priority based
rules. Icmeli and Erenglic [147] perform a tabu search on earliest start schedules by
shifting jobs by one time unit and evaluating the outcome. Zhu and Padman [271]
run different priority based heuristics in parallel (distributed computing). A combined
heuristic (asynchronous team) learns from the outcomes of the single runs to get better
priority based lists.

Mika et al. [185] present numerous heuristic approaches using genetic algorithms,
ant colony optimization and tabu search. Selle and Zimmermann [234] propose a bi-
directional heuristic that combines ideas from forward- and backward-scheduling. Van-
houcke [257] presents a scatter search procedure (see [121, 181]) i.e., an evolutionary
algorithm, that combines solutions from an initial population to new solutions and per-
forms improving steps on them. Ulusoy et al. [252] develop a genetic algorithm for the
multi-mode RCPSPDC with renewable, non-renewable and doubly-constrained resources
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that is able to deal with different types of non-linear cost functions. Vanhoucke [256]
presents a genetic algorithm for RCPSPDC in which the makespan is not fixed, but can
be violated by incurring penalty costs. He compares different mutation and crossover
operators on a huge set of benchmark instances.

Goto et al. [126] present a multi-pass meta-heuristic (a two-stage tabu search) for
a generalized multi-mode RCPSPDC. By a mode they model how a job is completed
(e.g., different resources) and the amount of allocated resources then determines the
processing time. Furthermore, they use additional payment models, e.g., they consider
time-dependent equipment cost. In the first stage of their heuristic, a feasible solution
is created and in the second stage it is improved by shifting the jobs. A key idea in
their algorithm is to allow temporarily infeasible schedules. Vanhoucke and Debels [258]
investigate NPV problems with time-switch and other side constraints. In 2010, an ant
colony optimization algorithm for multi-mode resource constrained project scheduling
with discounted cash flows has been presented by Chen et al. [57] which performs good
on instances with up to 100 jobs, even better than genetic algorithms, simulated annealing
or tabu search.

Besides heuristic solutions, solution quality guarantees are desired from the manage-
ment perspective. One way to obtain dual bounds is to neglect the resource constraints,
which results in the NPV problem. Dual bounds have been derived for that problem
since the 1970s, via LP methods, see [129, 214], or via so-called early trees [105]. De-
meulemeester et al. [86] propose an optimal recursive procedure. In each iteration, a job
with positive (negative) cash flow is left- (right-) shifted in order to improve the objective
value. When shifting more than one job, this gain must be re-calculated in each iteration
in order to obtain a complete method which leads to higher solving times. Schwindt and
Zimmermann [231] generalize this method to networks in which generalized precedence
constraints are present. Starting with an earliest start schedule, they perform improving
steps. In such a step, they iteratively compute a steepest ascending direction and use a
line search to obtain a new feasible solution in that direction.

Doersch and Patterson [91] present one of the first IP formulations wherein Smith-
Daniels [242] incorporates material management cost. They are able to solve instances
with 15 to 25 jobs. Patterson et al. [204] present an algorithm based on backtracking that
works in combination with a right-shifting heuristic. The algorithm has been evaluated
on a test set consisting of 91 instances with 10 to 500 jobs per instance, but the algorithm
was only able to solve small instances. Another IP approach for RCPSPDC goes back to
Yang et al. [267], who show that instances with up to 30 jobs can be solved to optimality.
In their approach, they apply a depth-first search strategy, present a heuristic and prune
the search tree by identifying dominated nodes based on network cuts.

Vanhoucke et al. [259] present a branch-and-bound algorithm that uses the early
trees to derive dual bounds and they use a branching scheme that relies on minimal
delaying alternatives in order to resolve resource conflicts. They resolve these conflicts
by branching into children and thereby posting new precedence constraints, a technique
that has been earlier employed by Icmeli and Erengiic [147].

Kimms [158] shows that dual bounds for RCPSPDC can be efficiently computed via
Lagrangean Relaxation. He uses the solution values of the relaxation as a basis for a
parallel scheduling scheme and obtains good lower and upper bounds for instances with
up to 120 jobs.

Vanhoucke [254] provides a huge amount of benchmark instances tested on various
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settings which we will use in our computational study. In [256, 257] these instances have
been used to evaluate the heuristics. The first test set contains 1,800 instances, 360
instances with 10, 20, 30, 40 and 50 jobs, respectively. Most instances with up to thirty
jobs are well solved with the method by Vanhoucke et al. [259]. The second set contains
instances with 25, 50, 75 and 100 jobs. But as our results and those of [226] reveal, the
net present values as reported in [254] are often wrong.

Liu and Wang [178] present a CP based approach for a construction project in
which the resource levels (capacities) are part of the objective function. With their
lazy clause generator, Schutt et al. [226] can close almost all of the small instances from
Vanhoucke [257], but they do not report any results on the larger sets with 40 and 50
jobs. Schutt et al. [226] study propagators for the objective function, they use the lin-
earized LP formulation by [129] and an improved version of the early trees by [86]. With
this approach they are able to solve almost all instances from [254] which contain up
to 30 jobs and different percentages of positive and negative cash flows. Only on about
1% of the instances no optimal solution is found or proven. Unfortunately, the authors
did not run the experiments on the larger set with up to 100 jobs.

4.1.3 Solution approach

In this section, a constraint integer programming (CIP) model that is based on the generic
implementation of the cumulative constraint from Section 2.1.3 is presented. Based on
this model, we adapt a list scheduling heuristic in order to obtain good primal solutions.

4.1.3.1 Model

In RCPSPDC we need to find a precedence- and resource-feasible assignment of start
times S; that maximizes NPV. We model the resource-constraints via the cumulative
constraint, and the precedence constraints via precedence constraints, see Section 2.1.
To model the non-linear objective function, we introduce for each start time variable S;
a continuous variable X; and an npv-constraint. This constraint gets as input the start
time variable S;, a cash flow value ¢;, a discount rate § € (0, 1), a translation ¢ and the
objective variable X;. Intuitively, the translation ¢ corresponds to the point in time,
when the payment must be done after the start time of the job. We will use ¢ := p; in
our study since there cash flows arise at the completion of the jobs. Hence, we can define
the npv-constraint as follows:

npv(S;, X;, ¢j,0,p;) = {(Sj,Xj) ENgxQ| X =¢;- e_é(sf"'pj)} . (4.2)

Given this, a CIP model reads as:

max ZXj

JjeT

subject to precedence(S;, S}, p;) V(i,j) € A
cumulative(S,p, 7, Rx) VkeR
npv(S;, Xj, ¢j,0,p5) VieJ:c;#0
D(Sj) = No VieJ
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4.1.3.2 Propagation

We use domain propagation to synchronize the start time variables with the continuous
variables that appear in the objective function. Whenever the bounds of a variable S;
change, this decision is propagated to X; according the following lemma.

Lemma 4.1. Given a variable S; with bounds ¢b(S;) < S; < ub(S;), a cost func-
tion f (4.1) with cash flow c;, and a variable X; for which X; = f(S;) must hold. Then
the following bound adjustments can be made:

cj > 0 = f(ub(S])) < Eb(Xj) < Xj < ub(Xj) < f(éb(Sj))

and
¢; <0 = f(fb(S;)) < b(X;) < X; < ub(X;) < f(ub(S;))

Similarly, changes on variables X, can be used to change the domain of S;. Due to
floating point arithmetics, these updates need to be handled carefully.

Explanations for the propagation rule In a CIP framework, the analysis of infeasi-
ble search states plays an important role. Therefore, we also deliver explanations, which
are straight-forward using Lemma 4.1. If the lower bound of X; has been changed by the
npv-constraint, the reason is the lower (upper) bound of S; if the cash flow is negative
(resp., positive). A similar rule holds for upper bound changes.

4.1.3.3 LP relaxation

LP relaxations provide dual bounds and enable the solver to use branching strategies that
incorporate a polyhedral view. In contrast to pure makespan minimization problems,
such as RCPSP, this view becomes more interesting in case of RCPSPDC since now
the variables occur in the objective function. We use a continuous relaxation of the
cumulative constraint that contains cuts on the start time variables:

> 5i=w,

jed

for a set J C J and a constant W that need to be computed, see Section 2.4.

Now, we describe the linear relaxation of the NPV-objective used. We consider the
non-linear function f(S;) = c;j-exp~2(5+Ps) for every job j. In case that ¢; > 0, a secant
through the points (¢b;, f(¢b;)) and (ubj, f(ub;)) gives the best upper bound that can
be expressed by linear inequalities on that function.

f(ub(S5)) = f(£b(S;))

Fi(S) = F(EB(S;)) + (85 = 0(S5) - == e =g s

(4.3)

Corollary 4.2. If ¢c; > 0, then a valid inequality on the profit of job j is given by

f(ub(S))) — f(£b(S;)) f(ub(S;)) — f(£b(S;))
ub(5;) — ¢b(S;) ub(S;) — (b(S;)

X — Sj < f(€b(S;)) — £b(S;) -
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fb(S5;) ub(s;) ™ X
(a) (b)

Figure 4.1: Linear approximation of npv-objective for local bounds.

If ¢; < 0, the cost function can be described arbitrarily close by a set of tangents.
We only introduce tangents in the points (¢b(S;), f(¢b(S;))) and (ub(S;), f(ub(S;))) by
using the first derivate f'(S;) = —c¢; - 8e=9(5i*Pi) | Doing so ensures that any solution in
which the start variable S; takes the value of its local bounds, the correct global bound
is set. The formulas are:

f2(S;) = f/(€b(S))) - (Sj — £b(S;)) + f(£b(S;)) (4.4)
£3(8;) = f'(ub(S))) - (Sj — ub(S;)) + f(ub(S;)). (4.5)

Corollary 4.3. If ¢; < 0 holds, then valid inequalities on the profit of job j are given by
Xj S fQ(Sj) and Xj S fg(S])

Figure 4.1 visualizes the linearization. A closer approximation of the cost curve can
be obtained by adding several tangents in the interval [¢b(S;),ub(S})]. These tangents
are left to the separation routines after branching and hence are automatically separated.

Our separation procedure works as follows. Given the local bounds of S; and an LP
solution, if X; violates any equation of X; < f;(S;) for i = 1,2,3, depending on the
value of ¢;, then the corresponding inequalities are separated.

4.1.3.4 Heuristic

We use a list scheduling algorithm as presented in Section 1.4 that first sorts the jobs,
e.g., by their start times of an arbitrary solution, and then schedules them in that order
with respect to resource and precedence constraints. This heuristic is called in various
stages, during presolving, where the bounds of the variables are used as an order (lower
bounds, upper bounds, and convex-combinations) and after the LP has been solved in
any node of the branch-and-bound tree, in this case the jobs are sorted according to
the start times in the LP-solution. This yields, the so-called forward-schedule. If a
feasible forward-schedule is found (which is not always the case due to resource conflicts
and tight project deadlines), a backward-schedule is computed. We denote by S;- the
start time of job j in that schedule. The jobs are scheduled in non-increasing order
of completion times S; + pj. Hence, when we consider a job, all of its successors have
already been scheduled and its upper bound can be updated according to them. A job
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in that order is scheduled as late as possible with respect to resource constraints in the
interval [S}, ub(S;)] if it has negative cash flow. If a job has positive cash flow, it should
be scheduled early — we schedule such a job as early as possible in the interval [S}, ub(S;)]
with respect resource constraints.

It is clear from the way the algorithm works, that a feasible solution will be found
in the second phase if one has been found in the first stage, since no job needs to be
scheduled before its start time in the first schedule.

4.1.3.5 Branching

As seen in the preceding chapters, RCPSP can be solved via a destructive search on the
makespan such that a pure feasibility problem needs to be solved until a feasible solution
is found. Constraint Programming tools and SAT solvers perform outstandingly well on
such problems. Introducing the NPV-objective into the model changes the nature of the
problem completely. Not only a feasible solution for some given makespan needs to be
found, but among all such feasible solution an optimal one.

We branch on variables where the current LP solution violates the real profit most.
This helps to introduce stronger cuts for the objective function early and intuitively
leads the search into promising spaces where to find good primal solutions. This is a
counterpart to the common branching strategies in SCIP that store branching histories
per variable (including pseudo-cost, inference and conflict scores).

4.1.4 Computational study

Benchmark instances For our benchmarks, we use instance sets from Van-
houcke [254] which contain each 180 instances with 25 (npv25), 50 (npv50), 75 (npv75)
and 100 (npv100) jobs per instance. Each instance contains up 4 cumulative resources
with capacity 10 and each job has a resource demand and processing time between 1
and 10. Integer cash flows that are randomly generated from [—500,500] for each job
are given. The discount rate ¢ is set to 1% in all experiments.

We additionally generated artificial instances with 1,000, 2,000, 5,000 and 10,000
jobs per instance by concatenating the instances with 100 jobs and deleting the dummy
start and sink nodes. We denote theses sets by npv1000, npv2000, npv5000 and npv10000.
Cash Flows are i.i.d. chosen at random from [—500, 500].

Initial experiments showed that using time-table edge-finding slowed down the so-
lution process too much. Hence, we only apply time-tabling and overload checking in
each node of the search tree to propagate the resource constraints. In our experiments
with the instances from Vanhoucke [254] with up to 100 jobs per instance, our solution
values differed from the reported ones. Schutt et al. [226] also run their experiments on
the sets npv25-100 (but no results are explicitly given) and it turned out that the given
primal and dual bounds are wrong. Hence, we cannot give a clean comparison to the
best values from the literature on these instances. Other instances sets are provided by
Vanhoucke [254] which contain much fewer jobs and are used by Schutt et al. instead.
But these sets contain only up to 30 jobs and are therefore less suited while heading for
large instances. Hence, we stick to the test set containing up to 100 jobs and created
additional larger sets as described above.
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Results for makespan minimization Table 4.1 shows the makespans for the large
instances obtained within one hour. An initial solution was in most cases much worse
and is used in our experiments as initial makespan, which is displayed in column “MS”.
We remark that after one hour for instance set npv10000, the gap is always larger than
100% and 15,000 nodes in the shifted geometric mean can be explored. On set npv5000
the gap is also always larger than 100% and about 37,000 nodes have been explored in
the shifted geometric mean.

Table 4.1: Minimum makespans computed within one hour and the corresponding lower
bound. “MS” denotes an initial makespan that will be used in the experiments (A simple
list scheduling finds a feasible schedule).

instance dual Cpax MS || instance dual Chax MS

10001 481 943 970 || 50001 2240 4716 4900
10002 634 2178 2250 || 50002 3961 11211 12000
10003 634 2178 2250 || 50003 1540 4031 4090
10004 882 1653 1680 || 50004 1751 3709 4000
10005 863 2255 2400 || 50005 2913 10859 11500
10006 332 800 820 || 50006 1751 3709 4000
10007 408 881 890 || 50007 2240 4716 4900
10008 408 881 890 || 50008 1622 3999 4200
10009 350 798 830 || 50009 3961 11211 12000
100010 394 771 800 || 500010 1972 4414 4500
20001 922 1891 1950 || 100001 4431 9419 9800
20002 1712 3305 3375 || 100002 7858 22471 24000
20003 643 1609 1635 || 100003 3040 8025 8500
20004 670 1595 1675 || 100004 3448 7688 7900
20005 921 1891 1950 || 100005 5752 21701 23000
20006 1197 4346 4600 || 100006 3448 7688 7900
20007 1712 3305 3380 || 100007 4429 9419 9750
20008 1615 4481 4750 || 100008 3219 7995 8300
20009 1197 4346 4575 || 100009 7858 22471 23800
200010 811 1762 1790 || 1000010 3921 8821 8950

Comparison of RCPSP and RCPSPDC The given instances from Vanhoucke [254]
come with their own makespan. We use the given makespans for our computational
results. Since it is easy to change the objective function back to makespan minimization,
we also run our framework on these instances as RCPSP. Table 4.2 shows how many
instances can be solved to optimality (“nopt”), for which a gap remains (“nfeas”) and
which cannot be solved (“nosol”) within a time limit of ten minutes for RCPSP and
RCPSPDC. In case of RCPSPDC, the settings with 0% negative cash-flows and a deadline
extension of 5 for npv25 and npv50 and of 10 for npv75 and npv100 have been chosen for
comparison. As expected, problems with a non-linear objective function are much harder
to solve and sometimes even no feasible solution will be found, a detailed comparison is
discussed later in Table 4.4.

Besides that RCPSP is a hard problem in terms of complexity theory and also from
a computational point of view, the non-linear objective function of RCPSPDC makes
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Table 4.2: RCPSP vs RCPSPDC computations for the small test sets within a time limit
of 10 minutes.

RCPSP RCPSPDC
instance set nopt nfeas mnosol nopt nfeas nosol
npv25 98 82 0 90 90 0
npvb0 33 147 0 14 133 33
npv75 11 197 0 0 110 70
npv100 8 172 0 0 63 117

the problem even more challenging. Table 4.3 shows the number of branching nodes
per second that can be created during search on average over a set of instances. On
average, when doubling the number of jobs, this results in less than half the number of
nodes per second. On the other hand, the number of nodes that can be explored per
second for RCPSP is five to 30 times as large as for RCPSPDC. Hence, for RCPSPDC the
computational efforts are tremendously higher than for RCPSP.

Table 4.3: Number of branch-and-bound nodes that can be explored in one second on
average for the different sets of instances. Sets npv25-100 have a time limit of ten minutes
and sets npv1000-10000 have a time limit of one hour for RCPSP and four hours for
RCPSPDC.

RCPSP RCPSPDC RCPSP RCPSPDC
instance set nodes/sec nodes/sec | instance set nodes/sec nodes/sec
npv25 3993.2 846.4 npv1000 65.3 2.3
npv50 1877.6 323.1 npv2000 30.9 1.2
npv75 1089.3 151.7 npv5000 10.6 0.9
npv100 719.4 76.2 npv10000 4.2 0.6

Results for RCPSPDC: CP vs. CIP Next, we compare the results of a CP versus
a CIP approach on RCPSPDC instances. It is commonly believed that pure feasibil-
ity problems are well solved via CP search (in combination with SAT), whereas a CP
framework behaves much worse if the objective function has a bigger involvement.

In Table 4.4 we compare the number of optimally solved instances (“nopt”), the
number of instances where a feasible solution has been found but is not proven to be
optimal (“nfeas”) and the number of instances where no feasible solution has been found
(“nosol”). Column “bprimal” denotes how often the best primal bound and “bdual” how
often the best dual bound have been found by the corresponding setting. These numbers
are computed over all sets of instances with 0%,60% and 100% negative cash-flows.
Instances from sets npv25 and npvb0 have a deadline extension of 5, whereas instances
from sets npv75 and npv100 have a deadline extension of 10.

Figure 4.2 compares how often a CP or a CIP approach finds the best primal or dual
bound depending on the percentage of negative cash flows. The results show that the
CP search behaves good on homogeneous instances where all cash-flows are positive or
negative. As soon as we mix these (60%), the frequency by which the best primal and dual
bounds are obtained via the pure CP search noticeably decrease. In particular, a CIP
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search wins by far in columns “bprimal” and “bdual” for the settings with 60% negative
cash-flows. If all cash-flows are non-negative (0%) the CP search wins in these two
columns. For non-positive cash-flows (100%) the CIP search wins in column “bprimal”
and the CP search in column “bdual”. Here, the search strategy (using pseudo-costs in
CIP and branching on LP solutions) play an important role and lead to this behavior.

The results conform the hypothesis that CP techniques work well for feasibility prob-
lems and for easy objective functions. But as soon as these are more intriguing, the IP
part of a solver becomes more important and helps drastically by guiding the search in
better directions and pruning unpromising nodes.

Table 4.4: Comparison of solved instances and primal and dual bounds that have been
obtained by a pure CP in contrast to a CIP approach on RCPSPDC instances.

CP CIP
set Y%mneg.cf  nopt nfeas nosol bprimal bdual nopt nfeas nosol bprimal bdual
npv25 0 90 90 0 150 146 95 85 0 132 124
npv25 60 83 97 0 94 102 93 87 0 166 157
npv25 100 79 101 0 104 164 74 106 0 148 86
npv50 0 14 133 33 106 143 15 123 42 62 51
npv50 60 2 150 28 37 4 8 159 13 133 177
npv50 100 11 156 13 77 148 11 155 14 108 42
npv75 0 0 110 70 75 147 3 103 74 44 33
npv75 60 0 122 58 32 0 0 123 57 103 180
npv75 100 0 138 42 58 123 3 146 31 99 57
npv100 0 0 63 117 40 151 0 61 119 23 29
npv100 60 0 64 116 8 3 0 64 116 58 177
npv100 100 0 70 110 27 110 0 77 103 57 70
best values
I I I
o e dual, 0% neg. cf
* * dual, 60% neg. cf
* .
150 |- A 4112 dual, 100% neg. cf
* e e primal, 0% neg. cf
. A * primal, 60% neg. cf
ey 1000 ° . | |4 primal, 100% neg. cf
O . A
A
* A L4 A °
50 | [ ] A N
%
[}
0 [ |
| | | |
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CP

Figure 4.2: Comparison of the number of best dual and primal bounds for sets npv25,
npv50, npv75 and npv100 depending on the percentage of negative cash flows per instance.
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Table 4.5: Results for industrial instances. For each instance the chosen makespan and
the NPV after one and five hours of computation time are given for the CP and CIP
approach. The last column shows the best dual bound on NPV.

CP CIP
instance makespan 1h 5h 1h 5h best dual
Z 8171 84989158 109850185 167064399 167064399 -
Ch 7251 1745626754 2096174368 2154911393 2179688393 3692427138
GL 2196 992091900 994128410 993453641 993453641 1097410242
LoA 2339 5517200536 5517200536 5517200536 5517200536 5560732357
NZ_def 3014 987036673 987036673 977032853 1036880107 1233895270
NZ 1918 1218365992 1218365992 1218365992 1218365992 1234406002
W 3417 475275599 475275599 466596268 466596268 609485334
ZF 6384 163457366 163457366 228664414 228664414 555171615

Results for industrial instances FEight industrial instances? that have been gener-
ated from real projects are given, denoted by Z, Ch, GL, LoA, NZ_def, NZ, W and ZF.
During the generation process, processing times have been rounded on a daily basis and
resource demands have been scaled to be integral. The instances contain between 2 (W)
and 36 (NZ,LoA) resources and between 1410 (NZ) and 11769 (ZF) jobs. Approximate
cash flow values are given. A 10% annual discount rate is applied, such that § = 0.1/365
has been chosen on the industrial instance set. For the experimental analysis, we ran the
algorithm with the objective to minimize the makespan for one hour and obtained the
makespans as tabulated in Table 4.5. Given that makespan, a CP and a CIP run have
been performed for one and five hours. Table 4.5 shows the NPVs and in the last column
the best dual bound on the NPV which is always found by the CIP approach. For the
large instances only few nodes can be explored during search which is certainly a draw-
back for a branch-and-bound approach. For instances GL and W, the CP approach finds
slightly better primal solutions than the CIP approach. In contrast for instances Z, ZF
and NZ_def, the CIP approach generates much better solutions than the CP approach.

Conclusion

We studied RCPSPDC from a CIP perspective. To model the non-linear objective func-
tion, a constraint handler for npv-constraints has been introduced into the CIP framework
scip. Better heuristics, like the scatter search, genetic algorithms or local search, could
be added in order to improve upon the solution qualities, and especially to generate
initial feasible solutions faster.

We tested how much more computational effort is needed to solve RCPSPDC in
contrast to RCPSP. The framework is able to handle instances with up to 10, 000 jobs, but
for instances of that size, the quality guarantees are very weak. The computational study
confirmed for RCPSPDC that IP techniques, such as the proposed continuous relaxation,
are an important ingredient if cash-flows are as well positive and negative. Then, a
CP approach needs a huge amount of computation time to find good or sometimes even
optimal solutions. On the other hand, CP techniques perform fast on makespan objective
and on RCPSPDC instances where all cash-flows are only non-positive or non-negative.

2The data has been generated by Chris Alford from real world projects by aggregating the original
data and deleting some extra constraints such as maximum time-lags, forbidden parallel execution of
jobs and minimum working rates.
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4.2 Application to Labor-Constrained Scheduling Prob-
lems

In the basic version of RCPSP, each job has a constant resource demand during its
processing time. There are many reasons to extend this model and to allow varying
resource demands. On the practical side, the number of workers (or machines) needed
in the beginning may be different from the number needed at the end. This perspective
is important when a project reflects an aggregated problem in which several projects
are optimized on a broad basis. This problem has been studied as Labor-Constrained
Scheduling Problem, or LCSP  for short, see e.g., [50, 139, 153].

In this section, we adapt the CIP framework for RCPSP by generalizing the propaga-
tion and explanation algorithms of the cumulative constraint (see Section 2.3) to the case
of varying demands (Section 4.2.3). We elaborate on the hardness of such instances and
present examples that illustrate the weaknesses of CP techniques and of list scheduling
heuristics. In Section 4.2.4, the developed techniques are evaluated on a set of instances
from [48] that have been generated from practical data sets. The SAT techniques do
not reveal much improvements on the solving process, whereas a pure CP approach is
able to handle medium sized instances with high efficiency and improves several known
dual bounds. Good primal bounds are derived by using a MIP formulation and a list
scheduling heuristic based on the LP solution values.

4.2.1 Problem description

In LCSP we are facing a variant of RCPSP, see Section 1.1, where a set of jobs J
with processing times p; € Z for j € J, a set of resources R with capacities R, € Z
for £ € R and a precedence graph G = (J, A) are given. Additionally, in this setting
the resource demand of a job j per resource k varies over time in discrete time steps and
is therefore given by a discrete resource demand profile rj,; € No for each time unit ¢
over the processing interval, i.e., t € {0,...,p; —1}. Outside the processing interval, the
resource demand is zero. We denote by p the vector of processing times and by r the
vector of resource demand profiles per job.

The goal in LCSP is to find a schedule S (an assignment of start times for each job)
with minimum makespan such that the following resource constraints are satisfied:

> rikees; <R VEVEER.
JET:0<t—S;<p;

Example 4.1. Figure 4.3 shows an instance consisting of three (non-dummy) jobs and
a corresponding earliest start schedule.

Ry,
. 5 Coa ﬁ k
C A r|_,_g‘ .

0 2 4 6 8 10 12

Figure 4.3: A precedence network of three jobs and an earliest start schedule.
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4.2.2 Related work
LCSP has been first studied in the project PAMIPS as introduced by Kallrath and Wil-

son [153]. Heipcke et al. [139] describe instance sets that are obtained from two original
instances at BASF SE? and can be downloaded from [48]. The precedence networks in
these instances can be clustered into sub-networks (called orders) that are arranged as
a chain. Additionally, there are few precedence relations between jobs from different
orders. Hence, these instances have a low precedence ratio. For low capacity values
(say 18) they are of disjunctive type (at least at the peaks of the resource demand
profiles), and for high capacity values (say 24) of cumulative type. The classical IP
formulations that introduce binary variables per possible start time yield a weak LP
relaxation since resource constraints can be easily satisfied using fractional values. Such
a solution intuitively means that jobs are smeared over the time horizen, i.e., some per-
centage is executed at the beginning, some other later. Important cutting planes like
the ones from Christofides et al. [59] yield better dual bounds but are computationally
more time consuming, see [50, 243]. A strengthened block-based IP formulation also
yields good dual bounds but was computationally not as benificial as CP approaches,
see [50, 243].

With a CP based approach [138, 139] small instances (4-6 orders, 24 jobs) can be
solved efficiently including an optimality proof. For larger instances, a tabu search yields
the best results: Cavalcante et al. [49] present two heuristic algorithms (asynchronous
team and a tabu search) that exchange information (parallel cooperative approach). Cur-
rently, their heuristics contribute some of the best known solutions.

Cavalcante et al. [50] discuss LP-based heuristics and the influence of different IP
formulations. In their work the different approaches are evaluated and several settings
are combined. LP-based heuristic solutions (also see [218, 219, 220]) are improved via
local search. The heuristics are based on a-points [123], i.e., the first point in time,
at which in an LP solution the sum of the fractional time-indexed variables per job
sum up to at least a value of a. Schulz and Skutella [224] show that if for each job a
value «; is chosen at random and the jobs are scheduled according to these points, one
obtains a 1.693-approximation algorithm for single machine scheduling with release times
and the objective to minimize the sum of weighted completion times (1|r;| > w;C}).The
authors from [50] report that when using a list scheduling heuristic throughout branch-
and-bound, the impact of stronger formulations is negligable.

4.2.3 The labor-constraint

To model LCSP within a constrained integer program, we introduce a labor-constraint
that captures the propagation, relaxation and explanation techniques of each resource
constraint £ € R imposed by LCSP:

labor(S,p,T‘.k.,Rk) : S e D(S) | Z Tjkt—S; < Rp,Vt
JET:S;<t<S;+p;

3BASF SE is a world-wide operating chemical company, see www.basf . com.
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Given this constraint, a CIP model for LCSP reads as follows:

min  Chax

subject to precedence(S;,S;,p;) V(i,j) €A
labor(S,p,r k., Rk) VkEeR
D(Sj):No VjeJ.

Next, we extend the propagation and explanation algorithms known for RCPSP and
discuss their applicability. Then, LP techniques and the use of heuristics are discussed.

4.2.3.1 Propagation

When considering RCPSP, the resource profile (of a solution or of the core-profile) could
be represented efficiently by considering at most 2n different points in time, i.e., the
start and end times of each job. In case of LCSP with varying demand profiles per
job, the propagation procedures become more expensive, e.g., the resource profile for
checking whether a solution is resource-feasible must respect each point in time since at
almost each point in time a profile change may occur. Hence, checking the feasibility of a
solution to LCSP is not polynomially bounded in the number of jobs. But as the resource
demand profiles per job are given per unit of processing time in the input, the overall
resource profile is polynomially bounded in the input but often much larger than n.

Energetic arguments (overload checking, edge-finding, time-table edge-finding or en-
ergetic reasoning) become much weaker for LCSP since a job leaves more free space. We
consider the example of Figure 4.4. Though a job j may not be feasibly scheduled at est;
due to the energy requirements of the other jobs, it can be scheduled at est; +1, and the
lower bound on the start time cannot be shifted into the interval. It is easy to generate a
scenario where e.g., the earliest start time est; is a valid start time but not est; +1. With
the varying demands, there are O(7T?) intervals to be considered in energetic reasoning,
opposed to O(n?) as for RCPSP. Hence, extending the cumulative propagators must be
done carefully. We restrict to the overload checking procedure of edge-finding and do
not use energetic reasoning. The energy requirement of job j is given by e; = Z]ij:_ol Tjr.
Then, overload checking can be performed in O(nlog(n)), as for RCPSP.

|

1
BiF
I : Rk
' est; | et 02 4 6 8 10 12

Figure 4.4: On the left: the core of a job for LCSP. On the right: a job can be sched-
uled at est; +1, but the totally required capacity would exceed the available volume in
interval [a,b) if scheduled at est;.

Turning to time-tabling, the core of a job (if the job is not fixed) is only computed as
the minimum over a set of possible demands. For the resource profile, we use an array
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to store the demand at each point in time. In time-tabling, we compute the core of a job
(see Figure 4.4) as a function v,(t) varying over time by defining:

’)/(t) — minT:t—lstj,...,t—estj {Tj’r} t e [lstj,ectj)
’ 0 otherwise.

We remark that this formula gives the best possible estimation of a core at time ¢. The
value 7 is well-defined for the given values of ¢ € [Ist;, ect;). It turned out to be crucial
to use such a precise definition of the core, instead of e.g. using simply the minimum
demand of a job which would result in a core-profile with at most 2n points in time to
be considered, but this does not yield enough propagation.

Explaining time-tabling propagation is hard even if a set of locally fixed jobs needs
to be selected. In fact, we show that this is a strongly NP-hard problem by reduction
from 3-SAT. The problems and the reduction are introduced in the next section.

4.2.3.2 Complexity of explaining time-tabling for LCSP

We first state the problem that is used in the reduction.

Problem: 3-SAT
Instance: A set of m clauses over boolean variables z1,...,z,. Each

clause contains exactly three variables.
Question: Is there an assignment z* € {0, 1}" such that all clauses are
satisfied?

This problem is known to be strongly N'P-complete [155].

We consider a special case in which we need to explain a lower bound change from est;
to est;. in the context of LCSP. In this special case, the resource demand of the updated
job 7 is constant over time and given by r; = R > 6. These parameter values are chosen
in a way that the instance is not infeasible before the update. The processing time of
the job is chosen as p; = 3. Hence, we need to explain at least one peak of height at
least one within every interval of size three. We identify this to be a minimum interval
resource covering problem (MIRCP).

Problem: MIRCP
Instance: A set J of n jobs fixed in non-empty intervals [sg,?;) per job k

with a varying demand ry; € Zg for all £, a minimum resource
requirement h € ZT, a length p and a non-empty interval [a, b).

Question: Is there a subset Q2 C J of ¢ jobs such that for every interval I C
[a, ) of size p there exists a t € I for which > .0 <y, Tkt > P
holds?

In MIRCP we ask to find a subset of jobs such that every interval of size p that is
a sub-interval of [a,b) is covered with a demand at least h. This corresponds to an
explanation for a bound change from est; = a to est;- = b where R —r; = h — 1 and the
processing time of the updated job is given by p; = p.

Before proving that finding a minimum size explanation for bound changes derived
by time-tabling is strongly NP-hard, we remark that verifying a solution for a given
LCSP instance can only be performed in polynomial time, if the processing times of all
jobs are either part of the input or are bounded by the number of jobs. Otherwise, we
can only verify in pseudo-polynomial time, whether a solution to LCSP is feasible, hence
the problem is not in NP in general. The same argument holds for checking whether
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an explanation for the time-tabling update is valid. The reduction employed next only
needs processing times that are bounded in the number of variables of the given 3-SAT
instance.

The LCSP gadget we create consists of a variable side and a clause side. On the
variable side, we introduce consecutively in an arbitrary order for each variable of the
3-SAT instance an interval of size three. These intervals are numbered I1,...,I5n
where the second index corresponds to the variable index in the 3-SAT instance.
Let I, =[3(n—1),3n) for k=1,...,n. The first and third point in time of each
interval corresponds to the ‘true’ assignment of the corresponding variable and the
second point in time to a ‘false’ assignment. On the clause side, we consecutively intro-
duce m intervals Ic 1, ..., Ic.m, one for each clause, with Iy = [3(n +k —1),3(n +k))
for k =1,...,m. The distance between a and b is 3 - (n 4+ m). We use h = 1 and p = 3,
hence each interval of size three needs to be explained with at least one job.

Now, we introduce the jobs of the MIRCP instance and their intervals [sg, tx) for k €
J . For each variable z; we introduce two jobs T} and F},, corresponding to the assignment
of this variable to ‘true’ and ‘false’, respectively. We set the length of the interval [sy, )
to pr := 3 (n+m). For easier reading we set all processing times to 3 - (n + m) though
this length can be bounded by 3-(n —k+ 1+ my) where my, denotes the largest index of
all clauses this variable appears in. The start point of the interval of job T} can also be
bounded by s = 3-(k—1), which we again relax to s := 0 for simplifying the remaining
indices. Still, all values are polynomially bounded in the number of variables and clauses
of the 3-SAT instance. The resource demand of a job T} is given by

1 t=3-(k—1),3-(k—1)+2
=91 t:teloyNx;eCpl=1,..m

0 otherwise.
The resource demand of a job Fj is given by

1 t=3-(k—-1)+1
rie=91 telcyNZj€eCpl=1,...,m

0 otherwise.

Figure 4.5 shows the construction schematically.

Iy Iop Iy Iogm—1 Icm
T F 7T T F T
a i ; t
-, [ [ [ -
r,— I
. . o
: : E
=}
e | |
P o [
n

Figure 4.5: Construction of an MIRCP instance for a 3-SAT instance consisting of n
variables and m constraints.

A more descriptive example is given next.
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Example 4.2. We consider the following instance of 3-SAT:
(1’1\/:Eg\/.’i'g)/\(i‘l\/.rg\/.’L'4)/\(i‘2\/$3\/.’f4)

We set a := 0 and obtain b := 21. A peak of height one must be explained in every
interval of size three. Eight jobs are introduced with the depicted resource demand
profiles. Turning to the task to explain a bound update, the job whose lower bound is
updated from est; = 0 to estz- = 21 has processing time three and a resource demand of
six resource units while the capacity is six.

I.'I"l [;l:,Q 113 [’J:A [C,l IC,? 10,3

Figure 4.6: An instance of MIRCP after applying the reduction from the following in-
stance of 3-SAT: (x1 Vaa VE3) A (Z1 Vo Vag) A(T2VxsVTy).

Now, we prove that a yes-instance for 3-SAT corresponds to a yes-instance of MIRCP
and vice versa.

Theorem 4.4. There exists a truth-assignment for the 3-SAT instance with n variables
if and only if there exists a cover § with at most n jobs.

Proof. Let x* € {0,1}", where 1 corresponds to ‘true’ and 0 to ‘false’, be a satisfying
truth assignment of the 3-SAT instance. We consider the corresponding MIRCP instance.
Then, for each variable xzj set to true, we put job T} into {2 and for each variable x; set
to false, we put job F} into 2. We prove next, that {2 covers at least one peak in each
subinterval of [a,b) of size three. Note that |2| = n. For each interval I, k =1,...,n
at least one peak is explained, as either T}, € 2 or F} € . In sub-intervals between two
intervals I, and I, jy1, a covered peak is at most three units ahead due to the choice
of the resource demand profile. For each clause interval Icy, ¢ = 1,...,m, there exists
a job k € Q with resource demand 74 3.(,4¢—1) > 0, since each clause is satisfied. Thus,
each interval is covered.

Consider the converse of the statement. Given a cover Q with |Q2| = n. The case Q2 < n
would not cover all intervals on the variable side and can therefore be omitted. For
each k =1, ...,n, exactly one of the jobs T} or F}, is contained in {2 as from each variable
interval at least one job must be contained in Q and |Q2| = n. Hence, we set the variable xy,
to true if T, € Q and false if Fj, € 2. as in each clause interval a peak with value at
least one is given, at least one of the jobs contributes a non-zero resource demand to that
interval and thus the corresponding clause is satisfied. O

A similar complexity result has been obtained to explain bound changes for time-
tabling in an RCPSP setting. There, our reduction presented in [34] introduces weights
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in the objective function that can get arbitrarily large while Chrobak et al. [60] introduce
demands that can get arbitrarily large. In our reduction for LCSP only the processing
times get arbitrarily large and in this case finding n out of 2n jobs that cover each point
in time is strongly NP-complete.

4.2.3.3 IP formulation and relaxation

Using a global labor-constraint, we are able to use different kinds of IP relaxations for
LCSP. As for RCPSP, we complement the pure CP search with the classical IP formulation
from Pritsker et al. [209] as presented in Section 1.3.1, that in case of LCSP reads as
follows:

minimize Clnax
subject to
Si+pi <5 Y (i,j) € A
Ist ;
> toap =S VieJd
t=est;
Ist;
Y o ap=1 Vied
t=est;
t
Z Z Tikit—r - Tir < Ry VkeR,t

J€J T=max{0,t—p;+1}
eSthSjglstj VjedJ, LthE{O,l} VjeTd,t.

Comparing this formulation with the one for RCPSP, we see that only demand co-
efficients change; but still each inequality of the resource constraints corresponds to a
knapsack inequality. In the aggregated formulation (using z;; variables that indicate
whether job j has been started until ¢), negative coefficients may occur. The column
generation based IP formulation by Mingozzi et al. [186] cannot be applied due the
varying demands. Hence, we use the formulation presented above.

Precedence inequalities As mentioned by Cavalcante et al. [50], in order to obtain
better dual bounds from the LP relaxation, strong precedence inequalities can be used.
Because there are many of them at hand (number of time units times the number of
precedence relations), these should be separated throughout branch-and-bound search.
These cuts have been introduced by Christofides et al. [59] and with some reformulations,
we can express them in the following ways:

1. Set-packing formulation: V ¢, (i,5) € E :

Ist; t+pi—1
ZQ?Z‘T + Z Tjr < 1. (4.6)
T=t T=est;
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2. Logicor formulation: V ¢,(i,7) € E :

t—1 Ist ;
Z Tir + Z Tjr > 1 (4.7)
T=est; T=t+p;
3. Shifting formulation: V ¢, (i,j) € E :
Ist; lSt]
Zaz” < Z Ljr- (48)
T=t T=t+p;

These inequalities are illustrated in Figure 4.7. By a simple calculation, we next show
that all these formulations are equivalent.

Lemma 4.5. The set-packing (4.6), logicor (4.7) and shifting (4.8) formulation are
equivalent.
Proof. Consider an assignment of the variables [@i]i=est,,...1st; and [Tje]t=est;,...1st; Sat-

isfying (i) Z}ts:téstl i = 1 and (i) Z}fs:tjéstj xzjs = 1. Then, we calculate for a point in
time ¢:

Ist; t+p;i—1
§ Tir + E Tjr <1
T=t T=est;
Ist; Ist ;
(1)
= § Tir+ | 1— E Tjr <1
T=t T=t+p;
Ist; Ist;
g § Tir < g Tjr
T=t T=t+p;
) t—1 Ist;
i
EZ?’ <1 - E xiT) < E Tjr
T=est; T=t+p;
t—1 Ist
~ § Tir + g Zjr >1
T=est; T=t+p;

O

The set-packing formulation is the one presented by Christofides et al. [59]. Though
these formulations are equivalent, when separated throughout branch-and-bound search
we will see in the computational study that they have a different impact on the solving
process.

4.2.3.4 Heuristics

In order to generate good primal solutions, we apply a list scheduling heuristic after each
propagation round and during presolving. Here, jobs are sorted according to their start
times in an LP or pseudo-solution, or by weighted start, completion and processing times.
As weights we choose o, § € [0,1] and set S; := aest; +(1 —«)-Ist; +3-p;. Observe that
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(a) Set-packing formulation (4.6).  (b) Logicor formulation (4.7). (c) Shifting formulation (4.8).

Figure 4.7: Formulations of the strong precedence cuts from left to right. The involved
binary variables of jobs ¢ and j are marked in light grey.

if « =1 and 8 = 0, an earliest start schedule is obtained, whereas for « = 0 and 8 =1
an earliest deadline first strategy is used.

For heuristics we observe that, given an optimal solution for RCPSP, we can sort
the jobs by their earliest start times and by inserting them in that order we again get
an optimal solution. Left-Shifts and right-shifts would yield solutions that are at least
as good as before. This no longer holds for LCSP as Figure 4.8 shows. Hence, in a
bi-directional scheduling scheme the solution may get worse.

pits g

y t
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Figure 4.8: On the left, a schedule with minimum makespan is given for the LCSP
instance from Figure 4.3. Scheduling all jobs in the order of the start times yields no
optimal schedule as for RCPSP.

With these refinements, the computational study is carried out in the next section.

4.2.4 Computational study

We carry out a computational study on the PAMIPS instances from [48].

We present elaborate results on combinations of CP, IP and SAT techniques for
LCSP, combined with a progressive or destructive search, using only inference branching
or additionally reliable pseudocost branching on all variables or restricted to the integer
variables. Then, we will see that separating precedence inequalities throughout search
is able to reduce the number of nodes needed, but increases the running time consider-
ably. In particular, we will see that among the different formulations of the precedence
inequalities, the shifting formulation performs best. After that, numerical results indi-
cate that it pays off to use the rather costly list scheduling heuristic throughout search.
Using the best CP approach and the best settings for a CP-IP-hybrid we will see that
we are able to close one more of the original PAMIPS instances and improve six lower
bounds. Eleven primal bounds are better than those of other exact approaches but not
competitive at all with tabu search procedures.
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4.2.4.1 Instances

In each instance from the set [48], a number of orders is given. The precedence relations
of jobs in one order correspond to a chain, hence there are no resource conflicts between
jobs of the same order. There are few precedence relations between jobs of different
orders. The capacity is set to 18. The resource demand profile of a job varies widely. It
is on average six, while few peaks have a capacity of 18. Hence, no other job is allowed
to be scheduled in parallel to such a peak. To summarize, the instances are of low
precedence ratio and rather cumulative. The few peaks that need the whole capacity
induce further disjunctions between jobs.

The instances are grouped according to the number of jobs, containing (4 orders)
21-27, (6 orders) 41-44, (8 orders) 63-65 and up to 109 jobs (12 orders). All instances
are equipped with a resource capacity of 18. Further experiments are made where the
capacity is changed to 21 and 24 on the smaller instances containing 4-8 orders. These
will be used to compare the different settings, before a collection of best of CP, IP and
CIP settings are compared on the whole instance set.

The best known solutions are reported in [49, 50] and are shown in Table 4.6. The
differences between the lower and upper bounds indicate that instances which contain
at most four orders can be solved to optimality. Hence, for our initial experiments in
which we fine-tune the parameter settings, we use a smaller test set, denoted by ‘setS’,
consisting of all instances with at most 6 orders. From these instances we generate
additional ones by using capacity values of 18, 21 and 24. These capacity values are
also recommended by the instance providers, while using higher capacity values, such
instances become easier to solve as they become less disjunctive — the highest demand
value is 18 and most demand values are no larger than six.

For the instances from set setS, we invoke a time limit of 600 sec. The original
instances are of huge size in the time-indexed formulation resulting in long LP solving
times. That’s why, we invoke a time limit of one hour in the final experiments.

Instance Primal Dual CP-Primal Instance Primal Dual CP-Primal
Ins307jA 10 10 Ins8063jC 294 271 344
Ins4021jA 82 82 82 Ins8065jA 403 342 445
Ins4023jA 58 58 58 Ins8065jB 382 315 411
Ins4024jA 68 68 68 Insl10084jA 634 394 730
Ins4024jB 72 72 72  Ins10084jB 550 355 616
Ins4027jA 67 67 67 Insl10085jA 783 671 912
Ins6o41jA 140 109 152  Insl0087jA 581 377 610
Ins6041jB 110 102 110 Ins10088jA 450 - 473
Ins6041;jC 126 110 134 Ins100100jA 1467 830 1587
Ins60o44jA 117 98 122 Ins100102jA 1155 878 1239
Ins6044jB 137 124 149 Ins100106jA 1087 578 1166
Ins8063jA 259 187 281 Insl120108jA 1271 838 1412
Ins8063jB 314 239 344 Ins120109jA 1324 980 1476

Table 4.6: Listing of the best known primal solutions from approaches from the literature
including heuristics such as tabu search (‘Primal’), and without these heuristics: best
dual (‘Dual’) and best CP-based primal bound (‘CP-Primal’).
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4.2.4.2 Numerical results

Combinations of CP, IP and SAT with destructive or progressive search Now,
we evaluate the impact of using a standalone inference branching rule, compared to
combining it with either a destructive search, a progressive search or spending half the
running time on a progressive search and afterwards on a destructive search. After
branching on the makespan variable has been performed, the inference branching rule is
used in all settings.

These branching rules are combined with four possible combinations of CP, IP and
SAT approaches. The abbreviations for the settings are given in Table 4.7.

cp only propagation I  inference branching

cpsat  c¢p + conflict analysis D destructive search

cpip  cp + IP relaxation P progressive search

cip cpip + conflict analysis | C  half progressive, then destructive search

Table 4.7: Abbreviations for the settings.

Table 4.8: Comparison of CP, IP and SAT techniques combined with a destructive or
progressive search.

setting nopt bprimal bdual gap avtime avnodes
setS (allopt: 15 instances)

cpsatD 15 15 15 10.24 29.93 538618.40
cpsatP 15 16 15 11.16 27.72 385098.00
cpsatC 15 16 17 9.39 29.19 389990.33
cpsatl 16 17 16 10.87 32.75 638505.33
cpD 17 17 24 8.38 3.73 37782.87
cpP 17 17 19 9.82 3.85 39709.47
cpC 17 17 23 8.21 3.85 39709.47
cpl 16 18 17 9.65 7.21 98574.60
cipD 15 15 16 9.18 15.50 35888.67
cipP 15 15 15 11.97 12.91 27999.33
cipC 15 16 16 8.74 12.91 27999.33
cipl 15 18 15 14.08 22.59 45599.20
cpipD 15 15 16 9.56 19.11 48806.33
cpipP 15 15 16 12.15 14.65 32847.20
cpipC 16 19 16 8.68 14.65 32847.20
cpipl 15 19 15 13.83 23.13 45260.73

We will first compare the settings between CP, CP-IP, CP-SAT and CIP approaches
and then turn to the impact of branching on the makespan variable.

From Table 4.8 we see that a pure CP approach finds for 17 instances an optimal
solution, as indicated in column ‘nopt’. In contrast, the other approaches are only able
to find and prove optimality of 15 or 16 solutions. In particular, using a CP approach
finds most of the best dual bounds (on 24 of 27 instances), whereas a CP-IP hybrid is
able to find 19 times a best primal bound, which is only slightly better than with the
other approaches. The final gap is smallest when using a CP approach, 8% in contrast
to up to 14% on average.

Considering the 15 instances that are solved to optimality by all settings (column
‘allopt’), we see that a pure CP approach needs less than half the running time compared
to CP-SAT and CP-IP approaches. In contrast due to the better dual bounds, a CIP
approach needs the fewest number of nodes on average. Often, these instances are solved
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Figure 4.10: Ratios of nodes and running times given for all optimally solved instances
from setS.

within less than half the running time (300 sec.), hence, there is no difference between the
values reported on progressive search and the combination of progressive and destructive
search. In Figure 4.10 distribution functions over the ratios computed as number of
nodes (time) divided by the fewest number of nodes (lowest running time) are given.
We see that a CP-IP-SAT hybrid performs best with respect to that measure, whatever
branching strategy for the makespan variable is chosen. But the running times are much
worse. In contrast, a CP search performs best if the measure is the ratio of the running
times, whereas it needs many more nodes in contrast to the settings which involve IP.
Interestingly, using conflict analysis on top of the CP solver does not pay off in total, it
performs worse with respect to the number of nodes and the running time than the CP
search. This might be due to the fact that the vsids are not much reusable throughout
search as we collect vsids per variable and not per value in scip. This can also be
observed in setting ‘cpsatD’ where many more nodes are needed than in a progressive
search. It gets hard to find the optimal solution when branching according to the vsids
is performed with a destructive search on top as the search is guided to infeasible spaces.
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Now, we turn to the different branching schemes that can be applied to the makespan
variable. In all settings, except for ‘cpsatD’, we see from column ‘bdual’ in Table 4.8 that
using a destructive search or a combination of progressive and destructive search leads to
the highest number of best dual bounds obtained. In contrast, using inference branching
we obtain the highest number of best primal bounds. Using a combination of progressive
and destructive search leads to the lowest average gaps as column ‘gap’ reveals. The
progressive search as well as a pure inference branching are well suited when looking
for good primal bounds, whereas using the destructive search rejects unpromising low
makespan. Hence, a combination of both is well suited.

Study of branching rules in CIP Now, we evaluate the importance of the branching
rules on a CIP approach. Therefore, we test the following settings that are denoted by
“brX(a/b)”. For X = 0 we use the default branching rules of scip, i.e., hybrid branching
using reliable pseudocost branching on all variables (integer and binary). For X =1 we
restrict this rule to branching decisions based on integer variables, whereas for X = 2
we only use inference branching. More scheduling specific branching schemes are applied
for X = 3, where we branch on the variable with largest float given by Ist; — est;, splitting
the domain into almost equal halves and for X = 4 we use a serial SGS branching scheme
where the first unfixed variable is fixed to its lower bound or post-poned by one unit of
time. Additionally, each setting gets the abbreviation ‘b’ if a destructive search is used
and ‘a’ otherwise. In all settings, the list scheduling heuristic is used throughout search.

Finally, as changing combinations of CP, SAT and IP may be useful, we apply with
setting “br5” a combined branching strategy in which 1/4 of the time limit is spent
in a pure CP search, and after that 1/4 of the time limit is spent on a CPSAT-based
destructive search and finally the remaining half of the running time the CIP approach
is used. This rule summarizes our experiences as it finds good solutions fast and works
strongest on the dual bound.

Table 4.9: Comparison of different branching schemes in a CIP framework for LCSP.

setting nopt bprimal bdual gap avtime avnodes
setS (27 instances) (allopt: 10 instances)

brOa 16 19 16 12.93 2.08 1000.7
brOb 16 22 21 6.59 1.87 742.5
brla 15 17 15 11.67 1.96 1783.8
brlb 16 17 27 6.68 1.72 1166.8
br2a 15 17 15 13.90 1.93 1643.7
br2b 15 17 19 7.26 1.77 1337.0
br3a 15 15 15 13.97 1.50 709.2
br3b 15 18 19 7.26 1.60 1029.9
brda 10 15 10 18.64 15.03 34045.7
brdb 10 15 10 12.18 13.43 36202.0
brb 16 22 16 9.33 1.29 2583.1

Within a CIP search, the serial branching scheme finds the fewest number of optimal
solutions (only 10 in contrast to up to 16) which is mainly due to the low number of
best dual bounds which are also 10. Turning to the reliable pseudocost based branching
rules, we see that allowing branching on all variables (‘brOb’) finds the highest number
of best primal bounds. This is due to the fact that we run a list scheduling heuristic
that uses the LP solution values as ordering of the variables but is able to schedule
the jobs according to the global bounds. In contrast, branching only on the integer
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Figure 4.12: Ratios of nodes and running times given for all optimally solved instances.

variables within a destructive search (‘brlb’) yields the highest number of obtained dual
bounds and the lowest average final gap. This branching rule splits the search spaces
more eagerly than is done by branching on the binary variables and seems therefore to
be better to prune unpromising nodes via propagation. Using pure inference branching
(‘br2a/b’) is not competitive in terms of neither primal nor dual bounds.

From all the settings, we see that using a destructive search reduces the average final
gap by about one-half, which results in a gap of less than 6% and increases the number of
times the best dual bound could be found. On all inference and reliable pseudocost-based
branching schemes, a destructive search reduces the average number of nodes needed.
This is not the case if we use the median or serial branching scheme. This may be due to
the conflicts learned throughout search and the vsids. Considering only the 10 instances
that are solved to optimality by all settings, the median branching rule is competitive
with the scIp related branching rules in terms of running time and nodes, it is even faster
on average on those instances.

The branching rule ‘br5’, the combination of CP, SAT and IP, shows that in particular
on those instances that can be efficiently solved, the CP search in the beginning performs
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fastest compared to the CIP approaches as revealed by Figure 4.9. The lower number
of best dual bounds found here can be explained by less running time that is spent on
using a destructive search.

Impact of precedence cuts Next, we study the impact of additional precedence
inequalities. We use the following settings: In “prec0” no precedence cuts are sepa-
rated, whereas precedence inequalities in the form of set-packing, logicor and shifting are
checked in the settings “precl”, “prec2” and “prec3”. Setting “prec4” separates all vio-
lated inequalities per separation round. Note that this way three equivalent inequalities
are separated. Interestingly, this has an impact on the solution process.

Table 4.10: Impact of precendece inequalities on the solving process.

setting nopt bprimal bdual gap avtime avnodes
setS (27 instances) (allopt: 15 instances)

precO 16 25 26 7.09 15.02 30276.47
precl 15 18 19 8.23 23.02 31167.80
prec2 15 18 19 8.08 18.97 28581.53
prec3 15 17 18 8.49 17.28 24457.47
precd 15 18 18 8.36 26.88 34682.80
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Figure 4.13: Ratios of nodes and running times given for all optimally solved instances
for different formulations of the precedence inequalities.

From Table 4.10 we observe that the setting “prec0” that does not separate any
precedence inequalities solves one more instance and yields the highest number of best
primal and best dual bounds, except for two instances. Though we see that adding
the precedence inequalities improves the dual bound of the root node, the final gap is
about 1% better if no such inequalities are added. In particular, column ‘gapRootDual’
calculates the difference of the root dual bound to the best dual bound found by all
settings. Hence, the dual bound of the root can be improved between 9.13% and 9.54%
on average. Column ‘gapRoot’ indicates the average gap in the root node for each
setting, which compared to the column ‘gapRootDual’ shows that gap improvements in
the root node are achieved by a slightly tighter relaxation if precedence inequalities are
added rather than by better primal solutions. In total the gain in the dual bound by the
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precedence inequalities is rather moderate. Observe that this also stems from the fact
that by using domain propagation the lower bound on the makespan is already tightened
and cuts may not be that effective anymore. Hence, the influence of these inequalities
decreases.

Considering the average running time and number of nodes on all instances that are
solved to optimality by all solvers, again, not adding precedence inequalities is fastest
on average, while adding all inequalities is slowest. Among all these settings, separating
precedence inequalities in the shifting formulation leads to the fewest nodes. This is also
revealed by Figure 4.13 where the distributiuon of the ratios of running times and nodes
per instance are given. We explain this as follows: Using the shifting formulation some
binary variables occur more frequently. These variables correspond to start times not
before the current start time. Considering an LP solution, these variables are more likely
to be added into the basis. Observe that all start time variables have a zero objective
coefficient and can be slided in their time window as long as these are not on a critical
path. Another reason why the shifting formulation leads to improved running times is
that we allow the inference branching rule to perform branching on the fractional binary
variables, as this turned out to be computationally better. Hence, the more often a
variable is involved in the LP, it becomes more likely to enter into the LP basis with
fractional value and may therefore be selected more often as a branching variable.

Impact of heuristics As setting up the resource profile for large instances is costly,
intuitively, list scheduling based heuristics should not be executed to often. We show that
in a CP as well as in a CIP solver executing the heuristic in each node of the search tree
is better than to restrict the heuristic to the root node or to a certain depth level. We
remark that experiments in which the heuristic is executed only each second, third,...
node have been performed and show a slightly better performance than executing it
in each node. But on some instances the solving time got much worse because better
solutions are found late.

Hence, in a CP setting we compare the results if the heuristic is only executed in
the root node (‘heurCP0’), until tree depth 10 (‘heurCP1’) or in each node (‘heurCP2’).
Looking at the LP-based CIP approach, we study the setting ‘heurCIP0’ in which the
heuristic is only executed in the root node and ‘heurCP1’ where the heuristic is executed
in each node. The results are given in Table 4.11 and Figures 4.14.

Table 4.11: Impact of using a heuristic only in root node (‘heurCP0’, ‘heurCIP0’), until
tree depth 10 (‘heurCP1’) or in each node (‘heurCP2’, ‘heurCIP1’).

setting nopt  bprimal bdual timeProp  timeHeur gap avtime avnodes
setS (27 instances) (allopt: 17 instances)

heurCPO 17 17 26 206.7 0.51 10.13 22.7 224866.82
heurCP1 17 17 26 207.83 0.57 9.82 22.99 226306.18
heurCP2 17 27 27 175.02 35.17 7.62 21.32 185005.18
setS (27 instances) (allopt: 15 instances)

heurCIPO 16 16 22 44.25 0.18 9.39 69.65 128234.73
heurCIP1 15 26 23 40.84 8.8 8.04 58.36 92104.13

Interestingly, using the ‘time consuming’ heuristic pays off in total as this also reduces
the average time spent in propagation due to better upper bounds on the variables which
helps to find globally tighter bounds.
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Figure 4.14: Ratios of nodes and running times given for all optimally solved instances.

First, we consider the CP settings in detail. With the setting heurCP2, we find on all
instances the best upper bound and need slightly less running time and about 20% less
nodes on average for those instances that could be solved to optimality by all settings. In
particular, Figure 4.14 shows that heurCP2 needs on more than 95% of the instances the
fewest nodes, whereas the distribution of the running times are slightly in favor to use
setting heurCP0. On all instances, the final gap can be decreased to 7.62% on average
in setting heurCP2, which is a decrease by more than 20%.

Considering the CIP settings, we see that heurCIP1 uses one instance less than
heurCIPO — this can be undone by increasing the time limit by 20 sec. Using the heuristic
throughout search leads to the best primal bounds and decreases the final gap by about
15% on average. On all instances that could be solved to optimality by both settings, the
average running time decreases from about 70 sec. to 58 sec., while the average number
of nodes decreases from about 128,000 to 92,000. We omit figures concerning nodes and
running time here — these values are always in favor of using the heuristic.

4.2.4.3 Results on the PAMIPS instances

Given the former fine-tuning of parameters, we finally evaluate the outcome on the
complete set of PAMIPS instances from [48]. We initially performed experiments with
a CP, CP-IP, CP-SAT and a CIP hybrid with the best settings obtained so far and
a combination of all. As it turned out, using conflict analysis slowed down the solving
process too much, hence we omit these results here and only show the best values obtained
by a CP (‘cp’) or a CP-IP-hybrid (‘cpip’) where the list scheduling based heuristic is used
in each node of the search tree and no cuts based on stronger precedence inequalities are
separated.

Table 4.12 shows the best primal and dual bounds obtained so far compared to the CP
and CP-IP approaches presented here. The best primal bound on the PAMIPS instances
is found by tabu search or other heuristics as already described in Table 4.6. Instances
with more than four orders could not be solved to optimality. The last four columns
show the ‘best primal’ bound obtained by a CP, a CP-IP or by both solvers as indicated
in column ‘solver’ and the ‘best dual’ bound and which ‘solver’ obtained this. If as well
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Instance Primal Dual Primal(CP) | best primal solver | best dual solver
Ins307jA 10 10 - 10 all 10 all
Insd4021jA 82 82 82 82 all 82 all
Ins4023jA 58 58 58 58 all 58 all
Ins4024jA 68 68 68 68 all 68 all
Ins4024jB 72 72 72 72 all 72 all
Ins4027jA 67 67 67 67 all 67 all
Ins6o41jA 140 109 152 148> cpip 116 cp
Ins6041jB 110 102 110 109 all 109 all
Ins6041jC 126 110 134 129*  cpip 105 cp
Ins60o44jA 117 98 122 119* cpip 105 cp
Ins6044jB 137 124 149 141* cpip 126 cp
Tns8o63jA 259 187 281 275%  cpip 207 cp
Ins8063jB 314 239 344 346 cpip 225 cp
Ins8063jC 294 271 344 316*  cpip 262 cp
Ins8065jA 403 342 445 412* cpip 349 cp
Ins8065jB 382 315 411 413  cpip 264 cp
Ins10084jA 634 394 730 686* cp 338 cp
Ins10084jB 550 355 616 624 cp 280  cpip
Ins10085jA 783 671 912 881* cpip 562 cp
Ins10087jA 581 377 610 620 cp 286  cpip
Ins10088jA 450 - 473 474 cp 362 all
Ins100100jA 1467 830 1587 1576* all 487 cp
Ins100102jA 1155 878 1239 1304 cp 631 cp
Ins100106jA 1087 578 1166 1201 cp 490 cp
Ins120108jA 1271 838 1412 1397* cp 569 cp
Ins120109jA 1324 980 1476 1477 cpip 910 cp

Table 4.12: Comparison of best know primal and dual values from the literature (columns
1-3) with CP and CP-IP approaches (columns 4-7). Bold values show improved bounds.
Entries are marked by a “*’ if our approach is better than the best CP approach from
literature.

a CP as well as a CP-IP-hybrid found the best value, this is indicated by writing ‘all’.

With our approach we are able to close one more instance containing six orders, i.e.,
Ins6041jB with objective value 109. We are not able to find better solutions on the larger
instances but we obtain eleven times a better primal bound compared to the former CP
approaches, see [49] and [50]. The corresponding values are marked by a *” in Table 4.12.
Furthermore, we are able to improve six dual bounds (marked in bold).

Most of our best primal bounds are obtained using the CP-IP hybrid, whereas most
of our best dual bounds are obtained by the CP approach due to the larger number of
nodes that are explored. In total, the gaps between the best dual and primal bound on
the large instances remain huge.
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Conclusion

In this section we extended the CIP framework for RCPSP and in particular the time-
tabling algorithm of the cumulative constraint to LCSP.

LCSP is intrinsically harder than RCPSP as RCPSP is included in case the demands
are not varying. Checking feasibility of a solution can only be done in time depending
on the processing times as the resource demands are given per unit of processing time.
Time-tabling and explaining time-tabling become much harder as shown by reduction
from 3-SAT where the processing times are polynomially bounded in the number of jobs.

As seen in the numerical results, a CP approach is fastest in finding good solutions on
the small instances (up to 4 orders), whereas a CIP approach finds the highest number
of best primal bounds on the larger instances (6-8 orders). Combining the CP approach
using the inference branching rule with a destructive branching scheme yields good dual
bounds. In total, we are able to close one instance with six orders and improve six
dual bounds. The approach is not competitive with the elaborate tabu search or other
heuristics in finding good primal solutions, but our exact approach is eleven times better
in deriving a primal bound than exact approaches from the literature.

In total, it did not pay off in terms of running time to use conflict analysis on these
instances because the conflicts are not reusable, i.e., they do not propagate that often.
In contrast, the inference branching rule already detects promising branching candidates
that induce further propagation.
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Chapter 5

Turnaround Scheduling

In this chapter, we study the Turnaround Scheduling Problem. This problem is mo-
tivated by an industrial application from chemical manufacturing which we studied in
cooperation with the consultancy company T.A. Cook Consultants!.

This problem extends RCPSP in many ways: Jobs can be executed in different modes
which are determined by the number of workers assigned to a job. Availability of workers
is restricted to predetermined working shifts due to sleeping and break times. The
working shifts depend heavily on the group of workers (craftsmen have long day shifts,
whereas observer need to watch the progress from time to time and may only be available
in the morning or afternoon). The main scheduling decision that needs to be made in
turnaround scheduling is to determine the number of external workers hired over the
planning horizon. These are the main cost drivers.

Contribution

Real-world instances for Turnaround Scheduling problems are of large scale, hence,
heuristics are the main focus in practice. We will present heuristics that handle multi-
mode jobs, resource availabilities and focus on minimizing the resource costs. To evaluate
these heuristics, we generate classes of instances and compare the solutions to optimal
solutions that will be generated by a time-indexed MIP.

To improve the lower bound, we apply a Dantzig-Wolfe decomposition to the plain
MIP formulation in which pricing problems per working shift need to be solved. Getting
an exponential number of variables, we propose a branch-price-and-cut algorithm to solve
this model. We are able to compute optimal schedules for instances with up to 50 jobs,
which is a large number in this area. In contrast, CPLEX on the plain MIP is only able
to solve 25% of the instances. A detailed comparison demonstrates the gain of much
tighter dual bounds obtained from Dantzig-Wolfe decomposition over the plain MIP.

Furthermore, we show how to integrate valid precedence inequalities from the original
model into the reformulated master problem. These inequalities need to be separated
carefully to not slow down the solving process.

Altogether, we present a novel successful application for the power of applying
Dantzig-Wolfe decomposition to solve large-scale project scheduling problems with
difficult characteristics and a non-standard objective function in acceptable time. The
results show that even if the model involves N'P-hard pricing problems, the gain of

1See de.tacook. com for further information.
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tighter dual bounds sacrifices such an approach.

Outline

In Section 5.1 the problem is described and related work is presented. Heuristics able
to handle real-world instances are presented in Section 5.2. Section 5.3 deals with the
obstacles of plain MIP formulations and presents the Dantzig-Wolfe decomposition. The
new model is solved in a branch-price-and-cut framework as described in Section 5.3.2.
The computational study in Section 5.4 emphasizes the gain of stronger dual bounds
obtained from the decomposition.

5.1 Problem description and related work

For the inspection and renewal of parts in chemical plants, these are shut down and
disassembled, work is done, and plants are finally rebuilt. As a consequence, a partial
ordering of jobs needs to be done. Jobs are multi-mode, which means, they can be sped-
up to a certain extent by investing in more workers. The time horizon and the number of
workers hired for each job determine production downtime and working costs. That is,
we have a time-cost tradeoff, where a possible solution approach is to binary search over
the time horizon. For a fixed time horizon—which we assume here—the problem turns
into a resource leveling problem, i.e., we need to decide how many workers per resource
are hired over the time horizon.

Workers, or more generally renewable resources, are of different specialization. Each
resource is associated with availability periods that can be thought of as working shifts.
We assume that the granularity of planning is so fine that each job needs (possibly sev-
eral units of) exactly one resource. In particular, the processing time of a job depends
on the number of resource units that are assigned to that job. Here, we assume that
the actual work increases the more resource units of one resource are assigned due to,
e.g., communication overhead. Observe that a model with multiple resources per job
must encode how the processing time of a job is shortened depending on how many re-
source units of which resource are increased. In the worst case, planners would need to
encode all possible combinations of resource assignments to a job. E.g., our industrial
partners use MS Project™ software which calculates the processing time by dividing the
amount of work by the number of allocated resources of exactly one resource. We follow
a one-resource-per-job policy in which the need of multiple resources can be modeled via
generalized precedence constraints. In our computational study we consider the case in
which two resources have disjoint shifts. This immediately triggers several instances in-
feasible if generalized precedence constraints are present that enforce jobs to be executed
in parallel. Hence, we do not impose such constraints in the instances. Still, it is easy
to extend our approach with such side constraints.

For such a turnaround, external workers are hired over the plannig horizon and must
be paid for their availability—whether they are working or not. Hence, we want to level
the resources, meaning that we need to compute the maximum capacity requirement of
each resource and need to hire that amount of resource units at a minimum total resource
cost. Balancing the resource usage, which means to flatten the ups and downs of the
resource profile over time, is not an issue at our higher-level planning stage.
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Problem definition

In Turnaround Scheduling we are given a set J of n jobs and a set R of renewable
resources. Each job needs a finite number of resource units of exactly one resource k € R
for its processing.

Jobs may be executed in different modes M; = {1,...,m;}, where m; is the number
of different modes of one job j. These modes (processing alternatives) of job j € J are
characterized by the number r; of allocated resources and its resulting processing time p;.
We assume that 7; € {rj1,...,7jm,} and p; € {pj1,...,pjm,} are integer and positive
in each mode. Let J, C J denote the set of jobs that require resource k¥ € R. Since
each job requires exactly one resource, we can partition the set of jobs J into disjoint
subsets J1, J2; - -, J|Rr|-

The amount of work for processing a job j € J in mode m; € M, is given by wjm,; =
Tjm; Djm;- We assume that the processing time is non-increasing and the amount of work
is non-decreasing in the number of resource units. Hence, the monotonicity properties

Pje = Pim and wie < Wim

hold for any mode ¢, m € M, with £ < m.

Furthermore, each job j € J is associated with an earliest start est; € Ny and a
deadline Ict; € Ny (latest completion time) which define the time-window [est;,lct;)
in which 7 must be processed. Precedence constraints are given by a directed acyclic
graph G = (J, A) where the vertices correspond to jobs and where an edge (i,7) € A is
given if job ¢ precedes job j, i.e., S; + p; < S; must hold.

Fach resource k£ € R has an individual calendar Z; of working shifts | C R, which
represents the availability periods of k. Hence, 7, = {ly,ls,...}. Each | € Z} can be
written as | = [a,b), with a < b integer. Jobs can only be processed non-preemptively
during one availability period.

Definition 5.1. A schedule (S, m) for the Turnaround Scheduling problem is given by
a vector S = (S1,...,5,) of integer start times S; for each job j and by a vector of
modes m = (mq,...,my) that assigns each job j a mode m; € M;.

Definition 5.2. A schedule (S,m) for the Turnaround Scheduling problem is time-
feasible if it respects the release dates, deadlines and precedence constraints, i.e.,

(i) Si+ pim; < Sj for all (i,7) € E, and
(ii) est; < Sj < S+ pjm,; <lctj forallj € J.
The maximum completion time of a schedule (S, m), the makespan, is denoted by
Ciax(S,m) := EHGE?{ {SJ' +pjmj} :
For a schedule (S, m), we denote by

Tk(samat) = Z T jmy

jEJk:Sj§t<Sj+pjmj
the resource utilization of resource k € R at time ¢, and by

Ry = m?.XTk(S7m,t), forall k € R
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the maximum resource utilization of resource k € R, i.e., the maximum number of re-
source units of resource k used at any point in time during the turnaround. The maximum
resource utilization of a resource k may be bounded by a constant Rj, € N, which we call
the capacity of that resource k. See Figure 5.1 for a schedule with availability periods
and two resources.

Definition 5.3. We call a schedule (S, m) resource-feasible iff
(i) R < Ry for allk € R, and
(ii) for allk € R and j € Ty with rjy,, > 0: 31 € Iy, : [Sy, Sj + pjm,;) € 1.

For each k € R, we are given a cost rate c; that represents the cost per unit of
resource k per time unit. The set of resources is partitioned into two disjoint subsets R*
and R/ depending on their payment type. Resources of type k € R’ have to be paid
during the entire turnaround period for the maximum amount needed. These are mainly
external workers that are hired for the complete turnaround period and they must be
paid for even if they are temporarily idle. Clearly, the goal of a project manager is to
minimize the amount of paid idle time. In other words, the maximum resource utilization
of that kind of resources should be minimized. We say that these resources need to be
leveled. In contrast, resources of type R/ are paid for the actual work they perform. We
say they are free of leveling. In our application, these are mainly internal resources. The
job sets corresponding to R’ and R are denoted by J¢ and J7, respectively, while all
jobs needed by resource k € R are denoted by J.

Now, we can express the total cost of a schedule (S, m) as

ch'Rk+ Z ch'wjmj-

keR!t keERTS j€Tk

The first term is called the resource availability cost and represents the cost of resources
that must be leveled, while the second term, called resource utilization cost, represents
the cost of jobs that are free of leveling.

The task in Turnaround Scheduling is to find a schedule which is time- and resource-
feasible and has minimum total cost. In practice, the first term clearly dominates the
cost function. If we neglect the cost for jobs that are free of leveling, we speak of the
resource leveling problem. This is the problem on which we focus.

/77 /7

/77 77/ /7

777 777 77
&7

\
' /) ' | . i
' i ' \ / i
! I 1 i . ¥
| E \ i i
\ / l \ . i
\ i l \ i |
/

7Y k77771, |
77 oy '
2 Y '

i/

' '
\ . g
k() /777 /777 /77| (/7777774 /7. /7777
= \vs7777{- LA /77| N N A /A= SARARA
vz777. 7777 I Y I I// /////I

Figure 5.1: Schematic representation of a solution to a Turnaround Scheduling problem
with two resources and three availability periods each.
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Related work

The Turnaround Scheduling problem has many relationships with well established ar-
eas of scheduling. Following the extended «|f|y-classification scheme [36], we con-
sider M PS|prec, shifts|>_ ¢ -max (S, M, t) for multi-mode project scheduling with m
renewable resources of unbounded capacity, with precedence constraints and working
shifts, with the objective to minimize the total resource availability cost, i.e., minimiz-
ing > .cr Ck - Ri. We remark that in an M PS-environment usually multiple resources
per job are needed. In our case, each job requires exactly one resource.

Multi-mode jobs are a key feature of Turnaround Scheduling problems. Such
problems of the form MPS|prec|Cpax have been investigated with renewable and
non-renewable resources, with limited capacity, and makespan minimization, known as
multi-mode RCPSP, see e.g., [85, 134]. In the notation scheme of Herroelen et al. [140],
the Turnaround Scheduling problem is denoted by m,1|cpm, mu|rac for renewable
resource with capacity m, common precedence relations and multi-mode jobs with the
objective to minimize the resource availability cost.

Time-Cost Tradeoff Given a project network of jobs and precedence constraints, a
job may be executed in different modes, each associated with a certain processing time
and resource demand. The time-cost tradeoff problem asks for the relation between the
duration of a project and its cost, while the cost are determined by the amount of non-
renewable resource units which are necessary to achieve the project duration. For a
nice survey we refer to De et al. [76]. Fixing either the project duration or the cost
leads to the closely related optimization problems with the objective to minimize the
other parameter; these problems are referred to as the deadline problem and the budget
problem, respectively.

If the resource costs for the jobs are continuous, linear and non-increasing functions
of the job processing times, then the deadline and the budget problem can be solved
optimally in polynomial time as has been shown independently by Fulkerson [114] and
Kelley [156]. Later, Phillips and Dessouky [208] give an improved version of the original
algorithms in which iterative cut computations in a graph of critical jobs yield the piece-
wise linear time-cost tradeoff curve. This curve describes the tradeoff between project
duration ¢ and associated cost for all t. The running time is polynomial in the number of
breakpoints of the optimal time-cost tradeoff curve, which may, however be exponential
in the input size, see Skutella [238]. A breakpoint of such a piecewise linear function
is a point in which the function is continuous but not differentiable. Elmaghraby and
Kamburowski [106] generalized previous algorithms to solve a more general problem vari-
ant in which jobs may have release dates and deadlines and arbitrary time lags between
them. They provide a combinatorial algorithm that iteratively computes minimum cost
flows in a transformed network modeling the time-lags. Also other cost functions have
been considered such as convex [4, 154, 169, 236] and concave functions [109].

In practical applications, the discrete version of this problem plays an important role.
Here the processing time of a job is a discrete non-increasing function of the amount of
the renewable resource allocated to it. This problem is known to be N'P-hard, see [77].
Skutella [237] derives approximation algorithms for the deadline and budget problem as
well as bicriteria approximations, while Deineko and Woeginger [79] give lower bounds
on the approximability of the problems.

Various exact algorithms and meta-heuristics have been implemented for the discrete
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time-cost tradeoff problem. For an overview we refer to the book of Demeulemeester and
Herroelen [85], chapter 8.

Time-Cost Tradeoff with capacity constraints Motivated by restrictions on re-
source capacities in real-world applications, the time-cost tradeoff problem has been
investigated in problem variants with renewable as well as non-renewable resources of
limited capacity. Such problems are also known as multi-mode (resource constrained)
project scheduling problems; see e.g. [85].

Various versions of linear and discrete time-cost tradeoff related problems have also
been considered in the theory of machine scheduling. Besides the available machines,
there is an additional resource that allows to accelerate the processing of jobs. Approxi-
mation algorithms and even polynomial time approximation schemes have been derived.
Among such problems stands scheduling with controllable processing times which con-
cerns the allocation of non-renewable resource units, see the recent survey of Shabtay
and Steiner [235]. Another direction is given by scheduling jobs with resource depen-
dent processing times which assumes the presence of one discrete renewable resource,
see Grigoriev et al. [128] and references therein. Given a fixed number of machines and
the objective to minimize the makespan, scheduling malleable jobs where the duration
of a job is determined by the number of machines allocated to it has been studied by
e.g., [98, 151, 152, 173].

Resources with calendars and working shifts In real world applications, resources
are rarely continuously available for processing. Working shifts, machine maintenance or
other constraints may prohibit the processing in certain time intervals. Also in machine
scheduling, various problems with limited machine availability have been considered.
Regarding complexity and approximation results we refer to the survey by Schmidt [222].

In project scheduling, such constraints are known as break or shift calendars.
Zhan [269] provides an exact pseudo-polynomial algorithm for computing earliest
and latest start times in a generalized activity network that may contain minimum
and maximum time lags, but no capacity bounds on the resources. His modified
label-correcting algorithm respects jobs that may be preempted and those that must
not. This algorithm has been modified into a polynomial time algorithm by Franck
et al. [112]. In the same paper, priority-rule based heuristics are also provided for
solving resource-constrained project scheduling problems where each job may require
different resources.

Yang and Chen [266] consider a job-based and more flexible version of calendars
represented by time-switch constraints. These constraints specify for any job several
time windows in which it may be processed. They also extend the classical critical path
method in order to analyze project networks when resource capacities are unbounded.
Time-switch constraints have also been incorporated by Vanhoucke et al. [260] in the
deadline version of the discrete time-cost tradeoff problem in order to model different
working shifts. They present a branch-and-bound algorithm which has later been im-
proved by Vanhoucke [255]. Experimental results are shown for instances with up to 30
jobs and up to seven different processing modes. Vanhoucke and Debels [258] investigate
a further extension of the deadline problem with time-switch and other side constraints
with the objective to maximize the net present value.
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Resource Leveling Typical goals in project management are the minimization of the
total project duration (makespan), the maximization of net present value or more service
oriented goals such as minimizing waiting time or lateness. In certain applications the
objective functions are based on resource utilization; see e.g., Neumann et al. [193]. In
particular, when resource units are rented for a fixed time period, they should be utilized
evenly over this time.

The resource leveling problem with single-modes per job, which is denoted
by PS|temp| > ¢ maxri(S,t) with general temporal constraints. It has been considered
earlier under the name resource investment problem. The special case without generalized
precedence constraints PS|prec| ) ¢, max (S, t) has been considered e.g., by Demeule-
meester [82] and Mohring [187]. These authors competed on the same instance set which
contained about 16 jobs and four resources, with a time horizon between 47 and 70.
Further computational studies were done containing 15 to 20 jobs and four resources. In
the same setting, Drexl and Kimms [96] propose lower bound computations, one based
on Lagrangian relaxation and another based on a column generation procedure, where
variables represent schedules as in our approach. Instances consisting of 20 jobs with low
processing times can be handled; for 30 jobs the Lagrangian relaxation wins against the
column generation approach.

Harris [132] develops a critical path based heuristic for resource leveling of precedence
constrained jobs with fixed processing times and no side constraints. Neumann [194]
presents a heuristic and exact algorithms for the resource leveling problem with temporal
and resource constraints. Gather et al. [118] describe an enumerative tree search for
the resource leveling problem in which the total squared utilization cost need to be
minimized. In a number of earlier publications such as [15, 35, 102, 207], heuristics and
exact algorithms for simplified problem versions can be found.

Benchmark instances For a computational benchmarking of project scheduling prob-
lems, different problem sets are available in the PSPLib [162]. There, several variants of
RCPSP and of resource investment problems can be found. For the RCPSP single-mode
case, test sets containing 60 jobs could not be solved to proven optimality by various
researchers. In the multi-mode case, instances with 30 jobs are not solved yet. For the
resource investment problem, test sets containing 10, 20, or 30 jobs are available, but
they do not contain working shifts, are in single-mode or include time-lags.

Even though none of these problem variants is immediately suited for a direct compar-
ison, they are similar to ours, and the mentioned instances inspired us when generating
our own test set as described in Section 5.4.

Complexity results The resource leveling problem contains all features of the basic
RCPSP and is therefore strongly NP-hard and challenging when looking for good so-
lutions. From a theoretical point of view, simplified versions and their approximability
have been studied. Giinther et al. [131] present approximability results for malleable tasks
with precedence constraints. Cieliebak et al. [62] consider a variant of interval scheduling
in which they aim for minimizing the maximum number of used resource units. They
derive approximation algorithms and hardness results. Hence, resource leveling problems
in particular for large scale instances need further research to be solved more efficiently.
Our approach of splitting the planning horizon into several sub-schedules may also lead
to better results for related problems.

160



5.2 Turnaround heuristics

Heuristics for large-scale scheduling problems are highly demanded in practice. We
present a parallel and a serial schedule generation scheme adapted to the multi-mode
case. Both heuristics are also used as subroutines in a resource leveling heuristic.

The heuristics presented next will be used in our study as primal heuristics during
branch-and-bound search.

Parallel SGS

A parallel SGS first schedules a set of jobs which are available at time zero as early
as possible. Then, the next possible start time is considered with a new set of jobs
that which available. Jobs can only be scheduled if their predecessors are completed.
Unscheduled jobs whose predecessors have been scheduled are called ready jobs.

For each resource k € R’ we maintain a vector of jobs J, = (i, "’jkukl) that use
this resource and have no unscheduled predecessors, together with a lower bound ¢; on
the next feasible start est;» > est; of any job j € Ji. If Jj, is empty, we set ¢, to infinity.

The heuristic loops over ¢, which increases to the minimal ?; in each iteration. A
subset J C Ji of constant size s (we chose s = 6 in our computational studies) is
scheduled so that the overall completion time is kept small (line 9). This is accomplished
by trying all mode combinations for J recursively, and bounding recursion using the
currently shortest feasible solution found in this way. If s is small, this can be done
quickly. Finally, for each scheduled job in J, those successors which become ready, are
added to the corresponding set Jg, each tj is updated, and the next iteration begins.
This process continues until all jobs are scheduled, or a makespan violation occurs.

Algorithm 10: Parallel SGS for multi-mode jobs

Input: Set of jobs J to be scheduled and max. total duration 7.
Output: A schedule (S, m), or that no solution is found.

1 foreach k € R do

2 Let Ji C J be the set of jobs that use resource k, and are ready.
3 tr = minje est;..

4 end

5 t:=0

6 while ¢t < T and not all jobs are scheduled do

7 { = argminy, t, and ¢ := t.

8 m := min(s, |.Jg|) with s a small constant and J := {jy,, .., je,. }.
9 Schedule jobs in J such that max;e; C; is minimal.

10 Add all successors of jobs to J that become ready to their respective Jy.
11 Jo = Jg\ J.
12 Update ti, for all changed Jj as in Step 3.

13 end

Serial SGS

In a serial SGS, jobs are scheduled according to a topological ordering. Therefore, this
is also called a list schedule. The ordering can be done with respect to the bounds
of the variables or with respect to LP solution values. According to that ordering, an
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earliest start schedule is computed respecting resource capacities by shifting jobs to the
earliest feasible start time where enough capacity is available. We use the values of the
LP solution as input and obtain a fast primal heuristic that can be used throughout
branch-and-bound search.

Our heuristic sets the maximal capacity of each resource to the LP solution value
rounded up, and fix the earliest and latest start and completion times for each job to the
local bounds of the corresponding variables. Then, we perform list scheduling with jobs
sorted by earliest completion times in the LP solution, and each job’s mode is chosen as
the one matching C7 — 57 best. Again, S7, CF denote the start and completion times of
job 7 in the LP solution.

If a feasible schedule is found new columns (one per shift) representing that schedule
are added to the master problem, in order to reduce the total number of pricing steps.

Resource leveling heuristic

We now describe the resource leveling heuristic, and how the serial and parallel SGS tie
into the framework of the leveling procedure. The leveling heuristic uses a binary search
on the capacity bounds of the resources, greedily selecting the resource whose upper
bound is to be improved in each iteration. This selection is based on a parameter uy,
measuring how badly a resource k is leveled.

e = (Ri - T)/ (Y™ - plf™).
JET

One iteration of the binary search consists of trying to find a feasible schedule for
the current lower (LBj) and upper (UBy) bounds of the resource capacity variables Ry.
These bounds for the selected resource k* are set to (UBg« + LBg+)/2, UBg+« and LBy«
being the upper and lower bounds on the capacity of resource k£*, while all other resource
bounds remain fixed. We try serial SGS first, and on failure fall back to the parallel SGS
to prove the bounds feasible. If neither serial nor parallel SGS yield a feasible schedule,
we consider the current upper bound for the selected resource as a new lower bound, and
the next iteration begins.

Algorithm 11: Resource Leveling

Input: Set R of resources to be leveled, project duration 7.

Output: Leveled resource utilization Ry for each resource k € R.

Set LBy and UBj, to initial values for each resource k € R.

while 3k € R:LB; < UBg do
Choose resource k* € R with LBgx < UBp« and pg+« maximum.
Perform binary search using serial and parallel SGS in order to decrease the
capacity bounds of k*.

N

end

ot

5.3 Mixed Integer Programming formulations

For solving large-scale scheduling problems, Mixed Integer Programming (MIP) is not
considered as primary choice since the Linear Programming (LP) relaxations may be
weak. Huge numbers of variables and constraints may result in high computation times
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and memory failures for solving even only the LP relaxation. The approach we propose
demonstrates that more sophisticated algorithmic techniques can be a partial remedy
for these issues. We start by presenting a plain MIP in Section 5.3.1 that will be solved
by CPLEX. Afterwards the basics of column generation are introduced as needed here in
Section 5.3.2 including a MIP model of exponential size where variables correspond to
subschedules per working shift.

5.3.1 Obstacles of MIP formulations

In the following we present a mixed integer programming formulation of the Turnaround
Scheduling problem for a given project deadline T'. It borrows from the classical time-
indexed formulation based on start times for RCPSP as introduced in Section 1.3.1 and
incorporates the multi-mode characteristics of jobs. We use binary decision variables @ j;
that indicate whether job j € J starts in mode m € M; at time t € {0,1,...,T —1}.

We model resource calendars implicitly using start-time dependent processing times.
In a preprocessing step we compute for each job j € J the processing time pjy,; it has
when starting at time ¢ in mode m € M;. If a job cannot be scheduled with respect
to calendars at time ¢, we set the corresponding variable xjm,; to zero. The resource
demands of job j in mode m for resource £ is denoted by 7.

miank - Ry, (5.1)

k
subject to Z Z Tjme = 1 Vied (5.2)
t mEMj
SNtz =5 vieJd (5.3)
t me/\/lj
SN A pm)Timt <)Yt V(i,j)€E (5.4)
t meM; t meM;

t
Z Z Z 71jmk : xjmT S Rk v k,t (55)

jEJ meMj T:t_pjm+1
>0

S;>0VjeJ R,>0VkeR (5.6)
Timt € {0, 1} Vi, j,me Mj (57)

Constraint (5.2) assures that each job starts exactly once in one of its modes. The
(continuous) start time S; of job j € J is linked to the binary variables z,,; in equa-
tions (5.3) and is therefore implicitly integral. Hence, we do not impose any integrality
constraints on start time variables. Because of (5.4) every pair of jobs (i,7) € F respect
the precedence constraints. Finally, inequalities (5.5) guarantee that the resource con-
straints are met. We decide about the (continuous) resource capacities Ry > 0 for each
resource k, such that the total resource availability cost is minimized via the objective
function (5.1).

Due to the time expansion, time-indexed formulations for scheduling problems are
usually hopeless for large problem instances. However, small instances can be solved
using integer programming solvers such as CPLEX, and we can thus evaluate the per-
formance of our algorithm by comparing the computed solution with an optimal solution
for such instances.
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Depending on several factors, such as network complexity (the density of G) or the
time discretization considered, this formulation may give poor lower bounds. Very often,
we experience that in an optimal solution to the LP relaxation only few binary variables
are fractional, but the points in time used in the convex combination (5.3) to yield the
actual start time S; of a job are far apart from one another. We will informally call this
a “smearing” of start time variables. This smearing gives us irrelevant information about
the schedule and we lose all structure in the model.

Furthermore, branching on the binary variables leads to an unbalanced search tree,
since branching to zero is a very weak decision if the job can be scheduled one time
unit earlier or later (that is, the decision essentially has no effect). Thus, one needs a
more sophisticated branching rule that is aware of the linking of continuous variables S}
and binary variables xj,; and that prefers branching on the start time variables S;.
Therefore, natural branching candidates are start time variables whose corresponding
binary variables are fractional. It turns out that this intuition goes very well with our
approach.

5.3.2 Exponential formulation

Column Generation procedures come with a huge amount of variables (exponentially
many), but this disadvantage can sometimes be beaten by tighter dual bounds. On the
other hand, the pricing problems become harder to solve, such that IP and CP techniques
are needed for them. Before stating the new model, we start by introducing the concept
of Dantzig-Wolfe decomposition as needed here.

5.3.2.1 Dantzig-Wolfe decomposition

A Dantzig-Wolfe decomposition makes use of the problem structure and aggregates a
bunch of variables into maybe an exponential number of new master variables that cap-
ture all possible combinations of the original variable values. To overcome the huge
amount of variables, these new variables need to be generated and added to the LP
relaxation.

Starting from a standard MIP formulation with appropriate sized matrices B, D and
vectors b, ¢, d and variable vector x, the Dantzig-Wolfe decomposition works as follows:
We apply Minkowski-Weyl theorem and express a polytope P = {z € Z" | Bx < b} as
convex combination of its extreme points p; € Z". This is possible for polytopes but not
for polyhedrons. Hence, we substitute:

:B::Zp,;/\i, Z/\i:L /\i ZO.

An IP before and after applying Dantzig-Wolfe decomposition is given in Figure 5.2.

Such a decomposition works well if the matrix B imposes nice structural properties,
like block structures or being totally unimodular. Matrix D can be interpreted as those
constraints that link the variables between blocks with each other. We show that this
approach is useful for our scheduling problem even though the pricing problems involved
are complex and strongly NP-hard on their own. In our model we identify the blocks
of matrix B as the resource constraints per shift and matrix D, the linking constraints,
corresponds to the precedence constraints (5.4) and constraints (5.2) that ensure that
each job is executed exactly once.
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Original formulation: DW-reformulation:

min cdx min Z(ctpi)')\,-
subject to Bx <b i
Dz <d subject to DZpi)\i <d
xeL" '
-
i
A>0

Figure 5.2: Dantzig-Wolfe decomposition for a general MIP by substituting =z :=
YD, Y ;A =1,X >0, Vi, where p; € {x € Z"" | Bx < b} .

5.3.2.2 Master problem: A model based on shift configurations

In order to reduce the effects of “losing the timing information” because of the smearing
of variables, we propose a model which exploits the problem structure by decomposing
the time horizon into the availability periods of resources. Based on the calendar for each
resource, every working shift represents a smaller subproblem for which sub-schedules, or
configurations, are generated independently for each resource. These configurations are
linked by global constraints ensuring that exactly one configuration is chosen for each
working shift.

Definition 5.4. A configuration £ for an interval I € Iy of resource k is a schedule
for a subset J C J that require resource k. Fach such job j € J is specified by its start
time Sje and its completion time Cj¢. The mazimum number of resources simultaneously
used by these jobs is denoted by 7.

For each configuration £ for a particular shift I € Z;, we introduce a binary variable x¢
which indicates whether configuration £ is chosen or not. We use the short hand nota-
tion j € £ to express that job j is executed in the shift corresponding to configuration &.
Note that the mode of each job is determined by the respective start and completion
times. The so-called master problem reads:

k
subject to C; <5 V(i,j) € E (5.9)
Sj= Y Sje-me vieJ (510
IS
Cj=> Cje-x¢ vieJ (511)
IS
> Fe-me < Ry VEVIETZ, (512
el
Y ae=1 VieJg (5.13)
JES
Rk,Sj,Cj >0 VkjeJd (5.14)
ze € {0,1} Ve o (5.15)



Each job is executed in exactly one configuration by (5.13). The start and com-
pletion times for each job are computed from the chosen configurations via the linking
constraints (5.10) and (5.11). Constraint (5.13) ensures, that for each job exactly one
mode (from one configuration) can be chosen in an integer optimal solution. Hence, only
feasible modes are enumerated. Constraints (5.9) model the precedence relations between
jobs. These could be directly expressed by substituting S; and C; from the linking con-
straints, but (5.10) and (5.11) are helpful in the pricing problem (Section 5.3.2.3) where
they penalize or encourage certain start or completion times of jobs. Constraints (5.12)
link resource consumptions to the capacities and ensure that the total number of re-
sources available over the planning horizon is at least the maximum number of resources
needed in each shift.

5.3.2.3 Column generation: Pricing problem

Since the number of feasible configurations is exponential in the number of jobs, we
solve the LP relaxation by column generation. That is, we start with a very small (e.g.,
heuristically generated) subset of configuration variables, and dynamically add more
variables to the model until one can prove that no more promising variables exist. This
optimality proof is given—as in the standard simplex method—via non-negativity of
reduced costs of all configuration variables. We now describe the pricing subproblem
which is used to generate configuration variables with negative reduced cost or to prove
that none exists.

We must solve a pricing problem for every shift I € Z; of each resource k. We
denote the dual variables of constraints (5.10), (5.11), (5.12), and (5.13) by s, ¢;j, pkr,
and 7;, respectively. We formulate a pricing problem for each shift I in which only
the subset J C J of the jobs that can be scheduled in I needs to be considered. The
objective function (5.16) reflects minimizing the reduced cost.

max Zﬁj'Xj_ZCj'Cj_zsj'sj_ka'Fk (5.16)
J J J

subject to Z Z Tjmt = X Vjeld (5.17)
tel meM;
DDt rm=S5 ViedJ (5.18)
tel meM;
Z Z (t + pjm) - Tjmt = C; vied (5.19)
tel meM;

t
DD D TimkTjme ST Vtel  (5.20)

je€J meM; T=t—pjm+1

Tel
>0 (5.21)
Timt €{0,1}  VjieJJmeM;tel  (522)
X; € {0,1} vied  (5.23)

This is again a scheduling problem with a non-regular objective function where a new
configuration & for a specific shift I € 7, of resource k is generated. It must be decided,
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see constraint (5.17), whether a job j corresponding to the binary decision variable X is
executed in this shift or not, and if so, which mode m € M, is used. Constraints (5.18)
and (5.19) encode the start and completion times of jobs according to the chosen mode
assignment. Resource capacity constraints (5.20) have to be satisfied as before and the
number of resources needed in this shift is again a decision variable, denoted by 7. The
objective function value is increased by 7; if a job is taken into the configuration and
by multiples of s; and ¢; according to the start and completion times. With each unit
increase of resource capacity the objective value decreases by a factor of py;.

The pricing problem (5.16)—(5.23) is A'P-hard as it contains a resource leveling prob-
lem as special case. This can be seen as follows: Set all 7; to a value large enough to
ensure that each job must be scheduled, and let s; and ¢; be zero for all j. Then, we need
to schedule all jobs in that interval at a minimum resource cost pgr - 7x. This negative
complexity result justifies solving the pricing problem as a mixed integer program itself
as no better algorithm is known.

Note that so far only the LP relaxation of the master problem (5.8)—(5.15) is solved
to optimality, and integrality of the configuration variables ¢ still needs to be ensured by
branching decisions, see Section 5.3.3.1. This leads us to a branch-and-price algorithm,
i.e., solving the LP relaxation in each node of the branch-and-bound tree by column
generation.

5.3.3 Branch-price-and-cut algorithm

A solution to the original problem is given by the resource capacities Ry, and an assign-
ment of start times S; and completion times C; for each job j. The mode is given by the
unique mode my, such that p;,;, = C; —S5;. In a modern branch-and-price context one
tries to branch on these original variables, instead of on the master variables [87]. A main
reason is that branching decisions on master variables are hard to respect in the pricing
problems, i.e., forbidden configurations must not be re-generated. Moreover, branching
decisions on master variables imply additional constraints that give rise to additional
dual variables that need to be respected in the pricing problem. On the other hand,
branching constraints formulated on the original variables only affect the subproblems’
objective function, not their structure, which is very desirable [87, 88|.

5.3.3.1 Branching scheme

Preliminary experiments revealed that not all branching decisions are of equal impor-
tance, so we choose to branch on the most important variables first. Only when these
are already integer, we branch on the second-important class, and so forth. The order we
choose is Ry, S;j, and then C;. That is, branching on fractional resource capacity values
has the largest impact. Start and completion time variables are considered as branching
candidates only if any corresponding binary configuration variable is fractional. After
the resource capacities are fixed in the search tree, a start time variable S; with LP
solution value S7 is selected. The node is split into two child nodes with S; < [S7],
and S; > [Sﬂ, respectively. Completion times are handled accordingly. This scheme is
used together with some propagation rules to overcome the “smeared” LP solutions and
to create a more balanced search tree.
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5.3.3.2 Propagation

Domains of variables can be tightened due to logical implications given by the constraints,
and/or already fixed variables. In a branch-and-price approach, domain propagation is
also used to preserve the validity of the LP relaxation after branching, see [215], i.e., all
master variables that are not consistent with the local bounds need to be set to zero.
Furthermore, in the pricing problem only variable assignments that are locally feasible
in the current node can be chosen and need to be preprocessed before setting up the
pricing problem.

In the area of scheduling problems, a large variety of propagation algorithms is known
that detect these infeasible start times and perform variable bound adjustments see
Section 2.1.3.2. We extended edge-finding to the multi-mode case, by using the minimum
energy of all modes for each job, which naturally seems to give weaker bounds. This is
balanced by the fact that jobs are not preemptive, may not cross shift-bounds and obey
precedence constraints which enables further propagation of start and completion times.
We use this algorithm in every node of the branch-and-bound tree, prior to calling the
pricing problem and cutting plane separation (see below).

5.3.3.3 Cutting planes

State-of-the-art MIP solvers heavily rely on additional valid inequalities (“cutting
planes”) in order to improve the dual bound and by that prune unpromising nodes of
the branch-and-bound tree. Adding cutting planes to the master problem is possible, but
raises again (as with branching decisions) the issue of how to respect the additional dual
variables in the pricing problem. It is technically easier to formulate valid inequalities on
the original variables and add their Dantzig-Wolfe reformulation, i.e., in our case their
translation to configuration variables, to the master problem. Again, this only changes
the objective function of the pricing problem, see again [88] for details. Incidentally,
this is a good situation for us as the literature knows several cutting planes for various
scheduling problems, all of them formulated on variables with a meaning as in the
standard MIP (5.1)—(5.7). Here, we generalize the precedence inequalities as introduced
in Section 4.2 where jobs have a fixed processing time:

V(,j)eE,r: Y mut » xp <1 (5.24)

t>1 t<74+p;

These cuts read as follows: For any point in time 7, in an end-to-start precedence
relation between jobs 7 and j, either job ¢ starts the latest in 7 or job j starts before 74 p;.
As multiple modes are present we compute the minimum processing time p?“in a job @
may have locally, i.e., the minimum over all of its modes. Building on these cuts, we
obtain the following cuts in our master problem:

V(i,j) € E,T: Yoome+ > m <l (5.25)

£3S7;527' €ZSj§ST+p;nin

As desired, the nature of the pricing problem (i.e., its constraints) does not
change, only the coefficients of the objective function need to be updated. For each
constraint (7, (4, 7)) that is added to the relaxation, we introduce the dual variable fi,;;
and add it to the objective function of the pricing problem. If S;c > 7 or if S; < 7+ pmin
the cost coefficient of variable x;,,; becomes:
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DD omniit Y > ki (5.26)

(i,5)EE T2t (kji)EE T<t+Dpim

The cutting planes are added to the master problem after new configuration variables
have been generated and each configuration variable is introduced into the corresponding
constraints. Overall, this gives a branch-price-and-cut algorithm.

These cuts can be extended to generalized precedence constraints, as we show next.
Generalized precedence constraints are of the form start-to-start (GPp), end-to-start
(GP32), start-to-end (GP3) and end-to-end (GP4). Let 6;; € Z, then we can include
these generalized precedence relations in our master problem by adding the following
inequalities based on start and completion time variables (S;, C;), and also separate
strengthened inequalities, similar to (5.24), based on the configuration variables (x¢).

(l,]) e GPy & 5; +67,] < Sj or:

Z Te+ Z ze <1 v,

£:Sie>T £:Sje<T+0i;
(7’7.]) € GPy & C; + (51']' < Sj or:

Z Ze + Z e <1 v,

§:Cig2T £:8¢<T+63;
(,7) € GP3 < S; + ;5 < Cj or:

Z Te + Z ze <1 v,

&:Sie>T £:Cje<T+6i;
(i,7) € GP4 & C; + 6;5 < Cj or:

Z Te + Z Te <1 V.

f:Ci§27' £:C]'§<T+5ij

Now, for each cut encoded by (7,(i,7)) € GP; we need to add the value of the
dual variable ,uf_ij to the objective function for all types of generalized precedence re-
lations GPy, £ = 1,...,4 according to the following rules. The cost coefficient of vari-
able x;,; in the pricing problem is increased by:

GP1:
1 1
DD DNTE D DD DR
(1,7)€GPy Tt 2T (ki)EGPy T:it<T+0k;
GPQ:
2 2
DOREED DTS D DI DI
(iyj)eGP2 Tit+pim>T (k,i)EGPQ TH<T+0k;
GPg:
3 3
YDyt Y > i
(4,J)€GP3 Tit2>T (kyi)EGP3 T:it+pim <T+0k;
GP4:
4 4
DD DI T=7E D DD SR s
(1,)EGPy Tit+pim>T (k,i)EGP4 Tit+Dim <T+0k;
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5.4 Computational study

In this section we compare the outcome of our branch-price-and-cut algorithm against a
presolved time-indexed formulation solved by the MIP solver CPLEX. In particular, we
are interested in the dual bounds that are obtained in the root node by either algorithm
since these bounds indicate the strength of the polyhedral description. Furthermore, we
give experimental evidence that the branching strategy and on some instances a careful
use of precedence inequalities play an important role to efficiently solve a large number
of the benchmark problems.

5.4.1 Benchmark instances

There is no publicly available test set of instances reflecting the setup of our problem.
When compiling our own test set, the existing instances in the PSPLib [162] guided
our design. Our set is composed of two sets of job scenarios, with 50 instances each.
Each job can run in three different modes, using one to three units of its resource, with
durations ranging from five to twelve. The first set, denoted by N50E70 contains 50
jobs and 70 precedence constraints, whereas the second set N50E100 contains 50 jobs
and 100 precedence constraints. The maximal width W of the precedence graph is six,
which is achieved by constructing W chains of length |7|/W, and randomly choosing
the remaining edges.

There are two different resources which come in five calendar configurations, called C1
to C5. These calendars are described schematically in Figure 5.3. In the top row,
calendars C1 to C3 are shown. In each of these, the length of the shifts is 60. In C1
and C3 shift breaks are 60 units long, in C2 only 20. Both resources are available at the
same time in C1, while in C3 availability periods are complementary. In C2 the second
resource is offset at 40 units. Calendars C4 and C5 show shifts with length 20 and
breaks having length five. In C5 one of the resources is offset by ten. All scenarios are
tested with each of the five different calendars. Time horizons were chosen by computing
a minimal and maximal makespan heuristically using an earliest start list scheduling
policy, and averaging these. The first makespan comes by scheduling all jobs at their
highest resource usage and the second run is carried out by assigning the fewest number
of resources to each job.

Experimental setup

All experiments were done on Intel Core™ i7-870 PCs (2.93 GHz, 8MB cache, 8GB
memory) running Linux 2.6.34 (single thread). Each test run had a time-limit of 30
minutes. Our C++ implementation is based on scip 2.0.1 [232] to perform the branch-
and-price process, with custom plug-ins for our heuristics, branching rules, cutting plane

h--------------l h--------------4
h--------------l | --------------q

Figure 5.3: Calendar configurations C1-C3 (top) and C4 and C5 (bottom) used in our
test set. Black bars symbolize the temporal location of shifts.
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separation, and column generation. For the standard MIP (5.1)—(5.7) we used CPLEX
12.2 on the same machine, with default parameter settings, again single thread. Up to
two threads were run in parallel on not entirely idle machines, so run time differences of
5% are probably “noise.”

Usefulness of the heuristics Previous results showed that it is important for
CPLEX and our branch-and-price framework to have a good initial solution, whereas
the use of the heuristic throughout search is negligible, see [67].

Separation procedure Since there are m - T many precedence cuts (5.25), we need
a good separation oracle. We pursue two approaches in order to add these cuts into
the model. In our first approach we only check for a precedence pair (i,7) at time
point Tgreeay = [(Cs 4+ Si)/2] where equation (5.25) holds or is violated by more than
some €. In the second approach, we find the optimum point 73.s such that the left-hand
side of equation (5.25) is maximally violated. This can be done by sorting the summands
of equation (5.25) for each time point 7 such that for each value 7 the left-hand side can
be computed in linear time (after sorting). This procedure is pseudopolynomial in the
number of time points.

Settings We compare the outcome of a CPLEX run on MIP model (5.1)—(5.7) to
different settings of our branch-and-price approach. Initially, we do not separate cuts,
denoted by “nocuts.” Then, we evaluate how to separate the cuts. First, we separate
them already in the root node, and second as it will turn out to be profitable, after
resource capacity variables are fixed. Since it may not always be beneficial to check
for the largest violation, we use a promising guess as point in time: “74.ceq,” for each
precedence pair (i, 7). Searching for the highest violation is denoted by “7pest” which is
computed as described above. Furthermore, these cuts are only separated if a certain
threshold is exceeded. We call this the tolerance “tol.” and try tolerances 1074, 0.1, 0.3,
0.5 and 0.8, which range from a very small violation at which the cut is separated to a
very high violation. In some tables 0.0 denotes the parameter setting of 1074

5.4.2 Results

Very often a Dantzig-Wolfe decomposition can improve the lower bound obtained from
the standard linear relaxation by far. Nevertheless, the cutting plane algorithms of
commercial MIP solvers are sophisticated alternatives to improve the dual bounds. In
Figure 5.4 we see that the average improvement per calendar of the decomposed LP
relaxation (5.8)—(5.15) compared to the LP relaxation of (5.1)—(5.7) lies between 20% to
65% throughout all instances. The displayed average deviations and the minimum and
maximum values of that improvement show the strength of our relaxation.

To evaluate the strength of generic cutting planes added in the root node of the
commercial MIP solver, we compare the root dual bounds in Figure 5.5 after cutting
planes have been added by CPLEX and our solver. Our improvement is no longer
that dominating as in Figure 5.4 but still for several of the hard instances in calendar
setting C'1, there is a 28% improvement on the average of the root dual bound compared
to CPLEX.

Now, we compare our branch-and-price framework to a standard MIP approach in
terms of absolute number of solved instances and afterwards, we discuss the effect of
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Figure 5.4: Percentage of improvement of the lower bound obtained from our branch-
and-price formulation (5.8)—(5.15) over the standard LP relaxation of (5.1)—(5.7) as com-
puted by CPLEX. The minimum (diamond), maximum (triangle), mean, and standard
deviation of the improvement in percent of setting “no cuts” is shown.
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Figure 5.5: Average mean and standard deviation of root dual bound improvement of
our branch-price-and-cut approach as compared to CPLEX in percent. The best bound
over all tolerances has been used. Triangles show the best obtained improvement (e.g.,
200% in C1) and diamonds show the worst lower bound (e.g., 44% worse than CPLEX
in C2).

precedence cuts in our model by evaluating the number of branch-and-bound nodes and
the running time. In Figures 5.6 and 5.7 the first bar of each calendar (black) gives the
number of solved instances obtained by CPLEX, the second (white) bar represents this
number for the branch-and-price approach without precedence cuts. The first five grey
bars symbolize the results for setting “7grecqy” in increasing order of tolerances and the
last five bars stand for settings “Tpes:” in increasing order of tolerances.

Figure 5.6 shows for the instance set N6OE7T0 that the pure branch-and-price algo-
rithm without precedence cuts outperforms CPLEX and adding precedence cuts seems
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to be a bad idea. The set NSOE70 with fewer precedence constraints than N50E100 (see
Figure 5.7) is the harder one, as expected. In some cases the pure MIP approach is
even better than the branch-and-price approach with additional precedence cuts. This is
because the time spent for separating new cuts, pricing new variables, and the additional
LP iterations lead to too many timeouts and is therefore not competitive. Figure 5.6
clearly shows that a high tolerance (tol.) leads to better results, because fewer (and
stronger) precedence cuts are added. Hence, not using any precedence cuts at all is, at
first sight, a good decision.
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Figure 5.6: Number of solved instances for N5OE70 with cuts already separated in the
root node; each set of bars from left to right corresponds to rows in Table 5.1. A CPLEX
run on the standard MIP is black; our branch-and-price algorithm without cuts is white;
and the two groups of different shades of grey show runs of the full branch-and-price
algorithm with precedence cuts enabled, with settings 7yrceqy and Tpest, Tespectively,
with increasing tolerances (lighter grey is larger tolerance).
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Figure 5.7: Number of solved instances for N5OE100 with cuts already separated in the
root node.

Nevertheless, it is possible to increase the root dual bound on several instances by
using precedence cuts (5.25). During root solving most jobs are able to slide in their time
window and the precedence cuts result in more binary configuration variables that are
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smeared over the time horizon. Hence, these cuts should not be used in the root node
but still might be beneficial to prune certain nodes of the branch-and-bound tree. Recall
that our branching scheme first branches on the resource capacities Ry and afterwards
on the start and completion time variables. Fixed resource capacities in a node already
decide on a lot of structure for the scheduling problem, since several modes of a job
may no longer be valid. Thus, this seems to be a good point to separate precedence
cuts (5.25). Figures 5.8 and 5.9 show that more instances than before can be solved using
the precedence cuts. In several cases a tolerance of 10~% belongs to the best choices for the
separation procedure. Especially, for the harder instances N50E70 some more instances
of each calendar test set can be solved in the time limit to proven optimality in contrast
to CPLEX or a setting without additional precedence cuts.
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Figure 5.8: Number of solved instances of test set N5OE70 if cuts are separated after
resource capacity variables are fixed.

Next, we elaborate on the solving time and on the number of nodes needed to find
an optimal solution and prove its optimality. The results on the total number of solved
instances showed that it is beneficial to separate precedence cuts after resource variables
are fixed.

Tables 5.1 and 5.2 reveal that using additional precedence cuts enables us to decrease
the number of tree nodes by 10%-20% on average. For several hard instances, e.g., in
calendar C5 in test set N50ET70 a decrease by even 50% is possible. Best results in terms
of nodes are obtained when 7.5 is computed. Nevertheless, this does not carry over to
a reduced running time. For C1 the running times increase (Tpest VS. Tgreedy), Whereas
for C5 it decreases and the running time is about 10% faster than if no precedence cuts
are separated. That is, there is the usual trade-off between quality and time, and cutting
planes may be most interesting in memory critical applications.

A tolerance between 0.1 and 0.3 gives the overall best results as higher and lower
tolerances usually increase the running times.

Table 5.3 shows that using precedence cuts, not only increases the number of best
lower bounds that are found but this way often better primal solutions are found, e.g.,
on calendar C4 where the number of best primal bounds is increased from 39 to 45 with
precedence cuts.

While Tables 5.1 and 5.2 only show a slight improvement considering the average
running time and the number of nodes needed (in the shifted geometric mean) if prece-
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Figure 5.9: Number of solved instances of test set N50OE100 if cuts are separated after
resource capacity variables are fixed.

Table 5.1: Comparison of tree nodes and time for N50OE70 — cuts are only separated after
resources are fixed. Means are computed over the instances solved by all settings, of
which there are 27, 14, 48, 26, and 31 for Calendars C1 to C5.

C1 C2 C3 C4 C5
tol. nodes time nodes time nodes time nodes time nodes time
no cuts 12.0 660.7 10.7 546.3 1.0 6.4 11.4  200.5 21.3  356.2
0.0 10.0 667.9 9.5 553.4 1.0 6.4 8.9 201.0 14.3  346.3
0.1 10.2  662.7 8.8 518.7 1.0 6.4 8.3 197.2 16.7 361.8

Tgreedy 0.3 10.6 632.6 9.0 5234 1.0 6.4 10.0 204.2 15.9 338.9
0.5 11.4 661.0 10.5 538.9 1.0 6.4 11.2 216.9 19.1  347.2
0.8 11.4 6115 10.7  560.7 1.0 6.3 11.1  200.4 19.7  351.5

0.0 9.2 704.6 8.3 536.0 1.0 6.4 7.4  196.4 12.0 353.6
0.1 8.9 673.1 8.4 559.8 1.0 6.4 7.9 2028 11.6  341.3
Thest 0.3 9.2 653.6 8.6  542.7 1.0 6.4 7.7 1976 10.9 323.3
0.5 10.1  660.7 9.8  560.6 1.0 6.4 9.1 201.1 15.6 337.6

0.8 11.1  608.4 10.3 528.2 1.0 6.3 124 2124 16.6 338.9

Table 5.2: Comparison of tree nodes and time for N50.E100 — cuts are only separated
after resources are fixed. Means are computed over the instances solved by all settings,
of which there are 42, 44, 50, 48, and 47 for Calendars C1 to C5 respectively.

C1 C2 C3 C4 C5
tol. nodes time nodes time nodes time nodes time nodes time
no cuts 5.3 31.0 9.8 88.8 1.1 1.0 8.4 18.1 8.2 23.8
0.0 54  32.6 8.0 83.6 1.1 1.0 6.3 16.4 7.7 255
0.1 4.8 31.1 8.2 86.9 1.1 1.0 6.4 16.5 7.3 24.3
Tyreedy 0.3 54 305 9.1 873 1.1 1.0 6.5 16.3 77 241
0.5 51  30.7 9.1 85.5 1.1 1.0 6.8 16.5 8.2 24.0
0.8 5.4 29.7 10.3 88.1 1.1 0.9 7.4 16.4 9.0 23.6
0.0 4.8 323 7.5  88.8 1.1 1.0 5.9 16.5 6.3  23.5
0.1 4.8 325 7.2 86.8 1.1 1.0 5.7 16.4 6.2 23.0
Thest 0.3 4.7  30.5 7.6  87.3 1.1 1.0 5.8 16.3 6.5 229
0.5 51 31.4 7.7  83.2 1.1 1.0 6.4 16.5 7.8 24.0
0.8 5.4 29.8 10.0 92.2 1.1 0.9 7.2 16.2 8.5 23.3

dence inequalities are separated after resource capacities are fixed, Figure 5.10 gives a
more detailed comparison by comparing the ratios of the number of nodes (running time)
needed per instance compared to the best running time by any of the settings listed in the
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Table 5.3: The number of best lower and best upper bounds that were found throughout
search are displayed. for N50.E70 and below N50.E100. Cuts are separated after resource
variables are fixed. “nS” is the number of optimally solved instances, “bLB” (“bUB”)
denotes how often the best lower (upper) bound is found.

C1 C2 C3 C4 Ch5
tol. nS bLB bUB nS bLB bUB nS bLB bUB =nS bLB bUB nS bLB bUB
no cuts 28 45 48 16 48 39 48 48 50 31 48 39 32 47 43

0.0 30 45 49 17 48 41 49 49 50 30 49 37 32 47 41
0.1 29 46 49 18 49 43 49 49 50 33 49 40 32 46 42
Tgreedy 0.3 29 46 49 18 49 40 49 49 50 34 49 42 32 46 43
0.5 29 46 49 18 49 42 48 48 50 33 49 40 31 46 44
0.8 29 47 49 18 49 42 48 48 50 31 48 39 32 48 43
0.0 30 45 50 16 48 40 50 50 50 36 50 43 33 49 43
0.1 30 47 48 18 47 41 50 50 50 38 49 44 33 49 44
Thest 0.3 29 47 49 17 49 40 50 50 50 36 49 45 33 49 44
0.5 29 47 49 18 49 42 50 50 50 29 50 38 36 49 46
0.8 29 47 49 18 48 40 48 48 50 33 48 41 31 48 43

C1 C2 C3 C4 Ch
tol. nS bLB bUB nS bLB bUB nS bLB bUB nS bLB bUB nS bLB bUB
no cuts 44 48 50 47 49 50 50 50 50 49 49 50 49 49 50

0.0 43 47 48 48 50 50 50 50 50 49 49 50 47 47 50
0.1 43 46 49 47 50 49 50 50 50 49 49 50 47 47 50
Tgreedy 0.3 43 46 49 48 50 50 50 50 50 49 49 50 47 47 50
0.5 43 46 50 48 50 50 50 50 50 48 48 50 47 47 49
0.8 43 46 50 47 49 50 50 50 50 48 48 50 47 AT 49
0.0 44 48 48 46 49 49 50 50 50 50 50 50 48 48 50
0.1 43 47 48 47 50 49 50 50 50 50 50 50 48 48 50
Thest 0.3 44 47 50 47 50 48 50 50 50 49 49 50 47 47 50
0.5 44 47 49 48 50 50 50 50 50 49 49 50 47 47 50
0.8 43 46 50 47 49 50 50 50 50 48 48 50 47 47 49

tables. We see that, e.g., for calendar C5 on more than 50% of the instances the prece-
dence inequalities remarkably reduce the number of nodes needed. On several instances,
the setting without precedence inequalities needs between ten and 100 times more nodes
than the best setting with precedence inequalities. But we also see that the reduction in
terms of running times is much smaller as separating these cuts and computing the new
objective coefficients in the pricing problems is costly, too. Similarly, for calendar C4
we observe a decrease in the number of nodes needed, whereas the reduction in terms
of running time is rather modest and can only be seen on less than 20 instances. We
do not elaborate on the results for calendars C1 to C3 here. On calendars C1 and C2,
results are similar to C5, whereas on C3 not much changes, as on these instances the
dual bounds have not been a bottleneck.
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Figure 5.10: Ratios of nodes and running times for all optimally solved instances from
N50E70 for calendar C5 on top and for calendar C4 below.

Conclusion and outlook

The Turnaround Scheduling problem is complex and interesting from a computational
point of view. The decomposition approach invented here builds on subschedules per
working shift and hopefully enables further research on that topic. The strength of the
better dual bounds derived after applying Dantzig-Wolfe decomposition calls for being
tested in further scheduling applications and extensions, maybe to net present value
problems as studied in Section 4.1. Even the involved N'P-hard pricing problems do not
become a bottleneck at all, as the size of these problems is well controlled and generic
MIP solvers can be used to generate new variables.

Our computational study shows that decomposing the problem resource-wise per
availability period helps to solve instances with 50 multi-mode jobs and a large planning
horizon, whereas in benchmark instances from the literature, instances with 30 multi-
mode jobs cannot be solved to optimality. CPLEX also fails on more than half of
our instances. Here, the availability periods may also make the problem easier after
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decomposition.

Our algorithm is generic and components like the pricing problem may also be solved
via constraint programming algorithms or partially with a heuristic. We believe that the
general approach is well-suited for similar problems, in particular, when the objective
function is “complicated.”

It will be worth-while to extend all CP techniques developed in Sections 2.1 and 3
and to apply them to large-scale instances of the Turnaround Scheduling problem. Our
preliminary work in this direction suffers from weak propagation as the demands and
processing times per job (mode) must be handled carefully. Memory issues in SCIP from
the huge amount of variables further complicated these experiments. As SAT solvers be-
come faster also on scheduling problems, it can be expected that their use for Turnaround
Scheduling models is also a promising research direction. But as the objective function
may become more complex, our work in this chapter shows that sophisticated IP tech-
niques are in particular useful to strengthen the lower bounds which may not easily be
the case in CP or SAT approaches.
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