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Zusammenfassung

Die Herausforderung bei der blinden Bildrestauration ist, aus einem beobachteten Bild das ur-
spriingliche Signal eindeutig wieder herzustellen, ohne Nutzung einer zusatzlichen Information-
squelle. Die Schwierigkeit liegt vor allem bei den notwendigen Statistiken und Optimierungen
und der praktische Nutzen in Anwendungen der Bildanalyse und Bildverarbeitung. Diese Arbeit
leistet drei wichtige Beitrage zur blinden Bildrestauration und Segmentierung, die im Folgenden
aufgefithrt sind.

Der erste Teil dieser Arbeit beschéaftigt sich mit der systematischen Integration von
statistischer Modellselektion, Bayesschem Lernen und Regularisierungstheorie in streng kon-
vexen Optimierungsfunktionalen. Der vorgeschlagene Ansatz der Bayesschen Schatzung basiert
auf Doppelregularisierung. Er integriert globale nicht-parametrische Modellselektion, lokal
parametrische Unschérfekernoptimierung fiir parametrische Unschéarfeidentifikation und Dekon-
volution. Ein guter initialer Unschéarfekern wird durch eine konvexe Regularisierung geschétzt.
Wahrend der iterativen Doppelregulierung wird die geschétzte Pointspread-Funktion als Vor-
wissen fiir die nachfolgende iterative Schiatzung des Bildes und umgekehrt verwendet. An dieser
Stelle werden auch einige neue Ideen vorgestellt, welche die Qualitat der Unschéarfeerkennung
in Bezug auf unterschiedliches Rauschen in den einzelnen Bildern oder in groflien Videodateien
verbessern.

Der zweite Teil dieser Arbeit widmet sich der Verbesserung der Wiedergabetreue und
Qualitdt von wiederhergestellten Bilder, speziell in entrauschten Bildern. Hierbei werden ver-
schiedene lineare Wachstumsfunktionale zur Bildverarbeitung genauer behandelt und auf den
Raum von Funktionen mit beschrankter Variation angewendet. Basierend auf diesen Funk-
tionalen wird eine Bayessche Schatzung zur datengetriebenen Bildrekonstruktion durch Varia-
tionsrechnung entwickelt und implementiert. Die Performanz wird iiber die numerische Approxi-
mation von hyperbolischen Erhaltungssétzen, selbstregelnde Diffusionsoperatoren, adaptive An-
passung von Regularisierungsparametern und optimale Stoppzeiten des Prozesses kontrolliert.
Dieser Ansatz tibertrifft nicht nur die meisten bisher bekannten Ansétze, sondern erlaubt auch
eine hochprézise und nach menschlichen Kriterien exakte Bildwiederherstellung.

Der dritte Teil dieser Arbeit beschéftigt sich mit dem allgemeineren Unschérfeproblem
unter realen Bedingungen, beispielsweise fiir nur teilweis unscharfe Bilder einschliefflich sta-
tiondrer und nicht-stationdrer Unschérfekerne. Eine Vielzahl vorhandener Segmentierungsver-
fahren erfiillt die Aufgabe der Identifikation und Segmentierung von unscharfen Regionen nicht
zufriedenstellend. In Anlehnung an spektrale Bildsegmentierungskonzepte durch Clusteranalyse
und deren zugrunde liegende Verbindung zur Regularisierungstheorie, wurde ein regularisierter
spektraler Clusteringansatz auf diskreten Graphenraumen entwickelt, der gute Ergebnisse erzielt.
Infolgedessen konnen die identifizierten und segmentierten unscharfen Regionen in einem auf
Variationsrechnung basierendem Bayesschen Lernframework mit einem Prior aus natiirlichen
Bildstatistiken wiederhergestellt werden. Das iiblicherweise nicht berechenbare inverse Lern-
problem wird durch die variationale Bayessche Lernmethode berechenbar. Nicht-uniforme un-
scharfe Bilder konnen optimal rekonstruiert werden, ohne scharfe Regionen und Objekte zu
zerstoren.



Um den vorgeschlagenen Ansatz zu validieren, wurde die Leistungtéhigkeit an unter-
schiedlichen Bildern demonstriert. Die Resultate zeigen, dass die vorgeschlagenen Algorithmen
robust und leistungsfihig gegeniiber Bildern sind, die in verschiedenen Umgebungen, mit un-
terschiedlichen Arten von Unschérfe und Rauschen, erzeugt wurden. Auflerdem kénnen diese
Methoden auf Grund ihrer Flexibilitdt leicht angewendet werden, um verschiedene Probleme in
der Bildverarbeitung und Bildanalyse zu 16sen.

Abstract

The challenge of blind image restoration is to uniquely define the restored signals from only the
observed images and without any other information. It gives opportunities not only for valuable
contributions in the theoretical statistics and optimization but also for the practical demands
in image processing and computer vision. The main contribution of this thesis is in the fields of
image deblurring, denoising, image reconstruction and segmentation in low level vision.

The first part of this thesis is dedicated to the systematic integration of statistical model
selection, Bayesian learning and regularization theory in a strictly convex optimization func-
tional. The proposed approach is in a double regularized Bayesian estimation framework for
parametric blur identification and image deconvolution. A good initial point spread function
(PSF) blur kernel is estimated for convex regularization. During the iterative double regulariza-
tion, the estimated PSF is prior knowledge for the next iterative estimation of the image, and
vice visa. In this context, we also introduce several new ideas that improve the quality of blur
identification with respect to other sources of image degradation.

The second part of this thesis is devoted to improving the fidelity and quality of restored
images, especially in the context of image denoising and deblurring. It is in this part that we
introduce and extend several linear growth functionals to the space of functions of bounded vari-
ation (BV) for image processing. Based on these functionals, a data-driven variational image
restoration functional in a Bayesian learning framework has been designed and implemented in
the BV space. The performance is controlled via numeric approximation in terms of hyperbolic
conservation laws, self-adjusting diffusion operators, adaptive adjustment of regularization pa-
rameters and optimal stopping time of process. The approach does not only outperform most
approaches in the literature, but also allows to achieve high-fidelity and human perceptual image
deblurring, denoising and image reconstruction.

The third part of this thesis considers a more general blur problem in the real world, i.e.,
nonuniform blurred (e.g., partially-blurred) images including stationary and nonstationary blur
kernels. There are numerous existing segmentation approaches that do not achieve satisfactory
results for the identification and segmentation of blurred regions or objects. Inspired by spectral
graph theory and their underlying connections with regularization theory, we develop a regular-
ized spectral clustering approach on discrete graph spaces that achieves good performance. Also,
the blur kernel can be identified in high-accuracy in a tractable variational Bayesian learning
framework. The generalized parametric PSF prior and natural image statistics based image prior
distribution are used for blur kernel estimation. As a consequence, nonuniform blur degraded
images can be optimally restored without degrading unblurred regions and objects.

In order to validate the proposed approaches, we demonstrate good experimental perfor-
mance in a number of contexts. The results show that the proposed algorithms are robust and
efficient in that they can handle images that are formed in various environments with different
types of blur and noise. Furthermore, because of the flexibility of these methods, they can be
easily applied to solve a number of other problems in image processing and computer vision.
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1 Introduction

Vision is the art of seeing thing invisible. - Jonathan Swift

1.1 Motivation

In the modern digital imaging world, CCD, CMOS, tomography, MRI, microscope, space tele-
scope and radar data are often degraded due to blur and noise. These degradations heavily
influence the implementation, automation, robustness and efficiency of many visual systems.
For example, in visual surveillance systems, blurred frames or blurred objects in video sequences
influence the efficiency of such systems. Moreover, these degradations also influence the recon-
struction of high-resolution and high-fidelity images for display systems, image matching and
registration for 3D reconstruction systems, and low-level vision processing for classification and
recognition systems etc.

The primary goal of image restoration is to recover lost information from a degraded image
and obtain the best estimate to the original image. The challenge of blind image restoration
is to uniquely define the convolved signals only from the observed images without any other
information. It gives opportunity for valuable contributions in the theoretical statistics and op-
timization for ill-posed inverse problems but also for the practical demands in image processing
and computer vision. Its applications include tomography, stereology, medical imaging, mul-
timedia processing. Compared with classical approaches, blind image restoration for entirely-
and partially-blurred (stationary and non-stationary blur) noisy images becomes an important
research topic, e.g., shown in Fig. 1.1. Its growing desirable features pose many new challenges
to researchers in the field of mathematics, pattern recognition and computer vision.

Hadamard introduced the notion of ill-posedness in the field of partial differential equations
[102]. A problem is well-posed when a solution exists, is unique and depends continuously on
the initial data. It is ill-posed when it fails to satisfy at least one of these criteria. Ill-posed
problems have been a mathematical curiosity for many years. Nowadays they arouse great
interest since many problems of practical interest turned out to be ill-posed inverse problems,
e.g., such as blur identification, image restoration, segmentation, and the under-constrained
scene analysis, object reconstruction.

Most inverse problems are ill-posed. According to Keller and Engl’s description [129], [68], one
calls two problems inverse to each other if the formulation of one problem involves the other
one. Due to historic reasons, one might call one of these problems the direct problem, the
other one the inverse problem. The direct problem is usually the simpler one or the one which
was studied earlier. In the real world, if one wants to predict the future behavior of a physical
system from knowledge of its present state and the physical laws (including concrete values of all
relevant physical parameters), one will call this direct problem. Possible inverse problems are the
determination of the present state of the system from future observations (i.e., the calculation of
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1 Introduction

Figure 1.1: Entirely- and partially-blurred noisy images in real life environments. (a)(b)(c) Video data.
(d) Space telescope data. (¢) MRI data. (f) Synthetic aperture radar data

the evolution of the system backwards in time) or the identification of physical parameters from
the observations of the evolution of the system (parameter identification). While the study of
concrete inverse problems involves the question how to enforce existing, uniqueness, continuous
solution by additional information or assumptions, as we can see, most such inverse problems
often do not fulfill Hadamard’s postulates of well-posedness.

The approach of solving these ill-posed inverse problems is how to learn about the underlying
process mechanism of a physical or biology system (such as vision systems), how to influence
and design a system via its present state or parameters in order to steer it to a desired state.
Therefore, we might say the inverse problems are concerned with underlying and determining
causes for a desired or an observed effect and phenomenon, e.g., from an observed image to
estimate, reconstruct, and recognize the desired images or objects.

Blind image restoration and image reconstruction including blur identification, deblurring and
denoising can be considered as an ill-posed inverse problem [43]. For example, in real environ-
ments, blurring and noising occur naturally but deblurring and denoising need extra work on
the system. Mathematically, image deblurring is intimately connected to back-ward diffusion
processes, e.g., inverting the heat equation, which are notoriously unstable. As inverse problem
solvers, deblurring and denoising models therefore crucially depend upon proper regularization
which secures existence, stability and uniqueness of restoration.

Theoretical Perspective

From a theoretical perspective, regularization is the approximation of an ill-posed problem by a
family of neighboring well-posed problems. The regularization theory [241] provides a convenient

12



1.1 Motivation

way to solve ill-posed problems and to compute solutions that satisfy prescribed smoothness
constraints. The studies of regularization theory can be found in inverse problems by Bertero
[24], Engl [68], Groetsch [100], [101], Hansen[105], [239], early vision by Katsaggelos [127],
Hellwich [111], Schndrr [221], and Weickert [259], and brain and cognitive sciences by Poggio et
al. [91], [192], [193], [195] etc. This formalism has been recognized as a unified framework for
studying several problems in computer vision and image processing. Regularization is especially
crucial for vision problems, and present numerous challenges as well as opportunities for further
statistical and mathematical modeling.

In theoretical statistics and statistical learning theory, regularization is usually interpreted either
in Bayesian terms, or as some form of Stein-like shrinkage [64]. It covers important topics of
traditional statistics, especially in discriminant analysis, regression analysis and the density
estimation problem [248]. Other disciplines, notably image processing and computer vision,
offer more pragmatic and interesting perspectives, and often furnish more aggressive attacks
on computational aspects, e.g., numerical computing scheme based on physical laws. Recent
developments in the statistical literature offer promising new approaches to the fine-tuning of
regularization techniques, particularly in the selection of regularization parameters [94], [106],
regularization operators and optimization [94]. Regularization has been extended and discussed
in discrete graph space based regularization [300], kernel based regularization [222], [248], semi-
supervised regularization [309] and so on.

In applied statistics, regularization often identified as “penalty-based methods” or “soft thresh-
olding”, is associated primarily with nonparametric regression and density estimation. In such
cases, it is often referred to rather imprecisely as “smoothing”. One of the primary objectives of
stochastic routes to regularization would be to encourage a further diversification of smoothing
objectives. Several techniques exist, such as variational regularization using a convex stabilizer.
In reality, a priori knowledge often requires non-convex functionals, resulting in a no longer
convex solution space. Therefore, stochastic methods or “converting non-convex to convex”
strategy are needed to escape from local minima [189)].

Another regularization method consists of choosing a discrete solution space with finite dimen-
sions and imposing generic constraints. This may seem like a harsh restriction at first but this
isn’t really so. Indeed, our real world is highly structured and is constrained by physical laws
to a number of basic patterns. In computer vision, people gradually built textons (the atom
of visual perception) [308] and “bag-of-words” [228], [72], for recognition or semantic search-
ing. The apparent complexity of our environment is produced from this limited vocabulary by
compounding these basic forms in different combinations. If the intrinsic complexities of our
environment were approximately the same as its apparent complexity, there would be no lawful
relations and no intelligent prediction. It is the internal structuring of real environment that
allows us to reason successfully using simplified descriptions [274]. Different techniques in engi-
neering, statistics, or biology, have been transferred and described to determining these generic
constraints [140]. When the a priori assumptions are violated in specific instances, the obtained
solution may not correspond to the real world situation. Therefore, extracting and modeling of
descriptive prior information from uncertainty become important.

A more fundamental problem that arises in inverse problems is the scale problem which includes
related localization, and orientation problems in scale-space [146], [147], and the concepts of
inverse scale spaces [217], [218]. In other words, which scale is the right resolution to oper-
ate? Scale-space methods are asymptotic formulations of the Tikhonov regularization [241].
These techniques consider the behavior of the result across a continuum of scales. From the
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1 Introduction

viewpoint of regularization theory, the concept of scale is related quite directly to the regular-
ization parameter. It is tempting to conjecture that methods used to obtain the optimal value
of regularization parameters may provide the optimal scale which is associated with the specific
instance of certain problems.

Practical Perspective

A wide range of ill-posed problems concerned with recovering information from indirect and
usually noisy measurements arise from image processing, stereology, computerized tomography
(J. Radon), medical imaging, inverse scatting, inverse heat conduction problems, geophysics,
geodesy, image deconvolution, and related vision problems.

First, regularization theory offers a unifying perspective on these diverse ill-posed inverse prob-
lems. Given an individual blurred image, one is interested in more information that can be
extracted, restored from these blurred images or blurred regions or objects. However, because of
the growing demands for solutions and the complexity and uncertainty of problems, the integra-
tion of statistic learning and regularization is a preferred approach for achieving a high-quality
solution. This approach can be formulated as a convex optimization problem and is solved by
numerical iterative schemes. The cost function is a combination of the error learning term and
the stabilizing term which can be optimized in a convex regularization approach. The stabilizing
term usually reflects physical constraints arising within the application for which the proposed
solution is a model, and acts by limiting the energy of the solutions.

Second, we can obtain the best results with the blind deconvolution algorithms for most existing
blurred images and signals. The reason is that the blind deconvolution algorithms do not use
the measured point spread function (PSF) for the other algorithms, but approximate the PSF
iteratively. This is due to the fact that measured PSFs itself contain noise and therefore the
deconvolution is biased by the noisy PSF. Although the blind deconvolution does not use any
information of the actual optical system, it yields better results, since the PSF is approximated
and not influenced by noise.

Third, for non-uniform or non-stationary (e.g., partially-blurred) blurred image restoration, we
need to restore the blurred regions or objects without influencing unblurred regions or objects
in an image. The proposed regularization in discrete graph spaces is formulated in combi-
natorial optimization which allows to segment and identify blurred regions or objects. More
important, the interesting analogy between regularization and spectral graph theory [51] brings
crucial insights to the understanding of eigenvalues, eigenvectors and the Laplacian of graphs.
Our proposed regularized spectral graph clustering approach on discrete graph spaces is a novel
approach which can directly get global image understanding using sparse local patches in clut-
tered images. It is also a novel approach towards the perceptual image segmentation for various
images. This approach also suggests that only incorporated segmentation work can become
meaningful and more useful in practical environments.

Furthermore, such blurred images are mostly non-stationary and non-uniformly blurred. It
means that we cannot directly to represent these real blur kernels using some simple parametric
blur kernels. Therefore, based on previous work, we extend our previous double regularized
Bayesian estimation to a more tractable variational Bayesian learning approach. This approach
allows the true posterior to be approximated by a simpler approximate distribution for which
the required inference are tractable. Moreover, natural image learning helps us find translation
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and scale-invariant spatial prior distribution. In particular, the approach makes effective use of
the natural image statistics through the whole variational learning scheme. Our experiments
show that the results derived from the algorithm are superior to this type of blurred images. The
scheme can be further extended to other types blurred image restoration in real environments.
The approach can be used solved related kernel identification, pattern recognition and computer
vision problems.

In summary, other important applications are that the integrated statistical learning and reg-
ularization approach can achieve accurate blur identification and image restoration in convex
optimization. The optimization theory and methods can be reasonably applied to solve many
kinds of vision problems, e.g., reconstruction, recognition and so on. These methods can also
be easily extended to data mining, semantic data searching [139] and related model selection
problems. The relation to other corresponding problems shows that the previously described
applications are only some examples based on this proposed mathematic framework. Further-
more, there are much more vision, image processing, data mining and related problems that can
be solved via the extension of our proposed methods.

1.2 Problem Statement

The goal of the present work is to contribute to statistical learning, especially Bayesian learning
and regularization approaches for solving the ill-posed inverse problems in image processing,
pattern recognition and computer vision.

1.2.1 lll-posedness of Image Deblurring and Denoising

To recover a sharp image from its blurry and noisy observation is a problem known as image de-
blurring and denoising. The observation of blurring and noise is one way for blur understanding
and deblurring and denosing. Through the observation, these underlying natural phenomena
can help us design more robust and flexible deblurring and denoising models. Normally, de-
blurring and denoising can be taken into account and processed respectively. However, in most
situations, deblurring and denoising must be processed cooperatively due to the complexity of
blur and noises. Chan and Shen [43] provide a general and sound overview for the problem of
deblurring. Here, we add some understandings on them.

Image Deblurring

1. Deblurring is inverting lowpass filtering. Blurring is one of the most important
degradation processes for images and signals. For most real blurred images, power spectral
densities in the frequency domain vary considerably from low frequency domain in the
uniform smoothing region to medium and high frequency domain in the discontinuity and
texture regions, and different blur in a given image has different magnitude and phase in the
frequency domain. The high frequency discontinuities are often diminished by vanishing
blur multipliers. As a consequence of deblurring, we need to multiply the approximate
reciprocals of vanishing multipliers. However, these multipliers are conceivably unstable
to noises and other high-frequency perturbations in the image data.
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2. Deblurring is Shannon information increasing and entropy decreasing. The
goal of deblurring is to reconstruct the detailed image features from a modified blurred
image. Therefore, from an information theoretic and statistic mechanics points of view,
deblurring is a process to increase Shannon information [225] and decrease entropy. Based
on the second law of statistical mechanics [88], blur is natural and easily takes place but
deblurring process never occurs naturally and extra efforts need to be contributed on the
system.

3. Deblurring is backward diffusion. Following the PDE theory, an image blurred with
a Gaussian kernel is equivalent to running the heat diffusion equation for some finite
duration with the given image as the initial data. Thus, deblurring is the inverse process
of heat diffusion. Moreover, image diffusion corresponds to the Brownian motions of initial
ensemble of particles in the stochastic processing domain. The blurring process is a random
spreading process and the deblurring process amounts to reversing an irreversible random
spreading process, which is ill-posed.

4. Deblurring is inverting compact operator. A blurring process is typically a compact
operator [43]. A compact operator maps any bounded set to a much better behaved set
according to the associated Hilbert or Banach norms. Compact operators allow us to
generalize classical results for operator operations in finite-dimensional normed spaces to
infinite-dimensional normed spaces via approximation and a limiting process. Compactness
plays a key role in functional analysis. Intuitively, a compact operator has to mix spatial
information or introduce some coherent structures. These coherent structures are often
realized essentially by dimensionality reduction using vanishing eigenvalues or single values.
Therefore, to invert a compact operator is equivalent to de-correlating spatial coherence
or reconstructing the formerly suppressed dimensions of features and information during
the blurring process. For example, the equation ¢ = H f + n has often either no solution
or infinite solution of H and f with an observed image g. An unique meaningful solution
has to be estimated in some proper way.

Influences of Blur Identification

Since most degraded images suffer from unknown disturbance, unknown blur information, and
unknown noises in the real world, blind image deblurring becomes more difficult. Blur also
influences the automation, robustness and efficiency of many visual systems in some respects.
In visual surveillance systems, blurred frames or blurred objects in video sequences influence the
efficiency of such systems. During the 3D reconstruction from uncalibrated video data, freely
taken digital video sequences may have some kind of blur. Those blurred images can heavily
influence the next processing step, e.g. feature based image matching.

Recent research connected with the blind image deconvolution (blur identification and deblur-
ring) problem has shed light on the characteristics of the image blur or point-spread function
(PSF) and especially its dimensions. There are a lot of assumptions for the process of blind
image deconvolution, for example, the image background encompasses at least blur-invariant,
uniform blurred, and so on. The true image can be restored up to a complex constant using
the inverse PSF, given a blurred image free of noise. If the blurred image is contaminated with
noise, which gives rise to artifacts, the technique would be rendered useless. This algorithm can
be extended to mitigate noise considering the symmetric nature of most PSFs. In general, we
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can accurately identify the blur, then we can restore it. However, there are several limitations
that lead to unsuccessful cases. Some limitations in restoring blurred images are summarized in
the following:

1. The point spread function (PSF) of the blur, in general, varies spatially within
an image. It is the main limitation (it is also called non-stationary blur), since blur
identification at every pixel uses the pixels within a neighborhood of that pixel. One
assumption is that the blur kernel varies slowly in spatial coordinates. However, sometimes,
it is even more difficult to justify this assumption. There is a trade off between having
a big enough window for blur identification, and the validity of the assumption that the
PSF is stationary within the window. The extent of the PSF should be represent the blur
of the sampling region. Therefore, in some sense, this poses a limitation in the processing
of spatially variant blurs.

2. Incorporating nonlinear sensor characteristics into blur identification and im-
age deconvolution procedures. Normally, through varying image and PSF models,
improved restorations can be obtained. It is particularly important for spatially variant
PSFs that the models change accordingly. This is in contrast to the image model for which
restorations are fairly insensitive. An important consideration for adaptive filtering is that
the regions must contain sufficient data for the identification of model parameters. For
example, as the PSF size increases, the amount of image data used for identification must
also increase.

3. From optimization point of view, one of the problems with the identification
technique is the existence of local optima. In some cases these suboptima correspond
to minimum phase and non-minimum phase parameterizations of the PSF. One technique
which will avoid minimum phase PSF identification is to assume PSF symmetry, whenever
possible. In other cases, the image is restored with the identified parameters corresponding
to the local optima and then making a choice by visual inspection of the restoration or by
comparison of mean square errors and other measuring criteria.

4. There are observation noises. The presence of observation noise imposes a fundamental
limitation on how much we can restore the resolution of the image before the filtered noise
starts dominating the restored image. Also, the traditional film grain noise is usually
signal-dependent, which causes theoretical difficulties. Those additive and multiplicative
or impulsive noises also heavily influence the blur identification.

5. There are ringing artifacts in restored images. The ringing artifacts are visually ob-
jectionable. Moreover, they sometimes mask important image information. It is possible
to suppress ringing artifacts to a certain extent. During the deconvolution and restoration
process, periodic boundary condition easily generates ringing artifacts, while Neumann
boundary condition do not have such artifacts. However, periodic boundary condition is
suitable for large-size images restoration but needs adaptive filtering algorithms to elimi-
nate the ringing effects.

1.2.2 Demands of Image Restoration and Segmentation

Image restoration has been investigated for several decades by now. Traditional deconvolution
techniques are assumed to be linearly degraded by a convolution with a blurring kernel, which
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is known a priori. The naive solution was to use inverse filtering, which was generalized to the
optimal linear Wiener filter, to account for additive noise and zeros in the blurring kernel. More
modern nonlinear deconvolution methods are used today based on statistical methods [71], [232],
Tikhonov-regularization [241], or wavelet-based techniques|[1], [233], among other methods.

Normally, the blur kernels are not known, some blind image deconvolution methods from
Kattsaggelos [126], [18], Kundur [134], [161] try to achieve an adequate solution based on gen-
eral assumptions with respect to the smoothness of images and the blurring kernels. Partial
differential equations-based methods were also proposed achieving good restoration results [44],
[208]. These image restoration methods can be classified into several categories depending on
data sources, restoration targets and restoration methods.

1. High fidelity image restoration. Firstly, keeping high fidelity to the original data is
based on the definition of image restoration. Restoration can be achieved by restoring all
tiny and detailed discontinuities and structures of degraded images. The restored image
can be gradually restored towards the original image. Restoration methods from spatial
domain and frequency domain have different advantages in image restoration.

2. Human visual perception image restoration. Using the fact that human visual
perception is adapted to the statistics of natural images and sequences, the classes of
restoration models are not based on an image model but on a model of the human visual
system. In particular, the non-linear model of early human visual processing is used to
obtain locally adaptive image restoration without any a priori assumption on the image
or noise.

3. Simultaneous image identification, segmentation and restoration. According to
the target of simultaneous image restoration and segmentation, restoration then might not
focus on the restoration of tiny structures of images but emphasize main discontinuities
and structures of the restored images, e.g., partially-blurred image restoration.

In our work, to ensure our algorithms can be directly applied for different data sets such as
tomography data, SAR data, etc., we do not improve the contrast or surface difference to
improve the human visual perception results. For example, the contrast represents one of the key
information in SAR data or tomography data, i.e., contrast in spatial domain is the amplitude
information of such data in frequency domain. If the contrast is enhanced, the original data
information will be modified or lost in such datasets. On the other hand, we keep the idea
to ensure high fidelity of restored images so that the suggested algorithms can be applied for
different data sources.

1.3 Proposed Approaches and Related Work

The goal of the present work is to contribute in the field of blur identification, image restoration
and segmentation in computer vision. We are interested in improving state-of-the-art methods
for ill-posed inverse problems. The underlying strategy is to integrate statistical learning and
regularization in a convex optimization functional which is well-posed of minimization problems.
Firstly, we propose a global nonparametric model selection with local parametric optimization
in a Bayesian estimation based regularization approach. We focus on unsupervised Bayesian
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model selection methods for sampling blurred regions and blur identification in a nonparametric
density estimation approach. The identified blur kernel (without accurate parameters) can be
an initial value in the adaptive weighted regularization. Subsequently, the locally parametric
optimization can further improve the accuracy of the identified blur kernel.

On the other hand, we are also interested in high-fidelity image restoration. A data-driven image
restoration method in the BV space is proposed and proved to be an “active” data-preserving
image restoration approach. Furthermore, different from the traditional continuous regular-
ization framework, we have implemented a regularization functional in discrete graph spaces.
This method unifies regularization theory and spectral graph theory in a discrete regulariza-
tion functional. This approach allows us to achieve partially-blurred image restoration without
influencing unblurred regions or objects. By addressing statistic learning and regularization ap-
proaches, this thesis shall provide a systemic and Bayesian based variational energy optimization
framework for the design of robust and high quality blur identification, image restoration and
segmentation.

In order to specify our contributions in detail, a short introduction to Bayesian model selection
for blur identification, data-driven variational image restoration in the BV space and discrete
regularization in graph spaces is presented. Furthermore, some relevant work that is related to
these fields of research are also presented.

1.3.1 Double Regularized Bayesian Estimation for Parametric Blur Identification

How to reliably and accurately identify blur kernels and their parameters in practical environ-
ments? Based on the theory of statistical learning, we classify such blur identification methods
into global nonparametric estimation and local parametric optimization methods. Thereby, we
integrate global nonparametric estimation and local parametric optimization for accurate blur
identification.

Since statistic learning is a consequence of the ability to integrate information over time, the
Bayesian estimation provides a basis for the design of learning algorithms. Bayesian estimation
also provides a means of updating the distribution from the prior to the posterior in light of
observed data. In theory, the posterior distribution captures all information inferred from the
data about the parameters. This posterior is then used to make optimal decisions or predictions,
or to select between models.

However, Bayesian approaches are often avoided by many statisticians, partly because there are
problems for which a decision is made only once, and partly because there may be no reasonable
way to determine the prior probabilities [63]. Neither of these difficulties seems to present
some drawbacks in typical pattern recognition applications: For nearly all important pattern
recognition problems we will have training data and we will use the recognizer more than once.
For these reasons, the Bayesian approach will continue to be of great use in pattern recognition.
The single important drawback of the Bayesian approach is the difficulty of determining and
computing the conditional density functions. The multivariate Gaussian model may provide an
adequate approximation to the true density, but there are some problems for which the densities
are far from Gaussian. To simplify and decrease such difficulties in our work, two main ideas
are used for the improvement of Bayesian estimation based blur identification,

1. Bayesian estimation expresses likelihood energy for approximate inferences that can be
interpreted as a family of regularization functionals from Tikhonov [241], Geman and
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Geman [85], [86], Osher [213], Mumford and Shah [173], Molina and Katsaggelos [169],
Bishop et al. [28], Jordan et al. [121], Opper et al. [183], [181], Schélkopf et al. [222],
Blake and Zisserman [33] and so on. We introduce Bayesian probability estimation to a
convex regularization functional which computes the negative log-likelihood in an energy
optimization manner. It therefore becomes possible to design a unified statistical learning
and regularization system that can rely on prior knowledge and evidence. To ensure
the global convergence, we formulate the regularization in a strictly convex functional.
Following Bayesian paradigm, the true f, the PSF h and observed g in g = hf + 1 on,

(glf,h)P(f,h)
p(g)

P(f,hlg) =2 o p(g| f, ) P(f, h) (1.1)

This formula utilizes prior information for getting a convergent posterior. Thereby, the
search of prior knowledge P(f,h) becomes crucial for the whole system.

2. Initially Inspired by Hellwich [111], Bishop [28], [27], Duda [63], Freeman [80], Geman
and Geman [85], Szeliski [237], [238], Winkler [272], [273], Zhu et al. [303], [307] and
so on, the prior knowledge should be descriptive information for measuring at the first
step. Secondly, it may largely represent the uncertainty information. For the special
case of blur identification, we design a blur kernel solution space based on characteristic
properties of blur kernels and blurred images. Moreover, we employ the constraints of the
restored image and the PSF as alternating priors for local parametric PSF adjustment.
On the other hand, the use of prior information expresses an underlying idea in modeling a
regularization approach with some physical constraints. Some physical constraints become
generative information after statistical estimation, while some become nonnegative prior
information (e.g., image and PSF are always positive). These constraints combined with
the data information define a solution by trying to achieve smoothness and yet remain
“faithful” to the data.

1.3.2 Data-Driven Variational Image Restoration in the BV Space

How to largely improve image deblurring and denoising in human visual perception? In the
other words, how to represent an image in a mathematical model in the spatial domain and
this model can further help us to reconstruct a high-fidelity image? A simple image including
a white disk on a black background is not in any Sobolev space, but belongs to the BV space.
The BV space is the space of functions for which the sum of the perimeters of the level sets is
finite. Since the seminal work of Rudin, Osher and Fatemi (ROF) [213], the BV space based
total variation (TV) functionals have been widely applied to image restoration, super-resolution,
segmentation approaches and related early vision tasks, e.g., Mumford-Shah functional [173],
modeling of oscillatory components [164], anisotropic diffusion [259], modeling of inpainting and
super-resolution [42]. Closely related work are from Alvarez, Lion and Morel [7], [5], Demengel
and Teman [59], Giusti [92], [93], [69], Vese [249], Auburt and Deriche et al. [15], [16], Chen et
al.[48] and so on. However, through the literature study, we find that only little work is done
on how to determine regularization parameters, and optimal diffusion operators for achieving
optimal image restoration results. A Bayesian estimation based double variational regularization
in the space of functions of Bounded Variation (BV') is proposed. The main idea is described
in the following.
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When an image f is discontinuous, the gradient of f has to be understood as a measure, and
the space BV () of functions of bounded variation is well adapted for this purpose. The
Osher-Rudin functional (TV) is strictly convex and is lower semicontinuous with respect to the
weak-star topology of BV. Therefore, the minimum exists and is unique. The decomposition of
the TV model heavily depends on the specific norm which is chosen on BV. However, the Osher-
Rudin functional (TV functional) is a special example of a more general smoothing algorithm
[164]. We relax the TV functional to a more general convex functional in the space BV (1)
where| D f| — ¢(|Df|), and the formulation of the problem is

il T(figm) = 5 /Q (g — hf)2dA+ ) /ﬂ (D (z,y)[)dA (1.2)

fEBV(Q) 2

This equation is studied by Vese et al. [249] for image deblurring and denoising. Furthermore,
we study a more general variant exponent, linear-growth variational, convex functionals in the
BV (Q) space by Chen, Levine and Rao [48] and [49],

inf T (figm) = = /Q (g — hf)2dA+ /Q o(x, Df(x,y))dA (1.3)

fEBV(Q) 2

where ¢(|Df(x,y)|) — ¢(z, Df(x,y)). For the definition of a convex function of measures,
we refer to the works of Goffman-Serrin [93] Demengel-Temam [59], and Aubert [15]. For
f € BV(Q), we have,

/ o, Df (z,y))dA = / o,V f(z,y))dA + / \D* f ()| dA (1.4)
Q Q Q

The main importance and benefit of Eq. 1.3 is that we can study and inference a new variant
exponent, linear growth functional in the BV space for image denoising [48].

Since the degradation of images includes not only random noises but also multiplicative, spatial
degradations, i.e., blur, we extend this equation for simultaneous image deblurring and denoising.
We construct a Bayesian estimation based double variational regularization with respect to the
estimation of PSFs and images. The proposed functional in strictly convexity is shown in the
following,

inf  J.(f,h) = ;/Q(gh*f)QdA+A/Q¢E(x,Df)dA+5/Q(viz)dA (1.5)

where f and h are the iteratively restored image and PSF. ¢ is a small constant to avoid
the zero denominator during discrete numerical approximation. To achieve perceptual image
restoration, we also use techniques from the theory of time-dependent minimal surfaces and
the hyperbolic conservation laws for the numerical approximation. The proposed approach
has several important effects: firstly, it shows a theoretically and experimentally sound way
of how local diffusion operators are changed automatically in the BV space. Secondly, the
self-adjusting regularization parameters also control the diffusion operators simultaneously for
image restoration. Furthermore, the time of stopping the process is optimally determined by
measuring the signal-to-noise ratio. Finally, this process is relatively simple and can be easily
extended for other regularization or energy optimization approaches.
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1.3.3 Variational Bayesian Learning and Discrete Regularization for Nonuniform
Blurred Image Segmentation and Restoration

How to restore Nonuniform blurred (e.g., partially-blurred) images without influencing unblurred
regions and objects? Furthermore, how to automatically identify and perceptually segment
blurred regions or objects and restore them respectively? In the real world, CCD and CMOS
images, tomograph data, remote sensing or medical data are often entirely-blurred or partially-
blurred in a stationary or non-stationary way. Blind image restoration (BIR) of partially-blurred
images is to restore blurred regions without influencing unblurred regions for achieving better
visual perception based on the Gestalt theory [270].

However, we can not directly apply normal image restoration methods to restore partially-
blurred images. The restoration of partially-blurred images generates an interesting question.
From the mathematical viewpoint the question is, how to get a global convergence of multi-
levels of local distributions. These multi-levels of local distributions include local pixel gray
level distributions, randomly distributed local blurry regions and unblurred regions or objects.
Therefore, it becomes a challenging partial convergence problem [248]. A novel mathematical
model needs to be constructed for the solution. The main strategy is summarized in the following,

1. To motivate the algorithm, different characteristic properties [80], [153] (gradient, fre-
quency, entropy, etc.) [67], [191] between blurred and unblurred regions or objects endowed
with pairwise relationships can be naturally considered as a graph. We treat blind image
restoration of partially-blurred images as a combinatorial optimization problem [130], [85],
[80] based on regularization theory [241], and spectral clustering theory in discrete graph
spaces [51], [80], [226], [282] and call it discrete regularization [300]. Some connections
between some of these interpretations are also observed in [300], [282], [142], [51] based
on differential geometry and transductive inferences [248], [222], [300]. More important,
this integration brings crucial insights to the understanding of these theories, underlying
relationships and their potential roles.

2. The main objective of the standard regularization techniques is to obtain a reasonable
reconstruction which is resistant to noise in inverse problems. Based on these inher-
ent characteristic properties, discrete regularization is about converting high-level targets
(e.g., identification and segmentation of blurred and unblurred regions or objects), guiding
low-level image processing (e.g., similarity measure) and learning the optimal segmenta-
tion based on multi-levels of local distributions (e.g., blur and unblurred regions, different
distributions of color, texture, and gray values ). Conceptually, the discrete regularization
paradigm also reveals the roles of some well-known optimization algorithms. Algorithms
such as graph-cuts [132], variational regularization [184], [173], [267] can be viewed as
either discrete regularization [24] with energy in binary discrete spaces or in continuous
bounded variation spaces. Compared to Markov random fields based stochastic optimiza-
tion approaches [85], [80], this paradigm in the discrete graph space is optimized in a
deterministic way.

3. Through large observations and experiments, we classify natural blurred images into three
main blurred groups so that we can design an efficient methods. Natural image statistics
[227], [209], [73], [109] has some properties to represent images. As a result, we obtain an
approach, which can compute and use the translation and scale-invariant marginal prob-
ability distribution of image gradients as a priori through the Bayesian learning scheme.
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Figure 1.2: Diagram of chapters

In a sense, the distribution can be shared by most similar type of blurred images and
therefore requires relatively few training images. Moreover, we approximate the Bayesian
ensemble learning [114], [27], [166], [167], [73] into a variational manner in graphical models
[121], and closely related with mean field theory [181], variational free energy [183]. The
variational methods make the Bayesian ensemble learning more tractable, practical and
efficient. Finally, inspired by the multi-scale [197], [73] and multigrid methods [37], the
blur kernel is identified and interpolated from low-resolution to high resolution. Therefore,
we can avoid local minima and achieve high accuracy blur kernels. Experiments show that
the suggested method is more robust and can restore large nonuniform blurred images.

1.4 Organization and Contributions

Before our discussion of main contribution can begin in earnest, certain fundamental concepts
and results must be introduced. Chapter 2 is devoted to that task. The chapter consists
of material that is standard, elementary functional analysis, background and is essential for
further pursuit of our objectives.

Chapter 3 and 4 are devoted to the statistical model selection and regularization for blur iden-
tification. Chapter 3 develops the general statistical model selection methods, illustrating it
with some applications for nonparametric blur identification and blurred image selection from
individual images and large video sequences. Chapter 4 deals solely with the suggested method
of Bayesian estimation based double regularization to parametric blur identification includ-
ing global nonparametric blur identification and local parametric optimization of blur kernels.
During the iterative double regularization, the estimated PSF is prior knowledge for the next
iterative estimation of the image, and vice visa.

Chapter 5 is devoted to improve the fidelity and quality of restored images including deblurring
and denoising. It is in this chapter that we introduce several general linear growth functional for
image processing in the space of functions of bounded variation. The concepts of the bounded
variation space and variational regularization are pursued in this chapter through the introduc-
tion of a linear growth variation functional, a variant exponent LP linear growth functional and
our suggested Bayesian estimation based double variational regularization functional.

Chapter 6 considers a more general blur problem in the real world, e.g., partially-blurred images
including stationary and nonstationary blur kernels. There are a lot of existing segmentation ap-
proaches which cannot achieve satisfactory results on the identification and partition of blurred
regions or objects. Inspired by spectral clustering image segmentation concepts and the underly-
ing mathematic connections with regularization theory, we investigate the convex regularization
in discrete graph space and have good performances. The restoration of non-stationary blurred
images are solved using a proposed variational Bayesian ensemble learning approach with nat-
ural image statistics prior. The results outperform most state-of-art methods. The techniques

23



1 Introduction

in this chapter is an outgrowth of the principles of variational Bayesian learning, regularization
and convex optimization based graph theoretic concepts. In the course of the development and
compare to existing methods, the perceptual image restoration problem is firstly treated into
two simultaneous problems, i.e., perceptual image segmentation and image restoration based
gestalt law.

Finally, Chapter 7 contains a summary of the suggested techniques for the solution of this ill-
posed inverse problems in the field of statistical learning, pattern recognition and computer
vision. Some publications are explained with respect to previous chapters, but many new ideas
and plans are proposed for the future work. The structure of the whole thesis is presented in
Fig. 1.2.

The main contributions of this thesis are summarized in the following.

1. Bayesian estimation based global nonparametric model selection and local
parametric optimization for blur identification. Global nonparametric estimation
and local parametric optimization is an ongoing research topic. Through the case of blur
identification, we study this statistic strategy in an alternative way. We investigate the
systematic design of convex and non-convex regularization by integrating statistical learn-
ing and a variety of regularization models. This approach combines global nonparametric
estimation techniques and local parametric optimization techniques for improving the accu-
racy of blur identification. In the context, we also introduce several new ideas that improve
the quality of blur identification with respect to noise, mixed blur and noise, in individual
images or large video data. Moreover, we present a systematic framework for blur identifi-
cation methods based on the integration of statistical learning and convex regularization.
This system proves to be useful in several respects: Firstly, statistical learning provides
accurate initial values for the iterative optimization approach which largely improves the
results. Secondly, the prior learning terms in the regularization can be considered as a
convex penalty term for keeping the energy functional in a strictly convex functional.

2. Adaptive data-driven variational image denoising and deblurring in the BV
space. A novel method is proposed for determining the optimal parameters and op-
erators to achieve optimal high-fidelity image restoration. The selection of regularization
parameters is self-adjustable following the spatially local variance. Simultaneously, the lin-
ear and non-linear smoothing operators are continuously changed following the strength
of discontinuities. The time of stopping the process is optimally determined based on the
improvement of signal-to-noise ratio. The numeric implementation of these algorithms are
based on the hyperbolic conservation laws which can largely improve the visual percep-
tion results. These criteria are used to adjust regularization parameters for balancing the
global energy minimization to achieve perceptually high-fidelity image restoration.

3. Unified variational Bayesian learning and regularized spectral graph clustering
on discrete graph spaces for nonuniform blurred (e.g., partially-blurred) image
identification, segmentation and restoration. Different from the traditional regular-
ization approaches in continuous spaces (e.g., Hilbert space, BV space), we have designed
a discrete regularization approach based on the integration of spectral graph theory and
regularization theory. This approach unifies spectral clustering and spectral eigenvalues
analysis in a regularized spectral graph approach. Moreover, we extend a family of dis-
crete regularization operators in Riemannian manifold for the smoothness of optimization.
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Consequently, the restoration of identified and segmented regions and objects are solved
in a variational Bayesian ensemble learning framework. Natural image statistics can be
scale-invariant prior through the Bayesian learning. High-quality perceptual image seg-
mentation and restoration can be achieved for such nonuniform and nonstationary blurred
images.

This thesis presents a unified solution for solving some of the most challenging problems in image
processing, pattern recognition and computer vision. It also present a state-of-the-art architec-
ture for the integration of statistical learning and functional optimization. All the approaches are
formulated in a well-defined sense from one underlying mathematic principle, namely Bayesian
learning theory and regularization theory. Thereby, these approaches are refined from the well
understood principles of PDEs in the continuous Hilbert space, BV space and discrete graph
spaces in Bayesian learning frameworks. These approaches can be easily extended to other
related pattern recognition, and computer vision tasks.
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2 Regularization for Image Deblurring and
Denoising

Mathematic optimization: “What is new?” is an interesting and broadening eternal question,
but one which, if pursued exclusively, results only in an endless parade of trivia and fashion, the
silt of tomorrow. I would like, instead to be concerned with the question. “What is best?”, a
question which cuts deeply rather than broadly, a question whose answers tend to move the silt
downstream. —“Zen and the Art of Motorcycle Maintenance”, Robert M. Pirsig, (1974)

2.1 Image and Blur Modeling

2.1.1 A Mathematical Model for Image Formation

Let us denote f(z',y’) the irradiance function of the object under observation in the object plane
with coordinates 2’ and y’, and g(x,y) denotes the observed irradiance function in the image
plane with coordinates x and y. A very general image degradation model is

o) = o [[ e )1 () o'y} © (o) (21)

where ®{-} represents a nonlinear function, h(x,2’,y,y’) is the response of the blurring system
to a two-dimensional impulse at the (z,y) spatial location, and is normally called point spread
function, n(x,y) denotes the corruptive noise process and is usually random and highly oscillated
[164], and © represents a point-wise operation (additive or multiplicative). The function ®{-}
usually defines a pointwise (memoryless) operation which is used to model the response of the
image sensor. For example, ®{-} can be the Hurter-Drifield curve [243] used for describing the
recording medium in traditional photographic films. Andrew and Hunt [12] and others have
proposed restoration techniques with the nonlinearity taken into account. However, a general
conclusion reached by previous researchers. That is, there is no significant improvement of the
restoration results by taking the nonlinearity into account. Therefore, in most of the work of
image restoration, ®{-} is ignored.

While photoelectronic systems (e.g., CCD, CMOS) sense, acquire, and process the signal from
the detector’s photoelectronic surface for image recording, the noise stems from the random
fluctuations in the number of photons and photoelectrons on the photoactive surface of the
detector and the random thermal noise sources in the circuits. A stochastic model for the data
distribution D;; recorded by the ijth pixel of a CCD array is given by

D;j oc Poisson(n,,;5)) + Normal(0, o?) (2.2)
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2 Regularization for Image Deblurring and Denoising

®) (b)

Figure 2.1: (a) Original image and half side of additive Gaussian noise. (b) Related surface.

The distribution is a combination of Poisson noise 7,(;;) and Gaussian noise with variance o?.

The Poisson distribution models the photon count, while the additive Gaussian term accounts
for background noise in the recording electronics. Although the first process generates signal-
dependent noise, both photoelectronic and thermal noise are usually modeled by a zero mean
additive white Gaussian (AWG) process, shown in Fig. 2.1. Therefore, due to these two basic
simplifications, the degradation takes the form

ste.n) =5 { [ W paf (o) et | 4o (23)

However, this degradation model has found limited use, due primarily to high computation
requirement of four variables in the blur kernel h(z,z’,y,y’). In most practical situations, the
blur can be modeled in a linear space-invariant (LSI)way with two variables h(x,2’,y,y’) =
h(z —2',y —y'). Thus, the yielding degradation model applies:

g(z,y) = / / Wa— o'y — o) f () da'dy +n(e.y) (2.4)

The equation is called the superposition or Fredholm integral of the first kind. This expression is
of fundamental importance in linear system theory. The solution of image restoration becomes
available using the extensive tools of linear system theory. As we know, linear inverse problems
frequently lead to integral equations of the first kind, which is the reason of such equations
playing an important role in the study of inverse problems. On the other hand, many basic
inverse problems are inherently nonlinear even if the corresponding direct problem is linear.
Along the lines of solving the inverse problem, nonlinear methods play an important role for
nonlinear inverse problems. The theory of regularization methods [241] is well-developed for
linear inverse problems and at least emerging for nonlinear problems [68].

Based on this image formation equation in Eq. 2.4, we assume that both images are square of
size N x N, that is, 0 <z < (N —1) and 0 <y < (N — 1). By stacking or lexicographically
ordering the N x N arrays of f(x,y), g(z,y) and n(x,y). The previous equation becomes

g=Hf+n (2:5)
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2.1 Image and Blur Modeling

Figure 2.2: Different blurred images with different FFT magnitude and phase. (a)(d)(g) Original
synthetic image, Gaussian blurred image and motion blurred image. (b)(e)(h) 2D FFT log magnitude
spectrum. (c¢)(f)(i) 2D FFT phase.

where g, f and n are N2 x 1 vectors (color images are N2 x3). The PSF H is N% x N? matrix. For
the space invariant blur case, H is a block Toeplitz matrix. Such matrix can be approximated by
block circulant matrices. Block circulant matrices are easily diagonalized since their eigenvalues
are the 2D discrete Fourier transform (DFT) values of the defining 2D sequences, and their
eigenvectors are defined in terms of Fourier kernels. Thus, the equation can also be written in
the discrete frequency domain.

Gk, 1) = H(b, ) F(k, 1) + 1 (b, ] (2.0
where G(k,1), H(k,l), F(k,l) and n'(k,l) represent the 2D DFTs, for 0 < k < (N — 1) and

0<!< (N —1). The H(k,!l) are the “unstacked” eigenvalues of the matrix H, as was already
mentioned. We can arrive at Eq. 2.6 by taking the 2D DFT of both sides of Eq. 2.4, under
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2 Regularization for Image Deblurring and Denoising

the assumption that it represents circulant convolution, shown in Fig. 2.2. The 2D arrays
can always be appropriately padded with zeros (for example), so that the result of circular
convolution equals that of linear convolution. It is noted that although the degradation model
is linear space invariant (LSI), the restoration filter may be nonlinear or space-variant or both.

The discrete convolution product defines a linear operator. A discrete analogue of the continuous
Fourier transform can be used to efficiently compute regularized solutions. In the practical en-
vironments some representative restoration algorithms with signal dependent and multiplicative
noise are mostly simulated for MRI, and CT images, and additive Gaussian noise is simulated
for CCD, CMOS images, mixed noise of Poisson and Gaussian noise [85]. In the field of signal
processing, artificial intelligence, and pattern recognition, the independent component analysis
(ICA) has the similar basic formula and mechanism as the induced image formation form in
Eq. 2.6. In this thesis, we focus on this induced image formation form in Eq. 2.6 for blind image
restoration and segmentation problems.

2.1.2 Nonparametric and Parametric Image Models

Blind image restoration includes two parts such as blur identification and image restoration
(deblurring and denoising). To restore images, we need firstly to specify one image model for
applying algorithms. The basic distinction between image models is that between deterministic
and stochastic models. According to Andrews and Hunts [12] and Katsaggelos [127], [19], de-
terministic image models can be divided into parametric (an image is represented in terms of
primitives) or nonparametric. With a stochastic model an image is considered to be a sample
function of an array of random variables called a random field. Stochastic models can also be ex-
pressed in terms of graphical manipulations, in which underlying mathematical expressions are
carried along; for example, Markov random field, also known as undirected graphical models, in
which the links do not carry arrows and have no directional significance. The undirected graph
is suited to expressing soft constraints between random variables, whereas directed graphs are
useful for expressing causal relationships between random variables.

A possible division of stochastic models is parametric and nonparametric. A parametric stochas-
tic image model is to assume that the image field is described by a 2D Gaussian probability den-
sity function (PDF) with two parameters, the covariance matrix and the mean vector. Maximum
likelihood estimation is commonly used for such an image model. If the mean and covariance
value are not suitable as parameters for a PDF (unknown PDF) and still used in modeling an
image, the non-parametric stochastic model may become to use. Both models can be defined as
covariance models [119] whatever the covariance is, a parameter of a PDF or not. Covariance
models can be divided into stationary or homogeneous and nonstationary or inhomogeneous
[127]. The detailed description are presented in the following,

1. A stationary model is defined as one having a constant or stationary mean and a stationary
covariance. In most cases, the covariance matrix can be approximated in block Toeplitz
in image restoration. Most existing discrete approximation models are extended from this
model for solving and simulating related boundary conditions for the stationary model in
image restoration.

2. Nonstationary image models are classified into three types of model by assuming the non-
stationary mean and/or nonstationary covariance. The first model is a Gaussian image
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2.2 Convex Regularization

model with nonstationary or space-variant mean and stationary covariance which was pro-
posed by Hunt and Cannon [12]. The second model is that the local mean and the local
variance are used for image estimation and restoration. The third model is a generalized
model including two inhomogeneous image models, e.g., partially-blurred images. Prac-
tically, a freely taken image is an inhomogeneous random field so that the homogeneous
model can not fit it well. The sampling and mean techniques then become more important
for blur identification.

2.2 Convex Regularization

Regularization is the approximation of an ill-posed problem by a family of neighboring well-
posed problems. Convex regularization is keep the regularization function in convexity, especially
strictly convexity.

2.2.1 llI-Posed Inverse Problems and Regularization Approaches
lll-posed Inverse Problems

The concept of a well-posed problem was introduced by J. Hadamard (1923), in an attempt
to clarify what types of boundary conditions are most natural for various types for differential
equations. As a result of his investigation, a problem characterized by the equation Az = y,
where © € Hy, y € Hz (both H; and Haz denote Hilbert spaces) and A is a bounded linear
operator, is defined to well-posed provided the following condition are satisfied:

1. for every element y € Ho there exists a solution in the space Hj;
2. the solution is unique;

3. the problem is stable on the space (H1,H2), which means that the solution depends con-
tinuously on data.

Otherwise the problem is ill-posed. Later, the concept of well posedness in the least-squares sense
has been introduced by Nashed [174]. It is according to which Az = y is well-posed if for each y €
Ho there exists a unique least-squares solution (of minimal norm) which depends continuously of
the data. For years, ill-posed problems have been considered as mere mathematical anomalies.
Indeed, it was believed that physical situations only lead to well-posed problems. However, this
attitude was erroneous and many ill-posed problems arise in practical situations. A detailed
list of the ill-posed problems arising in mathematical physics is provided in the monograph by
Lavrentiev [138].

If the image formation process is modeled in a continuous infinite dimensional space, the dis-
tortion operator H becomes an integral operator and g = H f + 1 becomes a Fredholm integral
equation of the first kind in Eq. 2.4. Then the solution is always an ill-posed problem. This
means that the unique least-squares solution of minimal norm of ¢ = H f + 1 does not depend
continuously on the data or a bounded perturbation (noise) occurs in the data. It results in an
unbounded perturbation in the solution. This solution of the generalized inverse of blur kernel
H could be unbounded [174], [127]. The integral operator H has a countably infinite number of
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2 Regularization for Image Deblurring and Denoising

alb|c

Figure 2.3: Noise is amplified during the deconvolution. (a) Original image. (b) Blurred image

dle|f
with salt-pepper noise (impulsive noise). (¢) Deconvolved image using Richard-Lucy filter. (d)(e)(f)
Zoom in images

singular values. Since the finite dimensional discrete problem of image restoration results from
the discretization of an ill-posed continuous problem, the matrix H has a cluster of small sin-
gular values. Clearly, the finer the discretization (the larger the size of matrix H) the closer the
limit of the singular values is approximated. Therefore, although the finite dimensional inverse
problem is well-posed in the least-squares sense, the ill-posedness of the continuous problem
translates into an ill-conditioned matrix H. The detailed proof we refer [138].

In quantifying the conditioning of a matrix the condition number of N'(H) can be used, defined
according to the inequality [271]

el L = N

171 27)

-
IH f]]

where H™ denotes the generalized inverse of H, f is the solution of ideal noiseless image, and e
denotes the error in the solution when the noisy input image g is available. If the value of N'(H)
is small, a small relative change in g cannot produce a very large relative change in f. If N'(H)
has a large value, a small perturbation in the image may result in large (although bounded)
perturbation in the solution, and the system is said to be ill-conditioned. By using the L? norm
for vectors and matrices, N'(H) takes the simplified form,

N(H) = |H|s - |H™| = :% (2.8)

T

where 1, ..., i, are the singular values of H, r is the rank of H, and it was assumed that
W1 > e > o > Uy > g1 = ... = i, = 0. Since the largest singular value of H is different from
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alblc|d

Figure 2.4: Jrop Noise is amplified with different blur deconvolution using Richard-Lucy filter. (a)(e)

Salt-pepper noise. (b)(f) Motion blur deconvolution. (c¢)(g) Gaussian blur deconvolution. (d)(h) Pill-box
blur deconvolution.

zero due to the assumption of lossless imaging, N (H) is an increasing function of the image
dimensions.

The problem of noise amplification can be further explained by using a spectral approach. That
is, the minimum norm least-squares solution of g = H f + 1 can be written as

Fos LD | o), (29)

w w;
i=1 v i=1 v

where v; and v; are respectively the eigenvectors of HH T and H"H, and (vi,v;) denotes the
inner product of the vectors v; and v;. Clearly, since H is an ill-conditioned matrix some of its
singular values will be very close to zero, so that some of the weights w,” ! are very large numbers.
If the ith inner product (v;,n) is not zero (as is true when it is broadband), the noise of the second
term is amplified. Similar observations can be made by using the spectral decomposition of an
operator in infinite dimensional spaces. If matrix H is block circulant, the singular values w; are
equal to |H(z,y)| in Eq. 2.6, where the |- | denotes complex magnitude. Different deconvolution
methods have different amplification of noise. For example, inverse filter and Wiener filter are
very sensitive to noise. Richard-Lucy methods is relatively robust for noise but the noise can
be still amplified. In Fig. 2.3, impulsive salt-pepper noise distributes randomly in individual
pixels. It is strongly amplified during the deconvolution. Fig. 2.4 shows the deconvolution using
different blur kernels. Therefore, denoising is also very important in image restoration.

Regularization Approaches
“Regularization of ill-posed problems” is a phrase used for various approaches to circumvent lack

of continuous dependence. Roughly speaking, a regularization method entails an analysis of an
ill-posed problem via an analysis of an associated well-posed problem, whose solution yields
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2 Regularization for Image Deblurring and Denoising

meaningful answers and approximations to the given ill-posed problem. According to A. N.
Tikhonov [241], the regularization method consists of finding regularizing operators that operate
on the data, and determining the regularization parameters from supplementary information
pertaining to the problem. The regularization operator depends continuously on the data and
results in the true solution when the regularization parameters go to zero, or equivalently when
the noise goes to zero. On the other hand, in the 1970s, Vapnik et al. [248] generalized the
theory of the regularization method for solving the so-called stochastic ill-posed problems. They
define stochastic ill-posed problems as problems of solving operator equations in the case when
approximations of the function on the right-hand side converge in probability to an unknown
function and / or when the approximations to the operator converge in probability to an unknown
operator. In particular, the regularization methods have been extended for solving the learning
problems: estimating densities, conditional densities, and kernel based classifiers.

Numerous methods have been proposed for treating and regularizing various types of ill-posed
problems. The various approaches to regularization involve essentially one or more of the fol-
lowing intuitive ideas in different research streams,

—_

. change of the concept of a solution [126], [219], ;

2. additional information for the restriction to a compact set [105];

3. projection for the change of the space and/or topologies [126];

4. shift the spectrum for the modification of the operator[251], [290], [288], [186], [221];

5. well-posed stochastic extension, convergence with respect to Levy-Prokhorov metric on
the collection of probability measures on a given metric space: Banks-Bihari, Engl-
Wakolbinger, Engl-Hofinger-Kindermann [68], [43].

The various approaches to regularization overlap in many aspects, especially in theoretical pro-
gresses and practically possible solutions for ill-posed inverse problems. Most existing image
restoration methods have a common estimation structure in spite of their apparent variety. The
common structure is expressed by regularization theory. Such a statement can be also made for
most early vision approaches [25], [194], kernel based regularization approaches [222], multilayer
network learning approaches [193], [70] and so on. In most of these approaches, the underlying
idea of regularization is to combine the prior information with the data information and de-
fines a solution by trying to achieve smoothness and yet remain fidelity to the data. In other
words, a regularized solution is a solution between the “ultra-rough” least-squares solution and
an “ultra-smooth” solution based on a priori knowledge.

From optimization point of view, the solution of regularization is to put the objective or cost
(energy) functions into an optimization problem which makes the best possible choice of objective
functions from a set of candidate choices. The objective or cost function might be a measure of
the overall risk or variance. For example, two cases are presented,

1. In the case of image restoration, the solution of optimization corresponds to a choice that
has minimum cost among all choices that meet the firm requirements, i.e., input a degraded
image and output an restored image with high-fidelity to the original image.
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2.2 Convex Regularization

2. In the case of blur identification, the task is to find a model, from a family of potential
models, that best fits some observed data and prior information. Here the variables are
the descriptive parameters in the model, the constraints or knowledge of prior information
or limits on the parameters (such as nonnegativity of images in the physical world).

The objective function can be a measure of misfit or prediction error between the observed
data and the values predicted by the model, or a statistical measure of the unlikeliness or
implausibility of the parameter values. Thereby, the optimization problem is to find the model
parameter values that are consistent with the prior information, and give the smallest misfit or
prediction error with the observed data (or, in a statistic framework).

From these analysis, restoring the image f can be seen as a minimization problem [16]. The
general minimization model incorporates the strengths of the various types of diffusion arising
from,

I(5) =5 [ lo=nfldady +7S(1 (2.10)

where S(f) = [, |Vf[Pdxdy, for 1 < p <2, A > 0, and Q is an open bounded subset of R”
(we consider n =2, or 3 dimensions), Here it denotes the support of image. The first term in
Eq. (2.10) measures the fidelity to the data. The second term is a penalty smoothing term. The
positive regularization parameter A controls the trade-off between the fidelity to the observation
and smoothness of the restored image. When a magnitude of a gradient is p = 2, the Eq. (2.10)
becomes a L? norm Tikhonov solution [165], [241]. The L? norm regularization has very strong
isotropic (Laplace) smoothing properties but penalizes strongly the gradients corresponding to
the discontinuities and edges. In order to handle discontinuities, the issue of non-directional
versus directional operator has been debated firstly by Marr and Hildreth [157], [158]. Later,
some of the pioneer work in this direction was done by Rudin, Osher, and Fatemi [213], [212],
who proposed to use the L! (p = 1) norm of the gradient of f in Eq.(2.10) and called the total
variational (TV) regularization. The TV method with L' norm encourages smoothing in the
direction tangential to the edges and weakly penalize in the direction orthogonal to the edges
in the space of a bounded total variation [17], [44], [258], [260].

To preserve the textures, edges and small scale details, more elegant constraints are proposed
and explored by researchers like the forward-backward diffusion sharpen operator and some
more detailed optimization [245]. Perona and Malik [191] replaced the classical isotropic diffu-
sion (p = 2) with the values of 1 < p < 2 in general nonlinear diffusion which is effective in
reconstructing piecewise smooth regions between the isotropic, anisotropic nonlinear and TV-
based smoothing [259], [266], [29], [173]. To further improve the fidelity of image restoration,
different integration models of L' and L? norms have been explored by Chambolle, Chan as well
as discontinuity-preserving and fidelity enhancement by [39], [48], [205]. Recently, Yves Meyer
(2001)[164] presented an mathematical analysis of the Rudin-Osher-Fatemi model (1992) [213]
in the bounded variation (BV) space of functions. The Fourier vs. wavelet series is expansions
of BV functions. He also introduced a new space which is called G space to model oscillating
patterns and widely used for image structure, texture and homogenous layer decomposition.

Information theory have also been extended to regularization theory. For example, maxi-
mal entropy regularization can use an entropy measure term instead of normal LP term, e.g.,
S(f) = Jo fIn(f/m), where m is some positive function reflecting a priori information about f.
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@b o

Figure 2.5: alb|c|d|le. Convex sets and convex functions. (a)(b) Convex sets. (¢) Nonconvex set. (d)
Convex function. (e) Strictly convex function.

» »
» »

Integration and combination of information, statistical learning and variational regularization
have been also investigated by researchers and still be an interesting research point.

2.2.2 Convex Optimization

Convex functionals (shown in Fig. 2.5) play a special role in the theory of optimization because
most of the theory of local extrema for general nonlinear functionals can be strengthened to
become global when applied to convex functionals. Conversely, results derived for minimization
of convex functionals often have analogs as local properties for more general problems. The
study of convex functionals leads then not only to an aspect of optimization important in its
own right but also to increased insight for a large portion of optimization theory. The principle
idea of regularization based approaches [16], [213], [29], [173], [221] is based on the optimization
process so that the behavior can be analyzed by the convexity and non-convexity. Furthermore,
the consistency of local and global convergence can be preserved based on the convexity.

Nonlinearity does not mean that a problem is difficult, but non-convexity does in general. Even
though an ill-posed problem is non-convex, the sound approaches are still relying on convex
optimization approaches as basic components. For example, to recover the image f given an
observed blurred noisy image g by minimizing an energy function is an ill-posed inverse problem.
Convexity is crucial for ensuring an existing, unique and stable convergent solution for such tasks.
Therefore, the study of criteria of convexity and convex functional is important for understanding
and designing a strictly convex functional.

Local Minima and Global Minima

Perhaps the first question that arises in the minimization problem is whether a solution ex-
ists, and then comes to the solution of uniqueness and stability. To study these concepts, we
distinguish two kind of solution points: local minimum points, and global minimum points.

Definition 2.2.2.1 A point x* € Q is a relative minimum point or a local minimum point of a
function f over Q if there exist an € > 0 such that f(x*) < f(x) for all x € Q within a distance
e of ©* (that is, v € Q and |x — z*| < ). On the graph curve of a function, its local minima
will look like the bottoms of valleys.

Definition 2.2.2.2 A point x* € Q is said to be a global minimum point of f over Q if f(z*) <
f(x) for all x € Q. If f(z*) < f(x) for all x € Q, © # z*, then x* is said to be a strict
global minimum point of f over the whole set . Any global minimum is also a local minimum;
however, a local minimum need not also be a global minimum.
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Figure 2.6: alb|c|d|e. Function curves. (a). Tikhonov. (b) Total variation. (c) Huber function. (d)
Log-quadratic. (e) Saturated-quadratic

Table 2.1: Convex and Nonconvex Functions

Function Formula Convexity
Quadratic function: ¢y (x4, z;) = (24, 25)? convex.
Total variation: d2(zi, z5) = (24, ;)| convex.
e — N2 if e — 2 <8
Huber function: o3(zi,25) = { |2£($_Zx|$i) 5 i)tfelrwisxj - mixed.
i J 2
)2
Log-quadratic: ¢a(xi, xj) = In[l + (50157;])] NONCONvex.
)2
Saturated-quadratic:  ¢s(x;, x;) = % nonconvex.
i—%j

The main result that can be used to address this issue is the theorem of Weierstrass, which states
that if f is continuous and €2 is compact, a solution exists. This is a valuable result that should
be kept in mind throughout our development. In the practical reality, searching for the minimum
point by a convergent stepwise procedure based on differential calculus, comparison of the values
of nearby points is all that is possible and attention using relative minimum points. Global
conditions and global solution can only be found if the problem possesses certain convexity
properties that essentially guarantee that any relative minimum is a global minimum. Thus, in
formulating and attacking the problem argmin f(x), subject to = €  is usually considered as a
searching for the relative minimum point.

Convex Sets and Convex Functions

A convex set is the set of basic solutions for convex programming [206], shown in Fig. 2.5.
It means that x; and z9 are feasible solutions, their linear combinations is Azp + (1 — A)zo,
VA € [0,1], must be feasible solutions. For convex programming to be applicable the cost
must be a strictly convex functional over the convex set of feasible solutions. A functional
F : X — [—o0,00] is strictly convex if, for any two feasible solutions x; and xy such that
F(z1) < 00, and F(x1) < 0o, the inequality

F((1 = Ny + Az2) < (1 — N F(z1) + AF(z2), YA € (0,1) (2.11)

always holds. This definition of a convex functional requires that Eq. (2.11) be valid over
the set of feasible solutions. The result is also known as Jensen’s inequality and it can be
applied to information theory and machine learning. The generic convex optimization problem
is to minimize the convex function F(x) over a convex set. Convexity is a sufficient condition
for all local minima to be global minima. There are three main properties about the convex
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optimization, e.g., a convex function is continuous, a convex function has a single minimum on
a convex domain, and the sum of convex functions is convex.

Following this definition, we study several functions that are commonly used as penalty terms
in regularization approaches for image restoration [36], [22], [219], [267], [176]. The potential
functions, ¢(-) are described in Table. 2.1. These five functions are representatives of three
major categories, strictly convex ¢; and ¢9, hybrid convex ¢3 and nonconvex ¢4 and ¢s5, shown
in Fig. 2.6. The convex quadratic function ¢; in the regularization penalizes the differences of
neighboring pixels at an increasing rate, which tends to force the image to be smooth everywhere.
The total variation function ¢y [213] is a L'-norm cost function, which behaves in an absolute
error in convex manner. Many convex functions have also been proposed recently such as robust
anisotropic diffusion [30], [29], half-quadratic [84], linear programming [47], second-order cone
programming [110] and low-dimensional flat Euclidean embedding in semi-definite programming
[268].

The Huber function [115] is a semi-convex hybrid between quadratic and L' functions. It is
quadratic for small values and becomes linear for larger values. Thus, it has the outlier stability
of L'. Therefore, the priors do not differentiate substantially between slow monotonic changes
and abrupt changes. As a consequence, it does not penalize the presence of edges or boundaries
in the image.

Non-convex functions have saturating properties that actually decrease the rate of penalty ap-
plied to intensity differences beyond a threshold. Consequently, the positivity of the presence
of edges can be preserved in the image restoration. However, the non-convex functions present
difficulties in computing global estimates. Non-convex optimization algorithms can also achieve
good results with some constraints or in some special processing discipline. Recently, some non-
convex optimization algorithms have also been developed. For example, binary spectral graph
clustering and semidefinite relaxation [130] have been investigated for perceptual grouping and
segmentation.

Multiple Model Criteria for Global Convergence

One of the key questions of image restoration and segmentation is how to optimize the
proposed cost or energy function in global convergence.  According to “http://www-
fp.mes.anl.gov/otc/Guide/OptWeb /index.html”, we describe an optimization tree shown in
Fig. 2.7. This tree introduces the different subfields of optimization and includes outlines of
the major algorithms in each area. Through the literature study, several model criteria of
optimization can be summarized in the following aspects:

1. Direct local minimization to global convergence. A local minimum energy can be
substituted for the global minimum 7 using a plausible initial guess. Such algorithms are
simple to implement but are relatively sensitive to the pertinence of the initialization. For
example, the original ICM algorithm [26] uses the maximum likelihood algorithm based
on the well-posed assumption where the noise should be very weak.

2. Stochastic simulated annealing to global convergence. Optimization using simu-
lated annealing (SA) is based on the distribution p;(z|y) = exp[—J (x)/t], where t denotes
temperature. t — 0 decreases toward zero for objects x different from the global minima .
pe(x|y) is processed to construct a Markov chain which converges to the set of the global
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Figure 2.7: Optimization tree. Three main optimization criteria can be considered in this optimization
tree, e.g., continuous versus discrete, global versus local, and convex versus non-convex.

minima of J. In this process, the temperature decreases slowly from an initial high tem-
perature toward zero. The Markov chain can be constructed based on stochastic gradient
maximization of p;(x|y) [82], [273], metropolis dynamical sampling of p.(z|y) [83], [273],
Gibbs dynamical sampling of p;(z|y) [111], [85], [273]. This type of algorithms is widely
used in image and signal processing.

3. Deterministic relaxation to global convergence. A class of approximate (relaxed)
energies is constructed by reducing the nonconvexity of 7. Thus, the nonconvexity is
“converted” into convexity and it reaches a relaxed energy to achieve a global minima,
e.g., mean field annealing (MFA) [81], [229].

4. GNC relaxation to global convergence. The graduated non-convexity (GNC) algo-
rithm proposed by Blake and Zisserman [33] constructs an approximating convex function
free of spurious local minima, while stochastic methods avoid local minima by using ran-
dom motions to jump out of them. The underlying principle of the general GNC alogrithm
is also “convert” the nonconvexity to convexity because the algorithm approximates the
global minima by minima of suitable approximating functions. Blake and Zisserman [31]
has made a detailed comparison of the efficiency of deterministic and stochastic algorithms
for visual reconstruction. Piecewise continuous reconstruction of real-valued data can be
formulated in optimization problems. They also point out that the deterministic algo-
rithm (GNC) outstrips stochastic (simulated annealing) algorithms both in computation
efficiency and in problem-solving power.

5. The graph cuts algorithm to global convergence. The graph cuts algorithm was
first used in combinational optimization by Greig et al. [98] and recently was intensively
studied for computer vision tasks [132]. The algorithm is based on linear programming
and is used for binary optimization with the min-cut/max-flow algorithm. Each variable
in this algorithm has one of two possible values. The cost function in the graph cuts
algorithm need not to be convex but the cost function must be regular.
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We can observe that most of these modeling criteria are based on the convexity for achiev-
ing global convergence. Following Fig. 2.7, global convergence via stochastic optimization can
be computed in discrete spaces (using discrete simulated annealing, mean field theory, multi-
scale optimization) [127]. Global convergence via deterministic regularization approaches can
be computed in continuous or discrete spaces (using continuous simulated annealing, conjugate
gradient, gradient descent, Gauss-Seidel algorithm) [4], [234]. Therefore, there is an underlying
relationship between discrete optimization and continuous optimization. Stochastic program-
ming is the bridge between the two fields. Moreover, stochastic optimization and deterministic
optimization approaches might be unified given certain conditions.

2.2.3 Stochastic Optimization and Regularization

The concept of an MRF is essentially due to Dobrushin (1968) [62] and is one way of extending
Markvian dependence from 1-dimensional to general settings. It can also be considered as one
kind of regularization of conditional probabilities and conditions. When a priori knowledge
of statistical properties of the signal and of the noise is available, a probabilistic version of
regularization methods is possible. Several authors have stressed the stochastic interpretation
of spline approximation in which the smoothness properties of spline correspond to suitable
prior probabilities [252]. Bertero, Poggio and Torre [25] have discussed a Bayesian approach
which has the advantage of showing the connection between Markov Random Field models and
standard regularization. In particular, they show how standard regularization can be regarded
as a special case of MRF models and is itself equivalent to Wiener filtering for image restoration,
and multilayer networks for learning [193]. These techniques, though computationally expensive,
represent a powerful extension of the methods.

Markov random field (MRF) and compound Gaussian Markov random field (CGMRF) [26], [123]
are widely used for image restoration and segmentation in computer vision since the milestone
work of S. Geman and D. Geman [85]. Winkler [273], [272] considers various natural prior models
in discrete Markov random field in a general Bayesian framework for image analysis (mainly on
“inverse optics”). Dynamic Monto Carlo methods, stochastic relaxation algorithms and spectral
graph methods are investigated and integrated in continuous time and space. Therefore, a bridge
between discrete Markov chains and diffusion process is constructed, especially to indicate how
different discrete processes can be embedded in the continuous setting to obtain comparison
of their ergodic behaviour in stochastic and deterministic optimization manner. Hellwich [111]
has developed an unsupervised Bayesian estimation in the MRF with stochastic simulated an-
nealing for edge extraction and objects detection in synthetic aperture radar (SAR) data with
stronger multiplicative noises. Because of the robustness with respect to noise and unsupervised
properties, this approach can be directly extended to current computer vision problems such
as unsupervised labeling, searching of natural prior knowledge, unsupervised Bayesian estima-
tion based image restoration, segmentation and objects recognition. Molina, Katsaggelos et
al. [169], have developed a multichannel image restoration algorithm using compound Gauss
Markov Random Field (CGMRF) model. It is an extension of the classical simulated annealing
and iterative conditional models. Figueiredo et al. [78] have proposed to interpret discontinuities
(in fact their locations) as deterministic unknown parameters of the CGMRF, which is assumed
to model the intensities. This strategy allows inferring the discontinuity locations directly from
the image with no further assumptions. To solve the problem of number of unknown parameters
(edges), they propose a new unsupervised discontinuity-preserving image restoration criterion
using the minimum description length (MDL) criterion. Li [143] illustrates how to convert a
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specific vision problem involving uncertainties and constraints into essentially an optimization
problem under the MRF setting, the related problem of parameter estimation and function op-
timization. Recently, some learning-based methods in MRF have also been investigated, e.g., a
Markov random field based filter learning method [209] for image denoising and segmentation
[304].

An outstanding problem at present in the area of early vision is the detection and localization
of discontinuities. Different methods, such as Markov Random Fields, seem capable of perform-
ing approximation and reconstruction while detecting and preserving discontinuities. There are
promising approaches to the problem of integrating different visual modules such as stereo, mo-
tion, color, and texture that rely on coupled Markov Random Field models and their capability
to detect and represent discontinuities. Because of the equivalence between regularization and
generalized splines, it is impossible to deal directly with discontinuities in the framework of the
classical regularization theory.

Moreover, the flexibility of partial differential equations based variational regularization can
achieve similar or better results in that the smoothing term in the variational regularization
can be extended to linear or nonlinear, isotropic or anisotropic, flow-driven, data-driven or
knowledge-driven image diffusion and smoothing. Partial differential equation (PDE) based
variational regularization approaches [258], [259], [257], [267], [265], [6], [7], [221], [219], [173],
[184], [185], [186], [16] have been intensively developed for image processing since the 1990s. The
partial differential equations, which belong to one of the most important parts of mathematical
analysis, are closely related to the wave equation and the heat equation in the physical and the
mechanical world. PDEs have been also extended into biology, finance analysis and so on. Once
the existence and the uniqueness have been proven, we can directly refer to analogue images in
the continuous setting using the well established PDE theory.

PDEs-based models are very important for our work due to their efficiency and robustness. In
detail, how to understand and integrate PDE-based diffusion methods in a flexible manner is
still an attractive task. Consequently, this chapter presents some state-of-the art work, novel
modification and detailed experiments for deblurring and denoising from different point of view,
e.g., image processing, energy optimization, computational physics and human visual perception.
The term definitions and classification are following the definition from Aubert and Kornprobst
[16] and Weickert [259]!.

2.3 PDE-Based Image Diffusion Filters in Scale Spaces

The study of PDE-based nonlinear isotropic and anisotropic diffusion filters is very important.
First, linear and nonlinear diffusion operators can smooth and enhance images independently.
Second, these operates can be included in penalty terms in variational regularization approaches.
These smoothing terms can help “smoothing or enhancing” the convexity of energy functionals
which can achieve the global convergence. Finally, data-driven image diffusion can be achieved
by integrating or modifying these operators.

According to the image degradation model that has been defined previously, we have the follow-
ing form g = Hf +n. A restored image f can be considered as a version of the observed image
g at a special scale. Precisely, we consider an ideal image f being embedded in an evolution

"Here we refer to the definitions of nonlinear isotropic and anisotropic diffusion
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Table 2.2: PDE-based Approaches

PDE Classification Main Explanation

Smoothing PDE: Heat equation and related diffusion filters.
Smoothing-enhancing PDE: Perona-Malik model, Weickert’s approach, etc.
Enhancing PDE: Osher-Rudin shock filters, Alvarez-Mazorra filter.

process. We denote it by f(t,-). At time ¢t = 0, f(0,-) = fo() is the input image. Based on
the transformation of the Hamilton-Jacobi equations and the theory of viscosity solutions, the
restored image with an evolution process can be formulated in a generic form,

‘%—{(t,x) + F(z, f(t,2), Vf(t,z), V2f(t,z)) =0in (0,T) x Q
ﬁ( ,) =0on (0,7) x Q, (Neumann boundary condition) (2.12)
f(0,2) = fo(z), (initial condition)

where F(z, f(t,z), Vf(t,x), V2f(t,x)) with (t > 0, z € Q) is a second-order differential operator.
f(t,z) is a restored image of the initial observed image fo(z). Vf and V2f are the gradient
and Hessian matrix of f with respect to the space variable x, ¢ is a scale variable. This form is
a very generic form, different modification of this generic operator F' can get different diffusion
operators for the target of smoothing and discontinuity-preserving. The generic PDE-based
diffusion filters are classified according to Aubert and Kornprobst [16] and Weickert [259] in
Table. 2.2: (1) Smoothing or forward-parabolic PDEs, used mainly in pure restoration [7]. (2)
Smoothing-enhancing or backward-parabolic PDEs concerning restoration-enhancement process
[191]. (3) Hyperbolic PDEs for enhancing blurred images, focusing on shock filters [185] and
shock filter combining anisotropic diffusion [6].

2.3.1 From Linear to Nonlinear Smoothing PDEs

The most popular and classical smoothing PDE in image restoration is the parabolic linear heat
equation [7]:

A tw0) = Ast,2.0) (2.13)

where A is the Laplace operator 8%f/dz% + 9f/0y®. After some evolution time t, f(t,z,y)
is an unique solution in this equation. The main property of this solution is equivalent to
a Gaussian convolution of the observed image g with the Gaussian kernel G, and the stan-
dard deviation o = 2v/t according to [264]. Thus we have f(t,z,y) = (Gy * g)(x,y) with
G, = #exp [—(:U2 + y2)/(202)]. Because of its over-smoothing property in linear homoge-
neous diffusion, some nonlinear properties for preserving discontinuities are introduced in this
model. From the theoretical point of view, the equivalence of Gaussian convolution and linear
diffusion is useful to replace linear homogeneous diffusion by nonlinear inhomogeneous diffusion
in a similar formalism.

of .
S = div(e(|V )9 ) (2.14)
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Table 2.3: Smoothing-Enhancing Nonlinear Diffusion Filters

Nonlinear Diffusion Functionals
Scalar-valued diffusion: = div(c(|V£]?)Vf), initial value f(z,y,0) = I(z,y)

of
¢
Scalar-valued diffusion: % = div(c(|VGAC/,I x f|2)V f), initial value f(z,y,0) = I(x,y)
Vector-valued diffusion: %ﬁi = div <c ( > \me\z) Vfi> yi=1,...,M

m=1

M N
Matrix-valued diffusion: % =div (c ( >y men|2> Vfi]), i=1,...M;j=1,...N
=1n=1
. . . . Ofij . mMn N T . .
Anisotropic diffusion: g =div (D ( > > VfuuVfip | Vi) i=1,.,M;j=1,..,N
m=1n=1

where the function c is fixed for keeping the equation remains parabolic and V is the gradient
operator (0, + 8y)T In order to preserve the discontinuities,

1

VIVIP

where |V f|?> — +o0 is assumed. To study this equation, a framework of nonlinear semigroup
theory is well-adapted. The basic idea is to show that the divergence operator div in this equation
is maximal monotone. A convenient way to demonstrate this is to identify the divergence
operator with the sub-differential of a convex lower semi-continuous functional in a established
theory of existence, uniqueness of a solution.

c(|VfP?) ~ (2.15)

Alvarez-Guichard-Lions-Morel have introduced a very original notion of scale-space via PDEs
[7] in 1992. Given some axioms and invariance properties for an “image-oriented” operator T3,
the idea is to try to identify this operator. The model can be established that f(t,z) = (T3 fo)(x)
is the unique viscosity solution of

or _ F(Vf,V%f) (2.16)
ot

In this equation, if 7T} satisfy some natural assumptions, it can be solved through a PDE de-
pending only on the first and second derivatives of f. F can then be solved introducing more
assumption. One of Weickert’s diffusion methods [259] can be considered as a tensor-based
version of Eq. 2.14 where the scalar coefficient ¢ controls the diffusion which is replaced by a
function of the diffusion tensor,

T _ fa;2 fxfy )
VIVS _<fxfy 7 (2.17)

2.3.2 Nonlinear Smoothing-Enhancing PDEs
Perona-Malik filter

An important improvement of the classical linear analysis, with a more accurate multi-scale edge
detection, was proposed by Perona and Malik [191]. The main idea of Perona and Malik is to
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introduce a part of the edge detection step in the filtering itself, allowing an interaction between
scales into the algorithm. They proposed to replace the linear heat equation by a nonlinear
equation. The nonlinear diffusion equations Eq. 2.14 can thus behave locally as inverse heat
equations due to the choices of ¢. Perona and Malik suggested two diffusion coefficients of ¢,

VIR =TI and (VIR = e (2.18)

where k is a contrast parameter to be tuned for a particular application. These two diffusion
coefficient ¢ are scalar-valued, decreasing functions with isotropic but non-homogeneous [230]
nonlinear diffusion [259]. They also have similar basic properties such as positive coefficient, non-
convexity and the ability of local enhancement for distinguished gradients. Detailed analysis and
comparison of two diffusion coefficients and k are shown in Fig. 2.8. The P-M process removes
noise while keeping edges and discontinuities. Some isolated noise points still remain, while
some detailed textural information is lost during the process.

Catte filter

However, some drawbacks and limitations of the original model can drive the diffusion process to
undesirable results [191] as mentioned in this original paper. For example, “staircasing” effects
can easily happen around smooth edges. The ill-posedness of the diffusion may be alleviated
through a smoothing operation to the variable in the diffusion coefficient c(s) = ¢(|]Vf[?) in
a regularized framework. This idea was introduced by Catte et al. [38] and the P-M model
Eq. 2.14 is extended to in the following,

% = div(e(|[VGy * fI2)VS) (2.19)

with Neumann boundary condition. VG, * f denotes a convolution of the image at time ¢ with
a Gaussian kernel of standard deviation o, which is to be given a priori. This formulation has
solved a theoretical problem associated with Perona-Malik process. However, the selection of
o is critical to the Catte diffusion in the sense that the diffusion process would be ill-posed for
too small scale, while the image features would be smeared for too large scale o. One possible
solution is to use a large scale initially to suppress the noise and then to reduce the scale so the
image features are not further smeared [283]. Thus, the optimal selection of scale is still an open
question. In Fig. 2.9, we show the role of the standard deviation . The isolated noise points
are “cleaned” using the right . However, some detailed textural information is still weakly lost.

Different smoothing-enhancing nonlinear filters
Through the literature study, we list some other state-of-the-art nonlinear diffusion filters in Ta-
ble. 2.3. These nonlinear smoothing-enhancing diffusion filters have been developed for achieving

different purposes in image restoration:

1. Based on the pioneer work of scalar-valued diffusion technique from Perona and Malik
[191], we can directly smooth color images in each channel independently. However, this
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Figure 2.8: Perona-Malik (P-M) scalar-valued image diffusion filter. (a) Original tulip image. (b)(c)
Input color image with independent Gaussian noise in each RGB color channel, sigma =20. (g)(h)(i)
zoom in (d)(e)(f). (d)(e)(f) are processed on each channel using P-M(I): ¢(s?) = exp(’Tsz) with respect
to k =5, k= 20, k=35. (j)(k)(1)are processed on each channel using P-M(II): ¢(s?) = 75275 With respect
to k=5, k=20, k=35. Comparing (d and j), (e and k), (f and 1), we can note that P-M(II) is relatively
stronger than P-M(I) for image diffusion. However, these two filters have the same properties. Isolated
noise points have disappeared in the whole image, some textural information is completely lost. For
such methods it can be shown that small scales are smoothed faster than large ones, so if the method
is stopped at a suitable final time, we may expect that noise is smoothed while large-scale features are
preserved to some extent.
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Figure 2.9: Comparison of different o value to suppress isolated noise points in Catte diffusion. Perona-
Malik ¢(s?) = exp(gTS:) with k= 20 based Catte diffusion %f = div(c(|VGy * f|?)V f). We input a similar
noise color image for testing. (a) o0 =0.1. (b) o0 = 0.2. (¢) o = 0.3. While o = 0.3, isolated noise points
have disappeared in the whole image, but some detailed textural information have lost.

procedure is not an optimal method in that the diffusion ignores the information from its
neighbor channels. To find an optimal approach, vector-valued diffusion filters have been
proposed for solving this problem [246]. The main idea is to smooth all vector channels
fi using a joint gradient information of all channels which can achieve better optimized
results.

. Following the vector-valued diffusion scheme, one can introduce nonlinear diffusion for

matrix-valued data which is useful for tomography data processing. Different from the
matriz-valued diffusion scheme [244], a coupling between all matrix channels is crucial for
preserving matrix properties [262], orientation estimation in the matrix fields and different
goals in smoothing.

. Although these diffusion schemes enhance and restore images in an edge-preserving man-

ner, the diffusion strength is performed equally in all directions. An ideal diffusion manner
is to perform the smoothing along edges without smoothing across edges. Following this
idea, Weickert et al. [259] developed an anisotropic diffusion filter which replaces the
scalar-valued diffusivity ¢ by a matrix-valued diffusion tensor D. The matrix tensor D
controls smoothing along edges with forward diffusion and enhancing edges by backward
diffusion in perpendicular direction simultaneously. The anisotropic diffusion method is
useful in many area. Further study is referred to [259], [256], [258], [261], [267].

. The structure tensor [79] is listed here because it is closely related to those diffusion filters

and have gained significant importance in the field of scientific visualization and image
processing [263]. It is also named second moment matrix which includes the estimation
of orientation and the local analysis of image structure. Structure tensor is a fundamen-
tal concept for corner detection [79] [207], passive navigation [103], image segmentation
[155] as well as surface reconstruction. The linear structure tensor is based on Gaussian
convolution, while a nonlinear structure tensor is based on different nonlinear diffusions.
Therefore, the underlying mechanism defining structure tensors can be implemented by
means of different optimization approaches in scale space based on the demands of the
goal. Currently, many elegant methods have been developed in the tensor field referring
to the book by Weickert and Hagen [263].
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Time =0.1, spatial step =1 Time =0.2, spatial step =1 Time = 0.5, spatial Step =1

Figure 2.10: Shock filter diffusion and sharpening. From these experiments, we can summarize the
main properties of the shock filter. Firstly, the filter is local extrema remain unchanged in time. No
erroneous local extrema are created. Secondly, the steady state (weak) solution is piecewise constant (with
discontinuities at the inflection points of fy. Thirdly, the process can be approximated to deconvolution.
Finally, the shocks amplify at inflection point (second derivative zero-crossings).

2.3.3 Enhancing and Sharpening PDEs
Shock filter

The deblurring or enhancement is essentially devoted to the shock filter model in a hyperbolic
equation proposed by Osher and Rudin[185] (1990). This filter can serve as a stable deblurring
algorithm approximating deconvolution. In 1-D case, the shock filter model is following,

fit,x) = — sign(fou(t, )| fo(t, )] (2.20)
where sign(fp,(t,x)) = 1if (for(t,2)) > 0, sign(foz(t,z)) = =1 if (fze(t,2)) < 0, sign(0) = 0.

To better understand the action of this shock filter, the equation can be written in a simpler

way. The initial conditions f(z,0) = fo(x) and Neumann boundary conditions (g—]{, = 0 where

N is the direction perpendicular to the boundary) are used.

In the 2D case, the shock filter is commonly generalized to the following equation,

ft(tax) = — sign (f(;[;(t,(ﬂ,y))‘v‘ﬂ (221)

where § is the direction of the gradient. The discretization of the 1D process is approximated
by the following discrete scheme,

£ = £ — At|DfP| sign (D f7) (2.22)
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where Df* = m(Ay f, A_f")/h and D?f* = (AL A_f")/h%. m(x,y) is the minmod function
that is developed based on the work of Osher, Rudin and Sethian [184], [185].

sign) min(|z|, ly|) if zy > 0,
m(@,y) = { (() ) e ol otherwise (2.23)
where Ay = (fi+1— fi) and A_ = —(fi+1— fi). As mentioned in the original paper, any noise in

the blurred signal will also be enhanced. Thus, this filter has some sensitive properties to noise.
From experimental results, we can find that any white noise added to the signal is amplified and
disrupts the diffusion process. Similar to the previous work, the common way is to convolve the
signals in a second derivative with a lowpass filter, for example, convolve with a Gaussian kernel
in 1D case,

fi(t,x) = — sign [Gy * fox(t, )] | f2(t, )] (2.24)

where (G, is a Gaussian kernel with standard deviation o. We can note that the filter has the
same scale control problem as in the Catte’s filter [38]. For the large scale Gaussian, most noise
and its generated inflection points are diminished with a cost of lower accuracy at the first step.
Secondly, the width of Gaussian ¢ is normally larger than the length of signal, the boundary
conditions can strongly affect to the solution. Thirdly, convolving with a Gaussian kernel is
equivalent to a change of sign at each pixel, the diffusion flow may go in opposite direction at
each side. The improved idea is to smooth the noise parts, whereas edges are enhanced.

Regularized shock filters

Alvarez and Mazorra (1994) [6] were the first to couple the shock and the diffusion process for
enhancing edges and smoothing noise simultaneously. The idea is to add a penalty enhancing
term based on Eq. 2.24. The equation becomes,

Ji = — sign [Go * frr] [V f| 4+ Mfee (2.25)

where A is a positive constant and £ is the direction perpendicular to the gradient V f. Roughly
speaking, the shock filter in one dimension develops shocks in the position of the zero crossing
of G, * fprp, and it produces an enhancement of the edges in this way. In two-dimensional
space (i.e. image), the parabolic-hyperbolic equation diffuses the initial image f(x,y,0) in the
directions parallel to the edges (noise elimination) and develops a shock in the perpendicular
direction of the edge (edge enhancement and deconvolution). The boundary conditions are also

Table 2.4: Enhancing and Sharpening PDEs Diffusion Filters

Enhancing Filters, Formula of Enhancing Filters

Alvarez and Mazorra : f, = — sign [Gg * f55] [V f| + A fee

Kronprobst et al. : ft = af(f - fO) + ar(h'rfM + fﬁ{) - ae(l - h'r) sign (GO' * f§6) |vf’
Coulon et al.: fr =divIAVf) — (1 — X\)® sign (G4 * fss) |V f]

Gilboa et al: fo = = Zarctan(afyn (5)|V.f| + Mee
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Time =0.2, spatial step =1
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Time = 0.5, spatial Step =1

Time =100 spatial step =100 Time =50, spatial step =100 Time =1, spatial step =100

Figure 2.11: Alvarez-Mazorra filter for denoising and deblurring. The noisy blurred image is the same
image that is used in the shock filter. From these experiments, we summarize several properties. First,
we note that the noise is diminished. while time=0.1, spatial step =1, the restoration result is best.
Second, this filter approximates deconvolution for deblurring. The discontinuities are enhanced while the
spatial step is bigger, the individual noise points can not be diminished. Third, the results in different
time scales and spatial step scales show a “balance” between time scales and spatial step scales. Good
“balance” can achieve better restoration results. All evolution results are for 100 iterations.

imposed in a natural way to minimize the boundary influence., e.g. df/ON = 0. Experiments
of the Alvarez-Mazorra filter are shown in Fig. 2.11.

Some related filters have also been developed based on the combination of the smoothing term
and the enhancing term using regularization strategies, shown in Table. 2.4.

1. Kornprobst [133] proposed an advanced scheme. The fidelity as(f — fo) keeps the fidelity
of the original image. In the equation, h, = h,(|Gs *Vf|) = 1if |Gz« Vf| < 7 and 0
otherwise.

2. Coulon and Arridge [52] developed this functional that was originally used for classification
in a probabilistic framework. The functional is adapted for image denoising, where A\ =
|Go*V fI?
exp (=)

3. One of the most complex filters is developed by Gilboa et al. [89]. A complex diffusion
term is proposed to the shock filter equation and achieved to smooth out noise and indicate
inflection points simultaneously. The main principle is to smooth the images by using
second derivative scaled by time and control the process in a regularization framework
which is somehow to find a balance between smoothing and sharpening in the restoration.
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2.3.4 Inverse Scale Space Methods

Since the noise in images is usually expected to be a small scale feature, particular attention has
been paid to methods separating scales, in particular those smoothing small scale features faster
than large scale ones, so-called scale space methods [191], [276]. Inverse scale space methods
have been introduced in [217], which are based on a different paradigm. Instead of starting with
the noisy image and gradually smoothing it, inverse scale space methods start with the image
f(z,0) = 0 and approach the noisy image g (which will be normalized to have mean zero) as time
increases, with large scales converging faster than small ones. Thus, if the method is stopped at
a suitable time, large scale features may already be incorporated into the reconstruction, while
small scale features (including the “noise”) are still missing.

The inverse scale space method can also be related to regularization theory, in particular iterated
Tikhonov regularization [217], [99] with the same regularization functionals as for diffusion
filters. The construction of inverse scale space methods in [217] worked well for quadratic
regularization functionals, which led to an interesting, but linear evolution equation, but did
not yield convincing results for other important functionals, in particular for the total variation
functional [213].

Through the literature, some main properties and utilization of inverse scale space have been
discussed and investigated. For example, Bregman distance is stronger than L? for the regular-
ization, Bregman distance is used in regularization for denoising and relaxed inverse scale space
methods. Recently, Xu and Osher [276] introduced a different version of constructing inverse
scale space methods as the limit of an iterative regularization to image restoration. With this
approach, they have implemented nonlinear inverse scale space methods for the total variation
functional and, in contrast to diffusion filters, a rigorously justified and simple stopping crite-
rion is obtained for the methods. This approach has obtained encouraging restoration results.
Moreover, inverse scale space is applied to wavelet based image denoising according to Xu [276],
Didas and Weickert [61] in single scale and multiple scale cases.

In other words, inverse scale space can be considered as scale space interpreted regularization
for inverse problems. It integrates several advantages from scale space and regularization, e.g.,
accurate stopping time for continuous evolution, faster computation after some relaxation, re-
duction of complexity using forward Euler time integration. It seems clear that the appealing
aspect of these characteristic properties is due its scale space interpretation.

2.4 Boundary Conditions

In mathematics, a boundary value problem consists of a differential equation and the initial or
boundary values required to solve the equation. The solution to the differential equation will
not only satisfy the differential equation everywhere inside the boundary but will also satisfy
the boundary conditions themselves. Boundary value problems may be posed for ordinary
differential equations as well as partial differential equations. To be useful in applications, a
boundary value problem should be well posed. This means that given the input to the problem
there exists a unique solution, which depends continuously on the input. Much theoretical work
in the field of partial differential equations is devoted to proving that boundary value problems
arising from scientific and engineering applications are in fact well posed.

The difficulties caused by boundary conditions in computing would be hard to overemphasize.
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Boundary conditions can easily make the difference between a successful and an unsuccessful
computation, or between a fast one and a slow one. Yet in many important cases, there is
little agreement about what the proper treatment of the boundary should be. Images are shown
in a finite region, but points near the boundary of a boundary image are likely to have been
affected by information outside the field of view. Since this information is not available, for
computational purposes, we need to make some assumptions about the boundary conditions.

Normally, deblurring and denoising use same boundary conditions. The only difference is that
the deblurring needs to consider the PSF and the image deconvolution. For deblurring problem,
we begin with the one-dimensional deblurring problem. Consider the original signal

f: ( . .,f,erl, . ~af0,f17 cee 7fn,fn+17' . 'afn+m7 H ')T (226)

and the blurring function given by

h="(-,0,0,h s hmitr- 0, han1.hm; 0,0,...) (2.27)

)

The blurred signal is the convolution of h and f , i.e., the ith entry g¢; of the blurred signal is
given by

oo
gi = Z hi—j f; (2.28)
j=—o00
The deblurring problem is to recover the vector f = (f1,..., fn)—r given the blurring function h

and a blurred signal g = (g1, ... ,gn)T of finite length. From Eq. 2.28, we have

ffm+1
f—m+2

P ho h_m 0 Jo
. f1 g1

: = : (2.29)
In 9n

fn+1

fn+m—1
fn-‘,—m

Thus the blurred signal g is determined not by f only, but also by

(f—m+17' ")fO,fl)’ . -afmfn-i—lv--‘yfn-i-m)T

The linear system Eq. 2.29 is underdetermined. To overcome this, we make certain assumptions
(called boundary conditions) on the unknown data and f_,,41,..., fo and fpi1,.. ., frgm SO
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2 Regularization for Image Deblurring and Denoising

as to reduce the number of unknowns. We can rewrite this equation in the following form for
discussing the boundary conditions,

Tify + Tt + Trf, = & (2.30)
where
hom hi fom+1
. f7m+2
T, = T : (2.31)
0 f-1
fo
h.O o 0 fi
: f2
=1 p, hey |» = : (2.32)
fnfl
0 hom ho fn
0 frt1
fn+2
T,=| h-m , and f.= : (2.33)
. fn+m—1
h_l e h_m fn+m

2.4.1 Dirichlet Boundary Conditions

The Dirichlet (zero) boundary condition assumes that the signal outside the domain of the
observed vector g is zero, i.e., fj = f. = 0 are the zero vectors. The matrix system in Eq. 2.29
becomes

Tf=¢g (2.34)

where T is a Toeplitz matrix. There are many iterative or direct Toeplitz solvers that can solve
the Toeplitz system with cost ranging from O (nlogn) to O(n?). Zero boundary conditions imply
a black boundary, so that the pixel outside the borders of the image X are all zero. i.e. A is a
block Toeplitz matrix with Toeplitz blocks (BTT B) in the 2D case. Matrix vector multiplication
are done by embedding A into a larger BC'C' B matrix, padding outside the borders of the image
with an appropriate number of zeros, and then using FFTs. The amount of padding depends on
the extent of the PSFs. For a large size image, overlap-add and overlap-save memory methods
are used to partition the image domain into regions based on the size of PSF. In linear algebra
terms, the approach is equivalent to exploiting sparsity (bandedless) of the matrix h (PSF).
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2.4.2 Periodic Boundary Conditions

For practical applications, especially in the two-dimensional case, where we need to solve the
system efficiently, one usually resorts to the periodic boundary condition. This amounts to
setting

fi=fn-j, for all j (2.35)
for the Eq. 2.29. The matrix system in Eq. 2.30 becomes
Bf = [(0]T}) + T+ (T,[0)]f = & (2.36)

where (0]7;) and (7,]|0) are n-by-n Toeplitz matrices obtained by augmenting (n — m) zero
columns to 7; and T,., respectively.

The most important advantage of using the periodic boundary condition is that B so obtained is
a circulant matrix. Hence B can be diagonalized by the discrete Fourier matrix and the Eq. 2.36
can be solved by using three FFTs (one for finding the eigenvalues of the matrix B and two for
solving the system. Thus the total cost is of O (nlogn) operations.

In the two-dimensional case, the blurring matrix is a block-circulant-circulant-block (BCCB)
matrix and can be diagonalized by the two-dimensional FFTs (which are tensor-products of one-
dimensional FFTs) in O (n2 log n) operations. Periodic boundary conditions for a rectangular
domain lead instead to a wrap-around of image information between opposite boundaries. The
periodic boundary condition satisfies f(z + h) = f(z) for all z in R", h in Z". The natural
extension of an image adopted to extend f by reflection across the boundary of the rectangle.
Thus, f(—z,y) = f(z,y), if =1 <2 <0, and 0 <y <1, etc. are defined. We can easily find
that f is assumed to be periodic on (22)".

Moreover, the periodic boundary conditions also introduce discontinuities which entail ringing
artifacts or some false discontinuities and edges in the boundaries of the restored image fre-
quently. To mitigate these artifacts as well as the undesired wrap-around of image information
in the deblurring with periodic boundary conditions, the image can be extended continuously
to a larger image with equal gray-values at opposing boundaries. Periodic boundary conditions
will not introduce the false discontinuities or edges any more. The wrap-around influences the
amended parts of the image. Periodic extension of this larger image is equivalent to reflecting
extension of the original image. Fortunately, the periodic boundary conditions are compatible
with any shift-invariant blur, without imposing symmetry constraints on the blur kernel. The
periodic boundary conditions can be utilized directly or in a modified way.

2.4.3 Neumann Boundary Conditions

The Neumann boundary condition. For the Neumann boundary condition, we assume that the
data outside f are a reflection of the data inside f. More precisely, we set

o = N o1 = In
: : : and : : : (237)

ffm+1 : fm fn+m = fnferl
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(b) (c)

Figure 2.12: Homogeneous Neumann boundary condition. (a) An original MRI head image. (b)(c)
Homogeneous Neumann boundary condition can be implemented by mirroring many boundary pixels
in four directions. Eq. 2.37 shows that the standard Neumann boundary condition is implemented by
mirroring one boundary pixel in four directions.

Thus the original equation becomes
Af = [(0|T) J+ T + (T,]0) J]f = (2.38)

where J is the n-by-n reversal matrix. We remark that the coefficient matrix A in Eq. 2.38
is neither Toeplitz nor circulant. It is a Toeplitz-plus-Hankel matrix. Although these matrices
have more complicated structures, the matrix A can always be diagonalized by the discrete
cosine transform matrix provided that the blurring function h is symmetric, i.e., h; = h_; for
all j. It follows that Eq. 2.38 can be solved by using three FCTs in O (nlogn) operations . This
approach is computationally attractive as FCT requires only real operations and is about twice
as fast as the FFT [160]. Thus solving a problem with the Neumann boundary condition is twice
as fast as solving a problem with the periodic boundary condition. Ng et al. [175] proposed to
establish similar results in the two-dimensional case for deblurring, where the blurring matrices
will be block Toeplitz-plus-Hankel matrices with Toeplitz-plus-Hankel blocks (BTHTHB).

Neumann boundary conditions can be written in this PDE form (g—fl(w, t) on OR). As discussed

in [7], the choice of Neumann boundary conditions is a natural choice in image diffusion. It
corresponds to the reflection of the image across the boundary and has the advantage of not
imposing any value on the boundary and not creating edges on it shown in Fig.2.12. The Neu-
mann boundary conditions work well because these diffusion-based image processing methods
in the PDE guarantee conservation properties as well as a continuous extension of the image at
its boundary. Indeed, the Neumann condition corresponds to the reflection of the image across
the boundary with the advantages of not imposing any value on the boundary and not creating
”edges” on it. If we assume that the boundary of the image is an arbitrary cutoff of a large
scene in view, the Neumann boundary condition is a therefore a natural method.

There is also a boundary conditions that is not often used. Reflexive boundary conditions imply
that the scene outside the image boundaries is a mirror image of the scene inside the image
boundaries. i.e. A is a sum of a BTTB matrix and a block Hankel matrix wit Hankel blocks
(BHHB). This case is similar to zero boundary conditions, except that the values that are
padded around the outside of the image are obtained by reflecting the pixel values from the
inside of the image boundaries. However, the utilization of reflecting boundary conditions for
image deconvolution with space-invariant kernels is bound to fail if the kernel is not symmetric
w.r.t. the image boundary directions. The reason is that the reflected parts of the image would
be blurred with a reflected kernel, violating the model assumptions.
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2.4 Boundary Conditions

Based on the variational regularization, we model the unsupervised blur identification, image
restoration and segmentation in a convex problem in that the convex problem can be solved
reliably and efficiently. Several basic convex components can help to get convex optimization
so that we can still achieve the results in a reliable and robust manner. When there are many
feasible solutions that are consistent with both known prior information and the measured
blurred image. A restored image can be defined as a continuous, strictly convex functional that
assigns a cost to each feasible solution and the selects the one which minimizes the cost. There
are two factors affecting the complexity of the algorithms. One is the cost functional itself and
the other is the set of constraints for the restored image. Different strategy and choices may
influence the restoration results at different degree. In addition, the prior information about the
image and noise must be expressed in the form of equality of inequality constraints.
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3 Bayesian Model Selection and Nonparametric
Blur Identification

“A knowledge of statistics is like a knowledge of foreign languages or of algebra; it may prove of
use at any time under any circumstances.” — A. L. Bowley

In the previous chapter, we recall and discuss regularization for ill-posed inverse problems, PDE
based image diffusions and energy functionals, and convex optimization for the construction of
an image deblurring and denoising framework. In this chapter, firstly, we will introduce the
important concepts in information theory, and related model selection methods as a necessary
preparation of further discussion. Most of algorithms in statistical learning, including feature
extraction and classification, are essentially process of information collection, transmission and
utilization. The introduction of information theory into statistical learning opens a new perspec-
tive for us to explore the nature of these statistical learning topics. Secondly, we will introduce
a nonparametric model selection based method for blur identification and analyze the exper-
imental results for a large image or video sequence. The integration of nonparametric model
selection techniques and locally parametric optimization techniques for blur identification are
presented in the next chapter.

3.1 Introduction

In pattern classification, three main estimation techniques are intensively investigated, e.g.,
parametric estimation techniques, nonparametric estimation techniques, and semi-parametric
estimation techniques.

Parametric estimation techniques are based on the assumption that the data set has a predefined
distribution [63], [128], [188], which describes the data set in a compact way. For example,
parametric density estimation assumes the data is drawn from a density in a parametric class,
e.g., the class of Gaussian densities. The estimation problem can thus be assumed to finding
the parameters of the Gaussian that fits the data set. However, in most pattern recognition
and model selection, this assumption is suspect. The common parametric forms rarely fit the
densities actually encountered in practice.

The Gaussian mixture modeling technique with isotropic covariance and anisotropic covariance is
known as a semi-parametric density estimation technique. It is also to be placed in between two
extremes such as parametric and non-parametric density estimation. To apply mixture models,
we firstly need to think some basic questions, the number of components and which classes of
component densities should be used. Therefore, the questions become a model selection problem.

The nonparametric estimation techniques that can be used with arbitrary distributions without
any assumptions, i.e., the forms of underlying densities are unknown. There are several types
of nonparametric methods of interest. One consists of procedures for estimating the density
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3 Bayesian Model Selection and Nonparametric Blur Identification

functions from sample patterns. If these estimates are satisfactory, they can be substituted for
the true densities for designing the classifier. Another one consists of procedures for directly es-
timating the a posteriori probability. This is closely related to nonparametric design procedures
such as nearest-neighbor rule, which bypass probability estimation and go directly to decision
functions. In this chapter, we focus on some non-parametric techniques to classify blur kernels
and blurred images in large image or video sequences.

3.2 Bayesian Learning of Finite Mixture Models

The statistic learning approach to modeling data constructs models by starting with a flexible
model specified by a set of parameters. The principle idea is that if we can explain our obser-
vation well, then we should also be confident that we can predict future observations well. We
might also hope that the particular setting of the best-fit parameters provides us with some
understanding of the underlying processes. The procedure of fitting model parameters to ob-
served data is termed learning a model. The above idea can be formalized using the concept of
probability and the rules of Bayesian inference.

3.2.1 Finite Mixture Models

Mixture models have been intensively investigated, e.g., McLachlan et al. [162], [163], Jain
et al. [120], Titterington et al. [242], Figueiredo and Jain [77]. Mixture models are able to
describe and represent arbitrary complex probability density functions (pdf’s). This fact makes
them an excellent choice for representing complex class-conditional pdf’s [77]. For example,
likelihood functions in Bayesian learning, or priors for Bayesian parameter estimation. Finite
mixture models can also be used to perform feature selection. The general optimization method
is to use mazimum likelihood (ML) or mazimum a posteriori (MAP) to estimate of the mixture
parameters.

Let us denote the data set by y, which may be made up of several idependent and identically
distributed variables indexed by n: Y = {y(l),...,y("),...,y(N)}. For example, ) could be
a random sampling space of images for which the variables might be measurements of the
type of descriptive features foundation(feature corners, textures, entropy, and some features in
frequency domain). Generally each variable can be discrete or real-valued in the physical world.
Statistic learning approaches define a generative model of the data through a set of parameters
0 = {01, ...,0k} which define a probability distribution over data, p()|0).

The generative models introduce hidden (latent) variables to account for the generating process
of given data sets. One way to learning the model then includes finding the parameters 8* such
that

O = argénaxp(yIG) (3.1)

The process is normally called maximum likelihood learning as the parameters 63,; are set to
maximize the likelihood of # which is probability of the observed data under the model. While
the maximum a posteriori (MAP) learning aims at the maximization of the posterior probability
p(0]Y) o< p(Y[0)p(f) and yields,

Oniap = argénaxp(ely) = arg ;naXP(yIG)P(G) (3.2)
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3.2 Bayesian Learning of Finite Mixture Models

where P(f) denotes the prior probability of different parameter values. We can note that the
MAP estimator is a ML estimator with a prior. The difference between ML and MAP is a point
of interest. In the case of infinite training samples, N — oo, and a selected prior distribution
does not effect the outcome. ML and MAP deliver identical results. However, since the number
of data samples is limited in the practical environments, there are some difference between these
two methods. First, from the computational point of view, ML methods are often preferable
since they are based on first and second order derivatives where the MAP approaches can result
in a time-consuming high-dimensional integration. For interpretability reasons, ML estimates
are calculated from one single model, while the MAP results in a weighted average of two models
that can also have different functional forms. The difficulty in MAP estimation is the choice of
a suitable prior distribution. To achieve this goal, a good strategy is not to take a fixed static
prior but rather to derive it from the underlying data. This strategy is extended and further
developed in our work. Good prior knowledge is “descriptive model” or “enhance” information
which are built on features and statistics extracted from the signal, and use complex potential
functions to characterize the given data [307].

3.2.2 Bayesian Parameter Estimation

The generative model may also include latent or hidden variables in a set of n labels z =
{x(l), e x(”)} associated with n samples. These variables are unobserved yet interactive through
the parameters to generate the data. The probability of the data can then be formulated by
summing over the possible settings of the hidden states:

p10) = 3" p(lO)p(Vle, 0), (3.3)

where the summation is called complete-data likelihood (single quantity is called incomplete-
data likelihood) and is often replaced by an integral for those real-valued hidden variables. For a
particular parameter setting, the posterior distribution over the hidden variables can be written
using Bayesian rule,

pY|z,0)P(x|0)
p(V|0)

P(z|Y,0) = (3.4)
For the case of blur identification, we might have some hidden variables for the estimation of
blur, and this can be inferred based on the observation of descriptive measurements ( e.g., the
support size of blur kernels, the diminishing of discontinuities and mean square error of the
restored image), through the generative model [307] with parameter §. The term P(z|f) is
a prior probability of the hidden variables based on the modeling of prior knowledge which
can reflect the distribution of parameters of the real blur kernel. Note that the probability
of Eq. 3.3 is a denominator in Eq. 3.4. Since the hidden variables are unknown definition,
finding 03,; becomes more difficult. The model is learnt by alternating between estimating the
posterior distribution over hidden variables for a particular setting of the parameters and then
re-estimating the best-fit parameters given that distribution over the hidden variables. This
method is the well-known expectation-maximization (EM) algorithm[60].

Given parameters are unknown quantities and we treat them as random variables. It is the
Bayesian approach to uncertainty, i.e., Bayesian approach treat all uncertain quantities as ran-
dom variables based on the laws of probability to manipulate those uncertain quantities. The
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3 Bayesian Model Selection and Nonparametric Blur Identification

proper Bayesian approach integrates over the possible settings of all uncertain quantities rather
than optimize them as in Eq. 3.1. Therefore, the marginal likelihood is the resulting quantity
from integrating both hidden variables and the parameters.

P) = [ PO)Y PlOp(e. 0)d6 (3.5)

where P(0) is a prior over the parameters of the model. The marginal likelihood is a key quantity
for choosing different models in a Bayesian model selection task. Model selection is a necessary
step in understanding and representing the observed data. However, the marginal likelihood
P(Y) is an intractable quantity to compute the models of interest. Traditionally, the marginal
likelihood has been approximated either using analytical methods, e.g., the Laplace approxima-
tion, information measurements, variational free energy [57], or via sampling-based approach
such as Markov chain Monte Carlo [273]. The techniques emphasize the same underlying prin-
ciple of maximum a posteriori (MAP) from different approximations of interest.

3.2.3 Parameter Estimation Using the EM Algorithm

The general choice for achieving ML or MAP estimates of the mixture parameters is the classical
expectation-maximization (EM) algorithm [60], [77]. For the case of single component density,
the maximum likelihood method is easy to find the convergent parameters based on a wide
range of component densities in a closed-form. However, for the case of Gaussian mixtures, the
estimation becomes more intractable, since the log-likelihood as a function of the parameters
may have many local maximum.

The EM algorithm [60] estimates the parameters at the local maximum of the log-likelihood
function gives some initial parameter values. Some advantages of the EM algorithm over other
methods are (a) no parameters needed for the iterative optimization process, (b) its simplicity
and robustness. The shortage is similar to most other deterministic methods, i.e., the solution is
based on initial parameter values. Such sensitivity can be avoided or partially solved by either (a)
running the performance using different initial values and finding the best one. or (b) using some
measure criteria to find the best fit number of components and models in deterministic methods
(e.g., BIC, MDL [203], MML [77]) or in stochastic and resamping methods (e.g., Markov chain
Monte Carlo (MCMC) based model selection criteria [273], resampling based schemes [162] or
cross-validation approaches [236]).

The EM algorithm is based on the interpretation of ) as incomplete data. EM is an iterative pro-
cedure to find local maxima of log p(Y|6) or [logp(Y|0) +1log p(#)]. In the case of finite mixtures,
the missing part is a set of n labels Z = {z(l), - z(”)} associated with the n samples, indicating
(4) ()

1 »

which component produced each sample. Each label is a binary vector z(9) = (277, ..., 2, ], where

27(7? =1 and zg) = 0, for p # m, means that sample y(i) was produced by the m-th component.
The complete log-likelihood (i.e., the one from which we could estimate 6 if the complete data

X ={Y, Z} was used in [77] is

logp(V,Z10) = z": zk: zﬁ,? log {amp (y(i) \Gm)} (3.6)

i=1 m=1
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The EM algorithm produces a sequence of estimates {é(t), t =0,1,2,3,...} by alternatingly
applying two steps (until some convergence criterion is met):

E-Step: Computes the conditional expectation of the complete log-likelihood in Eq. 3.6, given
Y and the current estimate 0(t). Since logp(Y, Z|) is linear with respect to the missing Z,
we simply have to compute the conditional expectation W = E[Z |y,é(t)], and plug it into
logp(Y, Z|6). The result is the so-called @Q-function:

Q(60.0(t)) = Ellogp(Y, Z|6)|Y,6(t)] = log p(V, W|6) (3.7)

Since the elements of Z are binary, their conditional expectations (i.e., the elements of W) are
given by

: (3-8)

where the last equality is simply Bayesian law (notice that ay, is the a priori probability that

z,(ﬁ) = 1, while w,(ﬁb) = 1 is the a posteriori probability that 27(2) = 1, after observing y® for any

(i)-

M-Step: Updates the parameter estimates according to

0 (t+ 1) = argmax {Q (0, 0 (t)) + logp (9)} (3.9)
0
in the case of MAP estimation, or

0(t+1) =arg m(?XQ <0, 0 (t)) . (3.10)

3.3 Measure Criteria for Model Selection

It is old adage that more descriptions of an object, or more proofs of a statement, are better
than one. Sometimes, this becomes true. For example, in object boundary detection (which
is conceptually different from edge detection), different information of texture, color, intensity,
brightness, and shape are combined to find the reasonable object boundary based on human
recognition concepts [159]. However, this is certainly not true if a description is redundant
in the sense that some parts already give complete description. It is such a redundancy that
we must first eliminate [204]. Model selection criteria is the reasonable rule to reduce such
redundancy and keep optimal information. Moreover, model selection methods can help identify
useful models, in the sense of predictive accuracy or generalization. Models should be evaluated
based on generalization ability, not on goodness of fit. The main principle of model selection is
not select the best-fitting model but shall select the best-predicting model. There are also some
other non-statistical but very important selection criteria such as plausibility, interpretability,
explanatory adequacy, falsifiability.
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For statistic learning based model selection, a model is defined as a collection of probability
distributions, indexed by model parameters M = {f()|6)|0 € Q} forming a Riemannian man-
ifold, embedded in the space of probability distribution. Akaike information criterion (AIC)
[3] derived as asymptotic approximation of Kullback-Liebler information distance between the
model of interest and the truth within a set of proposed models.

In the following, we review some of the existing methods for approximating marginal likelihoods.
Then we present our proposed methods for statistic model selection based nonparametric blur
identification. These methods are analytic approximations such as the Laplace method [124],
the Bayesian Information Criterion (BIC) [223], the Minimum Description Length (MDL) [203]
and the Minimum Message Length (MML) [253]. All these methods make use of the MAP
estimate is usually straightforward procedure.

3.3.1 Entropy and Information Measure

The original information theory is developed based on data compression and data transmission.
With the evolution of statistics, researchers found that the information theory handles a lot of
underlying disciplines of the physical world. However, this broad realm of information theory
with numerous topics all root in two basic concepts: entropy and mutual information, which are
functions of probability distribution that underlie the process of communication.

According to Mackay [154], the terminology of entropy measures the uncertainty of a random
variable, which can be considered as the information embedded in the variable. In mathematics,
the entropy of a discrete random variable X, denoted by S(X), is defined as the expected value
of negative-logarithm of probabilities, shown in Table. 3.1. According to the definition, we
can derive the nonnegativity property of entropy S(X) > 0. The reason is logp(z) < 0 for
any discrete variables, Vo € X,0 < p(z) < 1, where X is the set of all possible values for X.
Therefore, S(X) = Ey(—logp(x)) > 0.

The definition of entropy can be extended to the case of multiple variables, e.g., joint entropy
and conditional entropy. The joint entropy of a pair of discrete random variables X and Y,
denoted by S(X,Y). The conditional entropy of a random variable Y given another variable X,
denoted by S(Y|X), is to measure the uncertainty of ¥ when X is known. The definitions are
shown in Table. 3.1.

Table 3.1: List of Definitions of Entropy and Mutual Information for Discrete Random Variables

Types of Entropy  Definition

Entropy: S(X) = Ep,(—logp(x)) =— > p(x)logp(x), (single variable)
reX
Joint entropy: S(X,Y) = Ep(—logp(z,y)) = — ZX %p(:r,y) log p(z,y)
rEX YE
Conditional entropy: S(Y|X) = > p(z)SY|X =2)=— > > p(z,y)logp(y|x)
zEX reX yey

Relative entropy :  Skr(p(z),q(z)) = E, log & q(x Z p(x)log ; p( 3

Mutual information: M (Y;X) = S(X) - S(Y|X) = (Y) —SXY)= 3 % p(z,y)log ((;)r 15))
TEX yeY
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The relative entropy, also called Kullback-Leibler (KL) divergence is a measure of the distance
between two distributions. The divergence is a function of two probability mass functions p(x)
and ¢(x) that potentially characterize the same random variable X, shown in Table. 3.1. The
relative entropy is nonnegativity. The proof can be based on the convexity of the logarithm
function. For any given probability mass functions p(z) and ¢(x), we have Sk (p(z),q(z)) > 0
and the equality establishes if and only if p(z) = g(x). The convention is used that 0log -2 = 0

q()
and p(z) log @ — 00. The KL-divergence is nothing else but Shannon’s measure of uncertainty

for a random variable X, if ¢(z) is a uniform probability distribution. Thus, Shannon’s entropy
can be interpreted as the amount of information in a model g(z) of X compared to the maximum
incertitude model - the uniform distribution. The uniform distribution is the one with maximum
entropy.

The concept mutual information is a measure of the amount of information that one random
variable contains about another random variable. It is the reduction in the uncertainty of one
random variable due to the knowledge of the other. Consider two random variables X and Y is
given by the uncertainty reduction for Y when X is known. Likewise, the information about X
contained Y is given by the uncertainty reduction for X when Y is known. Mutual information
is defined by M(Y;X) = S(X) — S(Y|X) = S(Y) — S(X[|Y) and these two definitions are
equivalent. The definition of mutual information is shown in Table. 3.1.

While combining the two basic concepts of entropy and mutual information, we can also make an
extension to continuous random variables for the definition of differential entropy which replaces
the notation of “sum” by “integral”.

3.3.2 Laplace’s Method

We infers Bayesian information criteria (BIC) from Laplace approximation, and we can easily
understand some related information measure criteria such as AIC, MDL and MML. Based on
the Bayesian rule, the posterior over parameters 6 of a model is

V|6, m)P(0m)

p(
PO|Y,m) = 3.11
O = == 3m) 10
The logarithm of the numerator is defined in the following,
t(6) = log[p(¥|0,m) P(6m)] = log P(6|m) + > log p(y |6, m) (3.12)

=1

the Laplace approximation [124] makes a local Gaussian approximation around a MAP param-
eter estimate 6 in Eq. 3.2. The validity of this approximation is based on the large data limit
and regularity constraints. The ¢(6) is expanded to second order as a Taylor series at this point,

N N . 2
t#) = t(0)+ (06— G)Tag(:) . + %(0 - G)Tgata(? . + ... (3.13)
~ 1(0)+ 50~ O)TH@)O - b) (3.14)
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where H (é) is the Hessian of the log posterior evaluated at 0, it is a matrix of the second
derivatives of Eq. 3.12,

_ (0
oy 00007

. 0?logp(fly,m)
H(0) = 00001

(3.15)

0=6

where the linear term has vanished as the gradient of the posterior 83—(5) at 0 is zero because it
is the MAP setting or a local maximum. Substituting Eq. 3.14 into the log marginal likelihood
in Eq. 3.5 and integrating yields,

logp(V|m) = log / d0P(0)m)p(y]0,m) = log / 40 explt(0)] (3.16)
~ 1(6) + 5 log|2rH | (3.17)
= log P(0)m) + log p(¥|6, m) + glog 2 — %log |H | (3.18)

where d is the dimensionality of the parameter space. |H| denotes the determinant value of H.
Thus, the Eq. 3.18 can be written,

12 (3.19)

p(y’m>Laplace = P(H‘m)p<y‘9a m) ‘27TH_1‘
where the Laplace approximation to the marginal likelihood consists of a term for the data
likelihood at the MAP setting, a penalty term from the prior, and a volume term calculated
from the local curvature. However, this approximation has several shortcomings in that the
second derivatives of approximation are intractable to compute.

Bayesian model selection method preference for simpler models is a spin-off and built-in Ock-
ham’s razor. Bayesian model selection methods include Bayesian factor and Bayesian informa-
tion criteria (BIC) are also used for model selection and parameter estimation [255]. BIC is
considered as an approximation of Bayesian factor [201]. It is based on a large sample approxi-
mation of the marginal likelihood yielding the easily-computable BIC.

3.3.3 BIC and MDL

AIC derived as asymptotic approximation of Kullback-Liebler information distance between
the model of interest and the truth. AIC and BIC have similar prediction mechanism. They
estimate a generalized model which has the ability to fit all “future” data samples from the same
underlying process, not just the current data sample.

Because of the intrinsic simplicity, Akaike information criterion AIC, shown in Table. 3.2, and
MDL [203] are widely applied to estimating two terms: a maximization of the likelihood data
term and a penalty term of the complexity of the model. However, within a Bayesian frame-
work, model selection appears more complex as it involves the evaluation of Bayes factors [124].
These Bayes factors require the computation of high-dimensional integrals with no closed-form
analytical expression. These computational problems have restricted the use of Bayesian model
selection, except for the cases for which asymptotic expansions of the Bayes factor are valid [13],
[23].
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3.3 Measure Criteria for Model Selection

The Bayesian Information Criterion (BIC) [223] like AIC, is applicable in settings where the
fitting is carried out by maximization of a log-likelihood. The BIC can be obtained from the
Laplace approximation by retaining only those terms that grow with n. From Eq. 3.18, we have

A A d 1
log p(V|m) Laplace = log P(0lm) + log p(Y|0, m) + 3 log 2 — 5 log |H | (3.20)

where each term dependence on n has been annotated. Here we use the “big-O” notation to see
the probability distribution of each term. Retaining O(n) and O(logn) terms yields,

A 1
logp(y|m)Laplace = 10gP(3’|9, m) - 5 log |H| (3'21)

From Eq. 3.12 and Eq. 3.15, we know that the Hessian scale linearly with n, we have,
1 1 d 1
lim —log|H| = - log|nHy| = = logn + =|Ho| (3.22)

and then assuming that the prior is non-zero at , thus the Eq. 3.21 in the limit of large n
becomes the BIC score,

) d
log p(y|m) grc = log p(y|0, m) — 5 log In| (3.23)

There are two main advantages of BIC. Firstly, it does not depend on the prior p(6|m). Secondly,
it does not take into account the local geometry of the parameter space. Therefore, it is invariant
to update parameters of the model. In practice, the utilized dimension of the model d is equal
to the number of well-determined parameters when any potential parameter degeneracies have
been removed.

The Minimum Description Length (MDL) principle [203] informally states that the best model
is the one which minimizes the sum of two terms: first, the length of the model, and second, the
length of the data when encoded using the model as a predictor for the data. In other words,
the MDL criterion is utilized for resolving the tradeoff between model complexity (each retained
coefficient increases the number of model parameters) and goodness-of-fit (each truncated co-
efficient decreases the fit between the received - i.e., noisy - signal and its reconstruction). We
seek the data representation that results in the shortest encoding of both observations and
constraints.

On the other hand, the BIC is in fact exactly minus the minimum description length (MDL)
penalty used in Rissanen [203], [204] shown in Table. 3.2. The minimum description length
method (MDL) [203] is an algorithmic coding theory and regularities (redundancy) can be used
to compress the data. The main principle of MDL is to achieve the best model that provides
the shortest description length of the data in bits by “compressing” the data as tightly as
possible. It suggests a means of evaluating this representation system such as the representation
of the data item using the model, and the mismatch between this representation and the actual
data. Recently, the minimum message length (MML) framework of Wallace and Freeman [253],
Lanterman [137], Figueiredo and Jain [77] has been intensively applied for unsupervised model
selection techniques [77] which is closely related to Bayesian integration over parameters.
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3 Bayesian Model Selection and Nonparametric Blur Identification

3.4 Nonparametric Model Selection

We follow a Bayesian framework whereby the unknown blur kernels, including blur type, blur
parameters, and the noise variance are regarded as random quantities with general open prior
knowledge from a designed blur solution space. Several previous works on Bayesian parameter
estimation and model selection for such ill-posed inverse problems have been addressed in a
series of papers.

As described Roweis and Ghahramani [211], factor analysis, principle analysis (PCA, mixture of
Gaussian clusters, vector quantization (VQ), Kalman filter models and hidden Markov models
can be unified as variations of unsupervised learning a single basic generative model.

3.4.1 Gaussian Mixture Model

Gaussian densities are probably the most commonly used densities to model continuous valued
data. The first reason for this popularity is that maximum likelihood parameter estimation
can be done in closed form and only requires computation of the data mean and covariance.
The second reason is that of all densities with a particular variance, the Gaussian density has
the largest entropy and therefore is the most “vague” density in this sense. This last property
motivates the use of the Gaussian as a default density when there are no reasons to assume that
some other parametric density is more appropriate to model the data at hand.

A Gaussian density in a D-dimensional space, characterized by its mean p € R” and D x D
covariance matrix », is defined as

-1

M) = @m) P2 S [ expl- g (o= )T S (o o) (3.24)

where 6 denotes the parameters p and > and | > | denotes the determinant of . In order to
be a proper density, it is necessary and sufficient that the covariance matrix be positive definite.
Throughout this thesis we implicitly assume that the likelihood is bounded, e.g. by restricting
the parameter space such that the determinant of the covariance matrices is bounded, and hence
the maximum likelihood estimator is known to exist [148]. Alternatively, the imperfect precision
of each measurement can be taken into account by treating each data point as a Gaussian density
centered on the data point and with small but non-zero variance. We then maximize the expected
log-likelihood, which is bounded by construction.

3.4.2 K-Means Clustering as a Hard Gaussian Mixture Model

As a consequence, the Gaussian mixture model is often referred to as a “soft” clustering method,
while K-means is “hard”. The reason is that the number of clusters should be given manually,

Table 3.2: List of information theoretic model selection techniques

Criteria Explanation

Akaike Information Criteria (AIC):  AIC = —2log f(y|0) + 2d
Bayes Information Criteria (BIC): BIC = —2log f(y|f) + dlogn
Minimum Description Length (MDL): M DL = —2log f(y|0) + 2dlogn
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3.4 Nonparametric Model Selection

while optimal Gaussian mixture model classifier can automatically find the number of clusters.
Similarly, when Gaussian mixture models are used to represent the feature density in each class,
it generates smooth posterior probabilities P(m) = {p1(z), ..., px(x)} for classifying x. Although
it is often interpreted as a soft classification, the classification rule is to achieve arg maxy, Pk(x)

From the experiments, the K-means classifiers are memory-based, and require no model to be
fit. Given a query point zo, we find the k training points z(,),r =1, ...,k closest in distance to
xg, and then classify using majority vote among the k£ neighbors. For simplicity, we can assume
that the features using Euclidean distance in feature space,

d(i) = |lz@y — zoll

Since the distance measures appropriate for qualitative and ordinal features, and how to combine
them for mixed test data. Despite its simplicity, K-means classifier has been successful in a large
number of classification problems. It is often successful where each class has many possible
prototypes, and the decision boundary is very irregular.

Furthermore, the Gaussian mixture model can be thought of as a prototype method as simi-
lar as the spirit to K-means and Learning vector quantization (LVQ). The K-means clustering
algorithm is a deterministic method that does not depend on initial parameter values and em-
ploys the K-means algorithm as a local search procedure. Instead of randomly selecting initial
values for all cluster centers as is the case with most global clustering algorithms, the proposed
technique proceeds in an incremental way attempting to optimally add one new cluster center
at each stage.

3.4.3 From K-Means Clustering to Vector Quantization

The K-means clustering algorithm represents a key tool in the apparently unrelated area of
image and signal compression, particularly in wvector quantization (VQ) [87], [145], [187]. A
K-means clustering (known as Lloyd’s algorithm) runs in this space.

In data compression, vector quantization (VQ) is a quantization technique often used in lossy
data compression in which the basic idea is to code or replace with a key, values from a multidi-
mensional vector space into values from a discrete subspace of lower dimension. The lower-space
vector requires less storage space and the data is thus compressed. The transformation into the
subspace is usually achieved through projection, or by using a codebook. In some cases, a
codebook implementation can be also used to entropy code the discrete value in the same step
by generating a prefix coded variable-length encoded value as its output. In cryptography, a
codebook is a document used for implementing a code. A codebook contains a lookup table
for encoding and decoding; each word or phrase has (one or more) strings which replace it. To
decipher messages written in code, corresponding copies of the codebook must be available at
either end. The distribution and physical security of codebooks presents a special difficulty in
the use of codes, compared to the secret information used in ciphers, the key, which is typically
much shorter.

Design of VQ

In the earlier days, the design of a vector quantizer (VQ) is considered to be a challenging
problem due to the need for multi-dimensional integration. In 1980, Linde, Buzo, and Gray
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(b) (c)

Figure 3.1: (a) Distinct image. (b) Blurred image. (c) Band-pass filtered blurred image (bandpass filter
is used for the selection to structure at different spatial scales).

(LBG)[145] proposed a VQ design algorithm based on a training sequence. The use of a training
sequence bypasses the need for multi-dimensional integration. A VQ that is designed using this
algorithm are referred to in the literature as an LBG-VQ.

Why we use VQ to work at all? The first reason is that it is difficult to find some descriptive
information on blurred images in the spatial domain. However, VQ can find the difference
between blurred images via different encoding error. The second reason is that for typical
everyday images like photographs, many of the block look the same. In this case there are many
almost pure white blocks, and similarly pure gray blocks of various shades. These require only
one block each to represent them, and then multiple pointers to that block. It is one kind of
lossy compression, but the VQ-based codebook is a good measurable “feature space” for vision
work.

The k-dimensional, N-level vector quantizer is defined as a mapping from a k-dimensional Eu-
clidean space RF into a certain finite set C' = Cy, Cs, ..., C. The subset C' is called a codebook
and its elements C; are called codewords. The VQ encoding is to search and assign one code-
word to the input test vector with minimum distortion. Given an image with N, x N, = M
block, each block has k (k = w x h dimensions; for color image, 3k dimensions) pixels. For
each codeword Cy = ¢, ¢9,...,anN, and the testing vector X = (x1,x9,...,257), the squared
Euclidean distortion can be expressed as: D(X,C;) = sum(||z; — cul|)?,i = 1,2,...,k. From
this equation, we know that encoding each input vector requires N distortion computations and
N — 1 comparisons. Therefore, the computational complexity of encoding each input vector
includes KN multiplication, (2k — 1) N additions and N — 1 comparisons.

Figure 3.2: A VQ-codebook with 64 pixels per block, 18 block, SNR=24.30dB, representative vectors
consists of various edges of different directions, amplitudes, and frequency.
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In order to perform the closest vector search efficiently for building a larger size codebook.
We adopted the approach for fast codeword search algorithm developed by Ra et al. [200]
which is about 15 times quicker than ”full search” algorithm for each codebook size, e.g., size
=(128,256,512,---). This equal-average nearest neighbor search (ENNS) algorithm uses the
mean value of an input vector to reject impossible codewords. It also reduces a great deal
off-line computational time compared with other fast search algorithms with only N additional
memory. In the proposed algorithm, the band passed pixel value in the codebook is treated as
the label. VQ is subsequently applied to all vectors with the same label based on the LBG [145]
algorithm. The VQ can be generated in a hierarchical way. The ENNS algorithm adapted as a
kernel for VQ encoding by the proposed algorithm is briefly described,

1. Let X = (x1,22,...,x%) be a k-dimensional vector, the sum of k-dimensional vector X as
Sx = sum(x;),i=1,2,, k.

2. Assuming the current distortion D;,;,, the main sprit of ENNS can be stated as: If (Sx —
SCJ.)2 > k- Dpin, then D(X,C}) > Diyip. This means C; will not be the nearest neighbor
to X, if (Sx — S¢;)? > k- Dinin, satisfied.

3. The sum of each codeword is calculated and these values are sorted in ascending order. The
squared Euclidean distortion D,,;, between the input vector and this tentative matcllling
codeword is calculated. Then the codewords Cj for which Sx > S¢; + (k + Dpin)2 or

Sx <S¢, — (k- Dmm)% are eliminated.

4. The search is performed up and down, left and right directions iteratively till the nearest
codeword is found.

To apply VQ method for blur identification, blurred images are vector quantized in terms of
the enhancement of blur representation. There are many potential features which can be used
to represent the largest blur in an image. We use local non-flat region features to train the
codebook so that a lot of redundancy in homogenous image regions can be avoided. Fig. 3.2
shows results of a blurred frame with representative vectors.

3.5 Experimental Results

3.5.1 Vector Quantization for Nonparametric Blur Identification
Main Steps

To identify the blurred frames in a real-life video sequence, we need to find an efficient method to
classify and group different blurred images in a given video sequence. The vector quantization,
codebook and its related encoding error are a basis of blur identification and blur degraded
frame selection system as illustrated in Fig. 3.3. This approach combines blur identification
and searching blur degraded images in a large video data in nonparametric vector quantizer
codebooks. The vector quantization (VQ) based codebook method satisfies such demand and
the detailed implementation has been presented by Zheng and Hellwich [295].

The method can be described in the following.
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Figure 3.3: Diagram of blur identification and find blurred images in large video data

1. Off-line training. To apply VQ method for blur identification, blurred images are vector
quantized in terms of the enhancement of blur representation. There are many potential
features which can be used to represent the largest blur in an image. We use local non-flat
region features to train the codebook so that a lot of redundancy in homogenous image
regions can be avoided. In a consequence, blur is identified from a few dominant candidate
blur functions in a set of training images. Each of the training sets with their related blur
functions is used to train the codebook-based on LBG algorithm [87], [145], [187]. These
trained codebooks can thus be used to measure the similarity of other blurred images.
Fig. 3.2 shows results of a blurred frame with representative vectors.

2. On-line testing (measuring). After the off-line training period, on-line blur identifica-
tion can be processed. Fast VQ encoding method speeds up the on-line blur identification
in video sequence. Each frame will be checked by a trained codebook via VQ encoding
approach. The distortion between the trained codebook and testing frames are measured
by mean square error (MSE). The values of different distortion are used to classify the
video frames into different blur clusters. VQ encoding of different frames get different
mean square error distortions based on the similarity measurement of statistical intensity
value. The testing frame with minimum distortion is identical blur in the frame which
generated this codebook.

Experimental Results

In the first experiment, we have tested simulated images to demonstrate the accuracy of VQ-
based blur identification and classification of blur degraded images. In Fig. 3.4, three groups
of images with motion blur, Gaussian blur and mixed types of blur are tested in three different
signal-to-noise ratios (SNR). The minimum VQ encoding distortion (MSE) of the testing image
is identical with the trained codebook. The up-right diagram shows the motion blur identifica-
tion where the codebook has a blur angle of 20 degree. The second curve diagram shows the
Gaussian blur identification, codebook has a variance 1.5. The third curve diagram shows blur
identification of mixed blur types, Gaussian variance = {1.5,2.5,3.5,4.5,5.5} and motion blur
with different blur angle. The codebook is generated by the image with index 3. The experiment
also demonstrates that the approach is robust with respect to correlated noises.

The second experiment has been performed on real-life video sequences in Fig. 3.5. Firstly, one
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Figure 3.4: (a) Three images with 10dB, 20dB and codB respectively. (b) An unblurred image with
five blurred images. Right diagrams: The minimum MSE is blur identified.

Dendrograrm

Figure 3.5: Blur Identification of frames in dendrogram (taken by “ptgrey” video camera, 15f/s). The
abscissa is an index for 9 frames (index 012-020 from 201 frames), the ordinate denotes the encoding
distortion values).

blurred frame is blur identified based on Bayesian MAP estimation in the off-line period. VQ-
based codebook of this blur identified frame is used to check other unknown frames in the on-line
period. We present the checking results in a clustering tree to demonstrate its efficiency. The
results are visualized by a dendrogram clustering method based on the VQ encoding distortion.
From the dendrogram, we can easily find the frames with different blur status are classified into
different sub-tree. The blur frames are classified into two main classes. The first main class of
images with index of {1,2,4} are relatively stronger blurred. The second class of images with
index of {3,5,6,7,8,9} are relatively weak-blurred or without blur.

The images with index of {2,4}, {5,6} and {7,9} have most similar blur status. The PSF of
images with index of 2 and 4 can be easily predicted in the cluster of {1, 2,4} because the image
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Figure 3.6: (a) PSNR-MSE distribution of different size of codebooks. (b) The dendragram of 18 frames
(index: 012-029)

with index of 1 is trained as a codebook. If we continue identify more blurred frames precisely,
we can continue the on-line process and add more codebooks. The Bayesian MAP estimation
for more video frames uses the prior knowledge from the blur identified codebook and classified
datasets. Higher accuracy PSF estimation follows the direction to a child on the sub-tree.

In Fig. 3.6(a), the influence of blur identification is also evaluated by checking the size of code-
books. For this case, codebooks with 256 blocks and 64 dimensions per block get encoding
distortion in a large range. Large encoding distortions cause distinct classification. The size of
codebook is selected based on such criteria. The PSNR-MSE diagram is drawn by measuring
the relationship between the image degradation and VQ encoding MSE. The image degradation
is quantified by peak-to-noise ratio (PSNR):

PSNR = 10log,((255* / M SE)(dB) (3.25)

In Fig. 3.6(b), we perform the algorithm on more images. 18 frames with continuous indices are
classified. The dendrogram in Fig. 3.6(b) has a similar sub-tree structure to the dendrogram in
Fig. 3.5. The blurred frames are classified and added in each sub-tree.

Compared to the existing methods, the approach can efficiently find out blurred images in
different groups for given video sequences. Mechanisms with both off-line and on-line phases
make the on-line performance in real-time. The approach is confirmed more practical in different
video acquisition environments.

3.6 Conclusion

As we know, finding efficient descriptive features of test data is crucial for classification, cate-
gorization or recognition tasks. However, it is very hard to find descriptive information directly
from blurred images. An indirect way is to find generative features for blur identification and
classify blurred images. Vector quantization can be considered as a nonparametric classification
method to measure the similarity and difference between images. One of the most useful ad-
vantages of this approach is its real-time performance and its robust with respect to noise. For
example, when large data sets (e.g., large image or video sequences) are available, nonparametric
blur identification techniques become crucial in that these methods can classify the blurred and
unblurred images efficiently without thinking about the detailed parameters of blur kernels.

However, VQ can not be directly used as a blind image restoration method for a single blurred
image. Therefore, more specific blur identification and image restoration method should be

72



3.6 Conclusion

addressed. Furthermore, such nonparametric methods have some difficulties to estimate band-
width of probability densities or accurate local parameters of blur kernels, we need to combine
parametric methods to solve such difficulties.

In the next chapter, we focus on the blind image restoration for a single blurred image. A
new method of blind deconvolution using Bayesian MAP estimation in alternating minimization
procedure is adopted and extended for blind image restoration. It also integrates the parametric
information of the blur structures progressively throughout restoration.
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4 Double Regularized Bayesian Estimation for
Parametric Blur ldentification

From where we stand, the rain seems random. If we could stand somewhere else, we would see
the order in it. - T. Hillerman (1990) Coyote Waits., Harper-Collins

In this chapter, we propose a new method which combines global nonparametric model selection
methods and local parametric optimization for parametric blur identification. The integration is
processed in a weighted double regularized Bayesian learning approach. A proposed prior solu-
tion space includes dominant blur point spread functions as prior candidates for Bayesian MAP
estimation. The double cost functions are adjusted in an alternating minimization approach
which successfully computes the convergence for a number of parameters. The discussions of
choosing regularization parameters for both image and blur functions are also presented. The
algorithm is robust in that it can handle images that are formed in variational environments
with different types of blur. Numerical tests show that the proposed algorithm works effectively
and efficiently in practical applications.

4.1 Introduction

In two decades, there has been considerable interest in the regularization theory for blind image
deconvolution (BID). As we know, the regularization method is originally proposed by Tikhonov
[241], Miller [165] et al. which replaces an ill-posed problem by a well-posed problem with an
acceptable approximation to the solution. Later, Katsaggelos et al. [126] have introduced an
iterative regularization algorithm for image restoration based on a set theoretic approach. This
algorithm using a deterministic framework introduces a priori knowledge in the form of convex
sets, and decouples the nonlinear observation model into double linear observation models that
are easy to solve. A projection-based method with conjugate-gradient minimization for BID
has been proposed and extended by [136], [278], [280]. These methods have demonstrated
how the parametric models in image restoration methods are used [134], [279] in some respects.
However, these results are observed in underutilization of prior information. The ill-posed image
restoration problem needs more effective and descriptive prior information or constraints to yield
a unique solution to the corresponding optimization problem. Even if a unique solution exists,
a proper initialization value is still intractable, e.g., the cost function is non-convex.

The Bayesian estimation provides a structured way to include prior knowledge concerning the
quantities to be estimated [63], [85]. The Bayesian approach is, in fact, the framework in which
the most recent restoration methods have been introduced. When blur is present, different
approaches have been proposed to find a maximum a posterior (MAP) estimate. Besag [26]
has introduced the statistical analysis of dirty pictures. Geman and Geman [85] combine im-
age restoration and segmentation simultaneously in discrete and stochastic Bayesian estimation.
Hellwich [111] has developed an unsupervised edge and object extraction method for noisy syn-
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thetic aperture radar (SAR) data in Markov random field based Bayesian estimation. Opper et
al. has developed a Bayesian estimation based free energy functional for approximate inference
[182], [183]. Blake et al. [33] propose the use of gradually non-convexity method, which can be
extended to the blurring problem. Molina and Ripley [170] propose the use of a log-scale for
the image model. Green [97] and Bouman et al. [35] use convex potentials in order to ensure
uniqueness of the solution. Recently, an appreciable extension of the range of hyperparameter es-
timation methods is used in Bayesian estimation. Molina et al. [169] use a hierarchical Bayesian
paradigm resulting from the set theoretic regularization for estimating hyper-parameters. They
also report that the accuracy of the obtained statistic estimates for the PSF and the image
could vary significantly, depending on the initialization. To obtain accurate restorations in the
Bayesian approach, accurate prior knowledge of PSF or image must be available.

In the Bayesian estimation, some main properties can be mainly focused to improve the perfor-
mance. Firstly, prior knowledge can be achieved based on physical constraints and implemen-
tation. However, the Bayesian estimation could be sensitive to wrong priors, but we can learn
priors too. Secondly, it is an ideal and simple approach to model selection using some measure
criteria. Finally, the conception of Bayesian estimation is simple but often computation is hard.
Therefore, we interpret Bayesian estimation as a regularization based optimization functional.

In this chapter, a space-adaptive regularization method is integrated into a Bayesian learning
approach for parametric blur identification. A newly introduced solution space of PSF priors
supports accurate parametric PSF in the form of Bayesian MAP estimation. An integrated
quadratic cost function subject to convex constraints is minimized in an alternating minimiza-
tion within a specified range. These positivity constraints and strictly convex property ensure
that the alternating minimization procedure converges globally. Regularization parameters and
weight matrices are estimated with the help of some parameter estimation techniques as well as
comparison of these methods.

4.2 Bayesian Estimation Based Double Regularization

We use Bayesian MAP estimation to utilize prior information for getting a convergent posterior.
Following Bayesian paradigm, the true f(x), the PSF h(x) and observed g(x) in g = hf + 7 on,

p(glf; h)P(f,h)
p(g)

P(f,hlg) = o< p(glf, h)P(f,h) (4.1)

Applying the Bayesian paradigm to the blind deconvolution problem, we try to get convergence
values from Eq. (4.1) with respect to f(x) and h(x). This Bayesian MAP approach can also
be seen as a regularization approach which combines optimization methods for minimizing two
proposed cost functions in the image domain and the PSF domain, shown in Fig. 4.1. The cost
function of the restored true image f(x) from Eq. (4.1) is deducted as:

P(flg,h) o< p(glf,h)P(f) (4.2)

the cost function of the PSF h(x) in Eq. (2) is deducted as:

P(hlg, f) < p(g|f,h)P(h) (4.3)
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Observation
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Figure 4.1: Formulation of blind image deconvolution problem into a double regularization approach.
f is the unknown original image. H is the observed operator. g is the observed image. 7 is the noise. f
is a restored image.

Some constraints are assumed for the application of these equations, e.g., the image pixel cor-
relations are independent identically distributed (i.i.d.). However, manipulation of probability
density functions in Bayesian estimation is difficult [63]. Several forms of the prior distribution,
e.g., Gibbs distribution [303], smoothness prior or maximum entropy, pixel labeling prior [85],
and some other pixel based prior (i,j are pixel neighbors) shown in Table. 4.1, have been sug-
gested by researchers from different scientific disciplines. However, they are based on general
knowledge about images. For most real blurred images, the prior knowledge is not descriptive
models which can efficiently enhance the maximum a posterior (MAP) estimation. Therefore,
we need to find representable information from potential functions which can characterize the
observed blurred images. As we have discussed previously, in blurred images, power spectral den-
sities vary considerably from low frequency domain in the uniform smoothing region to medium
and high frequency domain in the discontinuity and texture regions. Moreover, most PSF's exist
in the form of low-pass filters. The high frequency discontinuities are often diminished by van-
ishing blur multipliers [118]. Blur identification can be based on these characteristic properties.
The proposed prior solution space supports parametric PSFs in a Bayesian MAP estimation, as
PSFs of numerous real blurred images satisfy parametric blur kernels up to a certain degree.

4.2.1 Solution Space of Blur Kernel Priors

The proposed prior supports the parametric structure of PSFs in Bayesian estimation and re-
duces the effective search space. We define a set © as a solution space of Bayesian estimation
which consists of primary parametric blur models as © = {h;(0),i = 1,2,3,..., N} presented in
Fig. 4.2. h;(0) represents the ith parametric model of PSF with its defining parameters 6, and

Table 4.1: Prior distributions p(6) in Bayesian Image Processing

Prior Functionals Explanation

Pixel priors:  p(x) o exp{— Z ¢(x; —xj)}, © € R™ pairwise differences

Gaussian prior: p(x) o exp{—;%jzl(a:i — )%}, € R masked by Gaussian noise

Median prior: p(z) o exp{—1 fﬁxz — x|}, x € R attractive alternative to Gaussian

Labeling prior: p(z%) o exp{—,éN] g:l ni}, 2 € C™ label at a coarse scale than pixels
1<k<lI<c
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Mation blurred image
Gaussian lowpass filter o
Original Image

(a) () (c) (d)

Figure 4.2: PSFs in the prior solution space. (a) Original synthetic image. (b) Pill-box PSF. (c)
Gaussian PSF. (d) Linear motion PSF.

N is the number of blur kernel types.

hi(0) o< h(z,y; Li, Lj) = 1/K, if |i| < L; and |j| < L;
hi(0) = h2(0) x h(x,y) = Kexp(—$221_§2)
' h3(9)0(h(x7y7d7¢):1/d7 lf\/ng/27 tan¢:y/x

(4.4)

h1(0) is a pill-box blur kernel with radius K. hs(f) is a Gaussian PSF characterized by its
variance o2 and a normalization constant K. hs3(f) is a simple linear motion blur PSF with a
camera motion d and a motion angle ¢. The other blur structures like out-of-focus and uniform
2D blur [19], [134] are also built in the solution space as a priori information. A set of parametric
PSFs construct a predefined prior solution space for Bayesian MAP Estimation.

4.2.2 Weighted Space-Adaptive Regularization

To solve an adjustment optimization problem, the classical least squares based methods are
mostly widely used, e.g., signal processing [112], image matching [207] and so on. However, the
direct solution of the least squares problem is described in Eq. 4.5,

S () f(x) — g(x))* = min (4.5)

Eq. (4.5) may leads to a vector f(x) that is severely contaminated with noise. Tikhonov regular-
ization [165], [241] can efficiently solve the ill-posed problem with additive noise as the following
Eq. 4.6,

IS @) f@) - g@)? + A (@) = min (4.6)
2 e 2 e

The approach adds a penalty term multiplied by a regularization parameter A\ for solving the
linear least squares problem. However, for the image restoration, some ringing artifacts near
sharp intensity transitions are still attributable to Tikhonov regularization. To reduce the
ringing effects, Lagendijk et al. [135] made an extension of it by making use of the theory of the
projections onto convex sets [126], [125] and the concepts of norms in a weighted Hilbert space.
A weighted space-adaptive regularization equation seeks to minimize the following cost function
as shown in Eq. 4.7,

3 2 e () () = 0(@)* + 3N D, walela) « f(2)* = min (47)
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where the cost function is minimized based on the degraded image data g(x), original image
f(z), and PSF h(x). c(z) is called the regularization operator and traditionally is a second
derivate Laplace filter. The issue of non-directional (Laplace) versus directional operator has
been debated firstly by Marr and Hildreth. A directional operator can be shown to have better
localization and preserving discontinuities than the isotropic Laplacian filter, and achieve better
visual perception. The outputs of operators of different size is difficult to combine since the
supports differ markedly. For a given operator width, both signal to noise ratio and localization
improve as the length of the operator (parallel to the edge) increases, provided of course that
the edge does not deviate from a straight line. X is a regularization parameter that controls the
trade-off between the fidelity to the observation and smoothness of the restored image. Normally,
real images are piecewise smooth and additive noise is not spatially stationary. The trade-off
should be spatially adaptive according to the local properties of image and noise. The adaptive
space is adjusted by introducing two weights w; and we. Large w; emphasizes the fidelity of
data where the noise is small or near sharp intensity transitions, otherwise it should be small.
Large wo means smoothness near smooth areas or means large noise, otherwise it should be
small.

4.2.3 Estimation in Image Domain

Based on the Bayesian form, our goal is to find the optimal f and h that maximizes the posterior
P(f, h|g) respectively.

J(flh,g) = —log{p(g|f, h)P(f)}, (4.8)
J(hlf,g9) = —log{p(g|f, h)P(h)}, (4.9)

express that the energy cost J is equivalent to the negative log-likelihood of the data. The priors
P(f) and P(h) over the parameters are penalty terms added to the cost function to minimize
the energy cost in a regularization framework for solving ill-posed problems [241], [86], [169],
[28]. Another similar optimization framework called free energy is proposed by Jordan [121]
in graphical models. Also, Opper et al. [183] proposed a variational free energy approach for
approximate statistical inference. To avoid stochastic optimization (longer computing time)[85],
[303], [209], we solve the optimization problem deterministically [86], [45], [289] in a convex
manner with respect to the image and the PSF.

In the image domain, the cost function of image estimate can be minimized iteratively in the
weighted space-adaptive regularized formulation. In this equation, p(g|f, h) follows a Gaussian
distribution and p(f) is prior knowledge with some constraint conditions.

T (fgm) = argmax[p(g|f,h)P(f)] (4.10)

f
= 33 wilee) — ) xS+ A walen(e) + f(@)?

where p(g|f,h) x exp{—3>,cqwi(g(z) — h(z) * f(2))*} and the prior of image is p(f)
exp{ —3AD,cqwa(ci(z) * f(x))?*}. The first term is a fidelity term and the second is a smooth-
ing term. Direct minimization of the cost function would lead to excessive noise magnification
due to the ill conditioning of blur operator. A smoothness constraint ¢;(z) is an regularization
operator and usually is a high-pass filter.
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4.2.4 Estimation in PSF Domain

In PSF domain, PSF can be seen as maximizing the conditional probability. However, ma-
nipulation of probability density functions of PSFs in Bayesian estimation is difficult, and a
decision must be made to attribute accurate initialization. The proposed prior solution space
supports the parametrically structured PSFs in Bayesian estimation. A cost function for PSF
from Eq. 4.3 is describing as the following:

ﬁ’f) Fe (h)} (4.11)
= 52 l9@) = @) < F@P 4 58S leala) # M@ — 7Y Tog Pa(h)

j(il(g’f)) = argmi?x {p (g

A~

In Eq. 4.12, pg(h) is the prior knowledge and needs to be computed. © is a set of primary
parametric blur priors. Since both the original and observed images represent intensity distri-
butions that cannot take negative values, the PSF coefficients are always nonnegative, h(x) > 0
Furthermore, since image formation systems normally do not absorb or generate energy, the
PSF should satisfy > .oh(x) =1.0,2€Q,QC R? is known. We need to compute:

po (h) = arg;naxp(hiw)’ﬁ) (4.12)

= arg;naxlog {W.exp [—; (hi 0) — iAL)TZ;dl (hi 0) — B)] }

1 1 1
= argmin {2LB log(2m) + 5 log(c2EP) + 5
0

o
QN

We define the likelihood of the neighbor h and in resembling the ith parametric model h;(6),
hi(6) € © . The first subscript ¢ denotes the index of blur kernel. The modeling error d =
hi(6) — h is assumed to be a zero-mean homogeneous Gaussian distributed white noise process
with covariance matrix ), = Ufll independent of f(z,y). LB is an assumed support size of
blur. In reality, most of blurs satisfy up to a certain degree of parametric structure. A best fit
model h;(0) for h is determined according to the density distribution.

The cost functions of image estimation and PSF estimation can be shown to be quadratic with
positive semi-definite Hessian matrices. Therefore, the two cost functions are convex functions
which ensure convergence in their respective domains. The resulting method attempts to mini-
mize double cost functions subject to constraints such as non-negativity conditions of the image
and energy preservation of PSFs. Our objective of the convergence is to minimize double cost
functions by combing these two cost functions. We propose to solve the equation in the following:

min g (F,0) = 3 3 wnlg@) — h(@)« f@) + A wsler(@)« [@)°  (413)

hf 2 2
fidelity term penalty term of images
1 1 A
FoB3 walea(@) w h@)P + 5y S0 walhi(6) — hy?
penalty term of PSFs learnixrg term
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(c, *h)?

(h(6)-h)?

Figure 4.3: Representation of the intersection of the four convex sets. The proposed functional is
presented in the set-theorey. Knowledge about the noise as well as other properties of the solution are
directly incorporated into the restoration process, in terms of soft and hard constraints.

This double cost functional is quadratic in its variables so that it is a strictly convex functional.
This functional can also be explained using the set theoretic approach followed by Katsaggelos
[126]. The a prior knowledge constraints the solution to certain sets. Therefore, consistency
with all a prior knowledge pertaining to the original image serves as an estimation criterion.
Therefore, deterministic and/or statistical information about the undistorted image and statis-
tical information about the noise are directly incorporated into the iterative procedure. The
restored image is the center of an ellipsoid bounding the intersection of four convex sets, shown
in Fig. 4.3.

However, the most tractable criterion-mean square error does not ensure human perceptual im-
age restoration. Some soft constraints such as weight must be incorporated into the iterative
minimization. If we ignore the effect of weights for the moment, the goal in the above minimiza-
tion problem is to find an estimate image which makes the mean squared estimation error small
and yet would not allow f and h to have much high frequency content in f and h respectively.
The weight functions representing image local variances make their possible to allow high fre-
quency content in f in the high activity (edge and texture) regions and to heavily penalize such
content in low activity (smooth) regions. The weights are calculated according to [126], [280],
[135]. Adaptive weights can be computed using fixed, variable and adaptive windows between
zero and one.

1. wy =1, if data at x is reliable, otherwise wy = 0;

2. The image weight we = 1/[1 4+ 042(5']%( )], &J%(x) is local variance of the observed image at

z in a given window, and ap = 1000/02,,, is a tuning parameter designed so that wy — 1
in the uniform regions and wy — 0 near the edges.

3. Regarding to the weight of PSF, we take w3 = 1, wy = 1. The reason is that most
parametric blur kernels are homogeneous smoothness, the regularization operator co can
adjust the smoothness of PSF.

A similar idea was proposed by Polzehl et al. [196], they use an adaptive weights smoothing
method for image restoration. In this method, nonparametric image estimation is based on
locally constant smoothing with an adaptive choice of weights for every pair of data points.

The resulting method attempts to minimize double cost functions subject to constraints such
as non-negativity conditions of the image and energy preservation of PSFs. During the imple-
mentation, A, 3, v including diagonal matrices assign different emphases on the balance of the
convergent PSF and image. The cost function of this equation is minimized in an alternating
optimization approach via conjugate gradient descent.
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Figure 4.4: Diagram of K-nearest neighbors based nonparametric density estimation for PSF estimation.

4.2.5 Statistical Model Selection and Parametric Modeling

Blind image deconvolution methods can be classified into two basic categories: parametric and
non-parametric methods. Parametric modeling methods assume that the PSF satisfies a known
parametric structure. The overall flexibility of estimation is thus restricted and converted to
the selection of a reasonable parametric model from the proposed solution space. In contrast,
nonparametric modeling do not make any assumption of blur kernels, resulting in solving more
natural blur identification, e.g., partially-blur, non-stationary or nonuniform blur. The underly-
ing connections between these two methods is that nonparametric modeling can be represented
by many parametric models. For example, Gaussian mixture model can be considered as a
nonparametric modeling method. The dilemma can thus be resolved by some strategies, e.g.,
sampling methods, nonparametric model selection methods. Here, we propose a K-nearest
neighbors (K-NN) method for the selection of a reasonable parametric model from the solution
space. Then we use a weighted mean filtering method to estimate the PSF that can be locally
optimized in further iterative regularization.

During the estimation _process, cach estimated PSF h for a sampling image region normally has
some noise error h = h+noise. During the deconvolution, the coefficients of h are influenced by
noises so that the high-frequency contents are unreliable. The reliable information of the PSF
is its low-frequency contents. Since, we have a lot of sampling of PSF according to the principle
in Fig. 4.5. To achieve a better estimated PSF with less noise, the estimated PSF is convolved
with several low-pass filters to remove noise and get several PSF neighbors ﬁj, je1,..K)
in OTF format (Optical Transfer Function, OTF is PSF in frequency domain). The inverse
discrete Fourier transform is thus performed to generate K number of PSFs.

In order to study the interaction between statistical blur kernel knowledge and blur degraded
image information, we define the likelihood P(h ) of the estimated PSF h of an observed image
in resembling the ith parametric model h;(6) in a multivariate Gaussian distribution,

P(ﬁj) o arg;naxlog {W - exp {—; (hi (0) — %)T ;dl (hi (0) — h]):| }

The first subscript ¢ denotes the index of blur kernel. The modeling error d = h;(6) —h is assumed
to be a zero-mean homogeneous Gaussian distributed white noise process with covariance matrix
Dodd = afll independent of image. L x B is an assumed support size of blur. Then the Gaussian
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Figure 4.5: An example of a blur kernel with 9 x 9 pixel support size

probability corresponds to a PSF learning likelihood:

. 1 . -1 .
lis(hy) = 5 exp { (hs(0) = )T S (hil0) = )} (4.14)
In reality, most of blurs satisfy up to a certain degree of parametric structures. A best fit model
hi(8) for h is selected according to the Qaussian distribution and a weighted mean filter. The
mean value of PSF learning likelihood [;(h) is that [;; (h ) is weight divided by d(h, h; ). d(h, hy)
is the Euclidean distance between h and its neighbor hj,

) = 32 Mgy 2. ) (419

The weighted mean likelihood ll(ﬁ) depends on two conditions using a weighted mean filter.
The first condition is the likelihood value of the blur manifold lz'j(ﬁj), and the second is the
distance between h and its neighbor ﬁj. The estimated output blur model h  is obtained from
the parametric blur models using

hy = (Wi + 30 LPHh/Y 1) (4.16)

where lo(h) = 1 — maz(l;(h)), i = 1,...,C. The main objective is to assess the relevance of
current estimated blur & with respect to parametric PSF models, and to integrate such knowledge
progressively into the computation scheme. If the current blur h is close to the estimated PSF
model hf, that means h belongs to a predefined parametrlc blur structure. Otherwise, if h
differs from h ¢ significantly, this means that current blur h may not belong to the predefined
PSF priors. The solution space of PSF kernels supports stronger parametric prior for the next
iterative regularization. This method allows the construction of a representative solution for
any special data acquisition environments.

4.3 Alternating Minimization

You and Kaveh [280] introduced a joint L? norm regularization method of the image and blur
kernel for nonparametric blur identification. Later, Chan and Wong [44] demonstrated this
method in TV (L' norm) based joint regularization for image and blur kernel. To achieve the
joint results, a scale problem arises between the minimization of the PSF and the image via
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steepest descent. The reason is that the 8.7 /0h is Y ozen f(x) times larger than 8.7 /9f. Also,
the dynamic range of the image [0, 255] is larger than the dynamic range of the PSF [0, 1]. The
scale factor changes dynamically with space coordinates (z,y).

To avoid the scale problem, an alternate minimization method following the idea of coordinate
descent [280], [151], [152] is applied. The alternating minimization decreases complexity. The
formulation is derived from the double cost functional in the following:

_0J(f,h) X RD
p) = L and i) = LY
1. Initialization:
fo(ac) = g(z), o (z) get from Eq. (14) (4.17)

2. nth iteration: restoration step under a fixed h(x)

A~

fulz) = argmin Ty(flhn1.9) (1.18)
f

3. (n+1)th iteration: identification under a fixed f(x)

~

hpi1 = argmin Ji, (| fn, 9), h(z) >0 (4.19)
F

4. If convergence is reached, then stop iterating.

The global convergence of the algorithm to the local minima of cost functions can be established
by noting the two steps in Eq. 4.18 and Eq. 4.19. Since the convergence with respect to the PSF
and the image are separate and optimized alternatively, the flexibility of this proposed algorithm
allows us to use conjugate gradient algorithm for computing the convergence. Conjugate gradi-
ent method utilizes the conjugate direction instead of local gradient to search for the minima.
Therefore, it is faster and also requires less memory storage when compared with quasi-Newton
method. To get a convergent value of PSF, let v(z) be the element at = of the conjugate vector.
The conjugate gradient descent is given by the following:

e Initialize the conjugate vector from g(x):

vo(z) = —qo(w) (4.20)
e Step size for updating the PSF in iteration k:

> eeq lan(x)]?
S (g * fi)2+ B (e % vg)2 + v Y (€2 % vg)?

e Update the PSF:

A =

hii1 (z) = by () + oog(z) (4.21)

84



4.3 Alternating Minimization

e Step size for updating the conjugate vector:

Zzeg (G141 () 2

Br = 4.22
Yoo @@ “22)

e Update the conjugate vector:
Uk+1(2) = —qr11(2) + Brvr () (4.23)

The above steps should be stopped after n steps. To compute convergent image, the conjugate
gradient descent algorithm is described as:

Initialize the conjugate vector:

uo(z) = —po() (4.24)

Step size for updating the image in k iteration:

erQ [pk(l‘)]2
S (g ug)? + A Y (eq % ug)?

A —

Update the estimated image

Fr1 (@) = fulz) + apup(z) (4.25)

Step size for updating the conjugate vector:

ZmGQ [Pry1(2) 2

B = (4.26)
> wcq [Pr(@)]
e Update the conjugate vector:
Ut1(x) = —prt1(z) + Bruk(z) (4.27)

If an image has M x N pixels, the above conjugate method will converge to the minimum of
Ly < f lg, h) after m < M N steps based on partial conjugate gradient method. The update of

weights wy, we, w3 and wy is done after the conjugate gradient descent algorithm in order not
to influence the conjugacy of the descent vectors. Real images or video have only a few very
large frequency components and the others are very close to zero. Thus the Hessian matrices
become sparse, and only a small number of n = (5 — 15) iterations can get the convergence.
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Figure 4.6: Generalized cross validation for the estimation of regularization parameter A. The corner
of the GCV curve is the best estimated regularization parameter \.

4.4 Parameters Selection of Iterative Regularization

The parameter selection of regularization is discussed intensively in the literature due to its im-
portance, especially in deblurring. The reason is that the deblurring is related to the estimation
of image f and the blur identification h. There is a “balance” between the estimation of PSFs
and images. We discuss three types of solution for regularization [105]. The first one is the
original Tikhonov regularization which has a penalty term to the problem to filter out unwanted
components. The second method is the truncated singular value decomposition regularization
(TSVD) [104]. This method is projected into a specific subspace without the unwanted com-
ponents. The third one is a “hybrid” regularization approach which combines Tikhonov and
TSVD into one approach. The subspace methods have one regularization parameter, namely the
subspace dimension k corresponding to the iteration count for iterative methods. On the other
hand, the penalty methods can have multiple regularization parameters - one for each penalty
term.

In our approach, a single Tikhonov regularization is extended to double regularization with
respect to the image and the PSF. Therefore, the regularization parameters with respect to the
image and the PSF need to be estimated. We have studied three types of parameter-selection
methods which are described in the following part.

4.4.1 Generalized Cross-Validation

Generalized cross-validation (GCV) is a method [94] that does not depend on a priori knowledge
about the noise variance. It is also a rotation-invariant form of ordinary cross-validation [54] and
has some robust behavior for certain situations. The regularization parameter can be chosen to
minimize the GCV function in the case of single regularization.

Ihf = glI3
[trace(I — hh!)]?

C\) = (4.28)

where h! is the matrix which produce the regularized solution, i.e., =h!g. For a single Tikhonov
regularization, h! = (hTh+ X 2I)~'h”. The cross-validation can be used to estimate the regular-
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Figure 4.7: L-curve method for the estimation of regularization parameter A. The corner of L-curve is
the best estimated regularization parameter \.

ization parameters [202]. For example, in the space-invariant blur case, each set h; is considered
as a single pixel. Thus, a “restored” image is determined using the values from the observed
image g at a fixed regularization parameter, and the “restored” image is re-blurred in order
to predict the blurred and noisy observation that was left out of the restoration. A different
“restored” image is formed for each observation. The regularization parameter that minimizes
the mean square prediction error over all the observation is chosen as the estimated optimal
parameter. However, the performance suffers from the assumption of a stationary image, and
the algorithmic complexity and computation load are still high.

One noted difficulty with GCV is that G can have a very flat minimum in the GCV curve, making
it difficult to determine the optimal A\ numerically. The solution estimates fails to converge to
the true solution as n — oo or as the error norm goes to zero, shown in Fig. 4.6.

4.4.2 L-Curve Method

The L-curve method is based on heuristic observations that are directly used as a parameter-
selection methods and named by Hansen [106]. The L-curve attempts to balance the penalty
term and the fidelity term for the regularized solution with regularization parameters with
respect to the image and the PSF. The L-curve comes from the characteristic shape of the curve
(log |hf — g||2, log || f||?). Functions are presented in logarithmic scaling. A small parameter A
yields a large penalty term and a small model fit norm. Similarly, a large A gives a small penalty
term and a poor fit. The idea is to find a balance value between two terms at the corner of the
L-curve, shown in Fig. 4.7.

However, in our case, we use double regularization with respect to the blur kernel and the image
which are interleaved constraints and prior knowledge. In this case, we can directly use other
methods to estimate the regularization parameters, e.g., the L-curve method [106]. The L-curve
criteria are likely to terminate prematurely and return a regularization parameter A which is
significantly too large. GCV may require more Lanczos iterations but it provides reliable answers
in return. The plot of the norm of the regularization parameter values, was introduced by Lawson
and popularized by Hansen [106]. Intuitively, the best regularization parameter should lie on
the corner of the L-curve, since the residual increases without reducing the norm of the solution
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much. The norm of the solution increase rapidly without much decrease in residual. In practice,
only a few points on the L-curve are computed and the corner is located by estimating the point
of maximum curvature [106].

To find a useful algorithm we need a precise definition of the corner of the L-curve. Hansen et
al. suggested using the point of maximum curvature. This approach is invariant to scaling of
the equations, but the computation needs derivatives of the penalty and residual fit functions.

4.4.3 Morozov’s Discrepancy Principle

The Morozov’s discrepancy principle [171], [172] selects the regularization parameter so that the
model fit ||hf — g||2 is equal to an upper bound on the error § in the following,

1hf = gll2 = 6 (4.29)

where ||e|lz < §2. If we know the norm of the noise ||e||2 = § (the noise level), it does not make
sense to ask for a solution f where ||hf — g|| < 6. The iterative methods GMRES and LSQR
(available in matlab tool box) all have monotonically decreasing residuals and iterations can be
stopped when the residual norm passes the error d.. This mechanism makes the discrepancy
principle a perfect choice for these methods in case we know the noise-level.

Tikhonov regularization is a half quadratic functional and it is strictly convex in the case of
blur identification. The residual norm of the regularization solutions are also monotonically
converging with respect to the regularization parameter. Therefore, the Morozov discrepancy
principle is well defined for searching parameters in Tikhonov regularization.

However, the noise is not always available and an estimation may be unreliable for an observed
blurred noisy image. The GCV and L-curve method do not require the noise-level. Because
these two methods do not consider the noise level to influence the regularization parameters.
An experimental comparison in [105] is done to show how good the the optimal regularization
parameters are. In practical environment, we have tried these different methods for finding a
best regularization parameter for blur identification and image restoration.

4.4.4 Self-Adjusting PSF Support

The support size of blur kernel is more important than the coefficients of blur kernel. For
real blurred image or video data, one of the main differences between stationary blur and non-
stationary blur is the size of blur kernel changing continuously and randomly. Therefore, the
restoration of non-stationary blur needs reasonable sampling methods and estimation methods
to follow the changing of blur kernels continuously. In this section, we introduce an accurate
estimation method for estimating the support size of stationary blur.

From frequency point of view, spectrum or cepstrum of blurred images are used to perform blur
identification [135], [136] However, these methods are sensitive to additive noise and changes
of image structure and texture due to the restriction of the Fourier transforms of PSFs. Au-
toregressive (AR) and moving average (MA) processes are used to model the true image and
blur kernel respectively. Under this autoregressive moving average method (ARMA) framework,
statistical methods are employed to estimate the blur parameters for the objective of blind im-
age restoration such as maximum-likelihood (ML) estimation [135], generalized cross-validation
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(GCV) [202]. ML method is used to maximize the log-likelihood function for getting the pa-
rameter set in ARMA solution space. GCV determines parameters by minimizing a weighted
sum of predictive errors. Chen et al. [46] proposed a method to identify the support size using
maximum average square difference and maximum average absolute difference based on ARMA.

In our method, in order to ensure the actual PSF support size, the boundary of the assumed PSF
support is decreased at each iteration. After several iterations, the approximate PSF support
size can be reached till the convergence of support size is stable. Because of the nonnegative
constraints of the PSF, the boundary size is adjusted by giving a positive size threshold. Al-
though different parametric PSFs have different kernel, the self-adjusted PSF support is always
rectangular or circular.

4.5 Experimental Results

Experiments on synthetic and real data are carried out to demonstrate the effectiveness of our
algorithm.

4.5.1 Adaptively Weighted Image Smoothing Parameters

The choice of regularization parameters is crucial. You and Kaveh propose a way of setting
these parameters. However, as they have pointed out in their paper, these values are meant
to be used as guidelines only and not as exact values. To find a good way of determining the
values of regularization parameters, we use the L-curve method [106] due to its robustness for
correlated noise. It is a graphical tool for analysis of discrete ill-posed problems in a log-log plot
for all valid parameters using the compromise between minimization of these quantities. The
novelty is that no prior knowledge about the properties of the noise and the image (other than its
”smoothness”) is required, and required parameters are computed through our proposed double
cost functions. There is a relative scale relation between A and (. It is formulated as

BIN=D_, o f ()max f (x) (4.30)
The order-of-magnitude of two parameters are given using the normalized local variance of image
and PSF, \; = 0.5/(1+ 103var(f()), 8; = 105/(1 + 103var(h(i)) and ~; = 105/(1 + 103var(d(i)),
where d = h; (0) — h . We have also tried different weights to determine the suitable weighting
scheme. Piecewise smooth and ringing reduction can slightly compensate the error of estimation
so that w(xz,y) — 1 in the uniform regions and w(x,y) — 0 near the edges. A meaningful

measure called normalized mean square-error (NMSE) is used to evaluate the performance of
the identified blur,

(ZI Zy (h(z,y) — iL(IL‘, y))Q)é

NASE = SIS SNICRN)

(4.31)

where h(z,y) and h(z,y) are the true and estimated blur. We test the approach in different
blur status. Accurate parameters of PSF can be adjusted based on the minimized cost function
and NMSE measure. The closed PSFs of NMSE normally has a range [0, 0.1] depends on the
different PSFs.
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Figure 4.8: alb|c Recovered PSF and restored image. The first row (left to right): (a) Original image.
(b) Synthetic motion blurred image without any additive noise. (c) Restored image using toeplitz-circular
block matrix approximation weak noise. The second row (left to right): original PSF, identified PSF.
From this experiment, without noise, SNR=+o00, the restoration has very weak ringing effects for the
motion blur. We may find most ringing effects and influences coming from noises and blur. Gaussian
blur and out-focus blur has more stronger ringing effects than motion blur.

4.5.2 Blind Deconvolution of Degraded Image

To evaluate this algorithm, the performance of the approach is investigated by using simulated
blurred images and real video data at different signal-to-noise ratios. The performance of image
restoration is measured by SNR improvement and formulated as the following,

ISNR =10logyo(||f = gl[*/I1f = fII*)(dB) (4.32)

Simulated experiments are performed in standard images. The identified PSFs and restored
images are illustrated in Fig. 4.8. A MRI image has been degraded by three different blur kernels
with quantization noise SNR 20dB. The proposed algorithm was applied to the degraded image.
The final restored image and the identified blur are given in Fig. 4.9, respectively. It can be
observed that the overall textured and edge region of the image has been recovered. This second

Table 4.2: ISNR results on test data

SNR SNR IMPROVEMENT (dB)

(dB) Motion blur|Gaussian blur| Uniform
5x5| Tx7 |5xbH X7 | 9xb|TXT
30 5.32| 4.98 [5.32| 4.63 |5.76]5.72
noiseless|5.88| 5.12 |5.56| 4.86 |5.87|5.97
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(0)

(d) ()

Figure 4.9: (a)(d) Blurred image and result of blind deconvolution, ISNR = 5.29dB. (b)(e) Blurred image
and result of blind deconvolution, ISNR = 5.27dB. (c¢)(f) Blurred image and result of blind deconvolution,
ISNR = 4.79dB.

experiment presents blind deconvolution of a degraded image to demonstrate the flexibility of
the proposed algorithm. The original ”Lena” image has a dimension of [256, 256] with 256
gray levels. It was degraded by 20 pixel linear motion kernel and additive SNR 30dB noise in
Fig. 4.8 and Fig. 4.10. Comparison between Fig. 4.10(b) and (c) reveals the good performance
of our algorithm. The ringing reduction is efficient while preserving the fine details of eyes and
feather. Fig. 4.10 shows the efficiency and accuracy of our proposed algorithm comparing with
Lucy-Richardson algorithm.

The third experiment tests the robustness of the proposed method in different blurs. The ” Lena”
is simulated in different degraded images. Table 4.2 summarize the results and demonstrates
that the method is effective in restoring images under different sizes and types of blur with
different noise levels.

4.5.3 Blind Deconvolution of Degraded Objects in Video Data

In this experiment, we illustrate the capability of the proposed algorithm to handle real-life
video data degraded by non-standard blur in Fig. 4.12. The video frames are captured from
films or video test data. The degraded video objects are separated into RGB colour channels and
each channel is performed respectively. Based on the estimated PSFs and parameters, piecewise
smooth and accurate PSF model helps to suppress the ringing effects.
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(b)

Figure 4.10: (a) Blurred noisy image. (b) Restored image based on Lucy-Richardson algorithm 100
iterations with known PSF, ISNR=5.35 dB (c) Blind image deconvolution using our algorithm, ISNR =
6.16 dB.

Figure 4.11: Example of blind image restoration and surface, 512 x 512. (a) Blurred noisy image. (b)
Corresponding surface. (¢) Restored image. (d) Corresponding surface.

4.5.4 Effects of Boundary Conditions

The proposed method is space adaptive weighted double regularization which has advantages of
piecewise smoothness and stronger suppression of ringing effects. However, in the experiments,
we still observe there are some ringing effects in Fig. 4.12c and Fig. 4.13c. The reason is that
we use the periodic boundary conditions during the blur identification and image deconvolution.
The periodic boundary conditions introduce discontinuities which entail ringing artifacts or
some false discontinuities and edges in the boundaries of the restored image frequently. We
propose three approaches to solve this problem. One way is to mitigate these artifacts as well
as the undesired wrap-around of image information in the deblurring with periodic boundary
conditions, the image can be extended continuously to a larger image with equal gray-values at
opposing boundaries. Periodic boundary conditions will not introduce the false discontinuities or
edges any more. The wrap-around influences the amended parts of the image. Periodic extension
of this larger image is equivalent to reflecting extension of the original image. Fortunately, the
periodic boundary conditions are compatible with any shift-invariant blur, without imposing
symmetry constraints on the blur kernel. The second way is to use Neumann boundary condition
during the image deconvolution. For example, Ng et al. [175] proposed to establish similar results
in the two-dimensional case for deblurring, where the blurring matrices will be block Toeplitz-
plus-Hankel matrices with Toeplitz-plus-Hankel blocks (BTHTHB). Finally, we can observe the
restored image is of a relatively large size so that the problem has transformed to one of the
deconvolution of large-scale images. Golub et al. introduced a method based on Morozov’s
discrepancy principle which largely solve the large-scale regularization problem.
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(9) (h) (i)

Figure 4.12: (a)(d)(g) Real video frames. (d)(e)(h) Blurred parts in video. (c)(f)(i) Results of blind
deconvolution

4.5.5 Effects of Non-stationary Blur

When the blur kernel is changed continuously, blur identification becomes more difficult. From
experimental results in Fig. 4.12f and Fig. 4.13d, we can observe that there are some gaps in
restored images due to different sampling areas for blur identification. The reason of this effects
might comes from three points. The first point is the influence of non-stationary blur kernel, i.e.,
the blur kernel of this region is a little different from the sampling region. The second reason
is that the boundary condition problem, i.e., this image is restored using periodic boundary
condition in BCCB matrix FFT discretization. The parameters of the blur kernel in Fig. 4.13d
is not accuracy for the region in the green color framework.

4.5.6 Effects of Noises

The functional is constructed based on the assumption of additive Gaussian noise. The informa-
tion about the noise is incorporated into the algorithm with the use of regularization parameter,
which controls the tradeoff between noise amplification and deconvolution.

The proposed algorithm has been analyzed and experimental results have been shown. Based on
these results, we concluded that the performance of the algorithm is satisfactory for synthetic
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Figure 4.13: % (a) Original video. (b) blurred background. (c) Restored image (d) Restored image

based on different sampling area.

and real images with a wide range of noise, SNR’s (15 — +00) dB. The image restored by the
adaptive weighted double regularization have better visual quality than the image restored by
the traditional Wiener filters and by the non-adaptive algorithms.

Finally, a direction of the next step work is the development of iterative algorithms in removing
nonlinear distortion in the presence of noises, based on recent results on regularization theory.
This work will be presented in the next chapter.

4.6 Discussion

In classical image restoration methods, A Wiener filter replaces the inverse filter with some
penalties at denominator. However, the Wiener filter lacks rigorous justification with respect
to the iterative convergence. Most of traditional methods like GCV, ARMA are space-invariant
methods, the proposed method is space-adaptive with piecewise smoothness of images. The
piecewise smoothness of both the image and the PSF are incorporated into the unsupervised
image restoration process via space-adaptive regularization with the constraints of nonnega-
tivity, interleaved prior knowledge and the good initial value. A self-pruning algorithm can
automatically estimate the PSF support.

4.6.1 From Global Nonparametric Estimation to Local Parametric Optimization

The traditional nonparametric methods have the error of statistical estimation and the error
of approximating the underlying function by the given functional family. Although a number
of asymptotic minimax approaches [231] try to “balance” these error, some limitations of the
optimality in the asymptotic minimax sense do not ensure good sample properties from the finite
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sampling feature space. The sampling feature space is “never fullfilled” (in some sense) in that
the asymptotic results are usually assuming an infinite sampling number n — co. More over, the
quality of sampling features also need to represent the characteristic properties of targets. For
example, inhomogeneous regions including discontinuities are more useful than homogeneous
sampling regions for blur identification. Although there are many different measures of descrip-
tive information such as entropy, Gibbs distribution etc., the measure of blurred images is still
difficult.

Practically, to achieve high accuracy blur identification in the case of non-stationarity for a
sampling area, the first step is to classify and predicate the blur kernels in a family of right
parametric PSF models. The second step is to optimize the parameters of the predicated para-
metric blur kernel PSF. Global nonparametric estimation can estimate the right distribution
density in a sampling feature space. However, the choosing of right parameters is impossible in
nonparametric regression methods or kernel density estimation methods. On the other hand,
in the nonparametric theory there exist a number of modern welled developed methods such as
automatic parameter selection like Cross-Validation [94] and Generalized Cross-Validation [94],
Acaike [3], or Schwarz methods (Bayesian Information Criterion, BIC) [223]. These methods are
not based on asymptotic minimax considerations but they are still hard for adjusting parameters
of blur kernels without the constraints of image restoration.

The iterative structure of the suggested algorithm offers a number of advantages over non-
iterative and recursive techniques, including the possibility of directly incorporating determin-
istic knowledge and soft statistical learning models into the restoration process, with the use of
hard constraints. These constraints actually represented by projection onto convex sets. The
soft or statistical constraints is in turn a function of regularization parameter. The weight of
local variances representing human visual system were incorporated into the algorithm according
to the observed noises and image discontinuities.

Furthermore, the convenience of the suggested algorithm is its interleaved prior property and
double constraints. The estimation with respect to the PSF and the image is locally parametric
optimized in the alternating minimization. The image estimation step estimates the true image
assuming that the current estimates of PSF is correct prior knowledge, and vice versa. The
predicated parametric model as an accurate initial value in regularization is obtained using the
nonparametric Bayesian model selection technique. Thus, the approach is actually based on a
local parametric optimization in nonparametric estimation strategy which was described by V.
Spokoiny [231]. The nonparametric estimation is adaptation of the parametric methods to the
situation when the parametric structural assumption is not fulfilled.

4.6.2 Discussion of Related Optimization Approaches
Constrained Optimization

The important property of the Bayesian approach is that the Bayesian method which minimizes
the deviation depends on an a prior: distribution. It is both the main advantage and the main
disadvantage of the Bayesian approach. The advantage is that we can develop methods in
accordance with average properties of the function to be minimized. The disadvantage is the
arbitrariness and uncertainty of how to fix the a prior: distribution. To solve this problem, we
use nonparametric estimation techniques to find a prior distribution for Bayesian estimation.
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Also we put the Bayesian estimation in a convex energy optimization functional which can ensure
the global convergence.

D. Geman and G. Reynolds developed a constrained restoration approach for the recovery of
discontinuities [86]. The idea was developed with a somewhat different coupled objective func-
tion. The model is also “half quadratic ” and the auxiliary variables are also noninteracting but
there is one crucial difference: the quadratic form is not block circulant FFT transform in the
frequency domain. As a result, optimization must rely on updating pixels one by one in the
spatial domain in the usual fashion. In contrast, the optimization method in our algorithm is
to update pixel values in the FF'T frequency domain based on a global optimization strategy.

Furthermore, D. German and G. Reynolds combine the first and second order terms that give
consistently good results in their experiments than using the first and second order alone. With
only first order terms, the objective function would favor regions of constant grey level. This
suggests that purely first-order models would introduce an artificial patchiness or mottling,
which is exactly what has been covered in a variety of studies. To the extent that grey-level
images of real scene have homogeneous regions, these regions are better defined by constant
gradient, or even constant curvature, then by constant grey level (This would become a TV
method). These analysis give us some hints to develop a visual perception based data-driven
image restoration approach.

On-line learning

Normal optimization techniques such as gradient ascent are undesirable because of their slow
convergence. Alternatively, conjugate gradient or various preconditioned forms of gradient ascent
techniques can be used due to their rapid convergence for quadratic optimization problems. The
cost function being minimized is strictly convex and the cost function converges to the global
minimum. Therefore, the exact restoration will be identical to a reconstruction compute using
the modified EM algorithm.

On the other hand, much interest was devoted to the problem of on-line learning in pattern
recognition. When data are presented sequentially to the estimator, on-line algorithms change
their hypothesis and use the most recent data only. Hence the storage of the entire set of data
is avoided. As discussed by Opper previously [180], [?] when one applies a smooth realizable
stochastic rule to a random data sets. The on-line algorithm can achieve similar asymptotic
generalization rates as the more complicated optimal batch algorithms.

Furthermore, Amari et al. [10] proposed a different on-line learning algorithm which minimizes
a statistical dependency among outputs. The dependency is measured by the averaging mutual
information (MI) of the outputs. A natural Riemannian gradient in structured parameter spaces
is developed to minimize the MI based on information geometry theory [8], [9]. The on-line
learning method based on the natural gradient is asymptotically as efficient as the optimal batch
algorithm. This algorithm is transformation invariant and can be directly applied to Independent
Component Analysis (ICA) problems and can be further extended in solving computer vision
and pattern recognition problems.
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4.7 Conclusions

This chapter presents a weighted space-adaptive regularized Bayesian approach for blind blur
identification and image restoration. The proposed algorithms are very flexible, since there
are a number of parameters which control the final solution. First, the approach improves the
accuracy of PSF estimation. Bayesian MAP estimation can then speeds up the minimization
of related cost functions progressively based on the initialization of accurate prior models. The
double cost functions are then projected and converged to image and blur domains precisely.
During the alternating minimization procedure, piecewise smooth reconstruction of both image
and PSF is adopted to improve the quality of restoration. It is clear that the proposed method
is instrumental in blind image deconvolution and can be can be extended for signals of any
dimensionality, as well as space-invariant and space-varying (nonuniform) distortions in practical
environments.

97



4 Double Regularized Bayesian Estimation for Parametric Blur Identification

98



5 Data-Driven Regularization for Variational
Image Restoration in the BV Space

The problem of learning is arguably at the very core of the problem of intelligence, both biological
and artificial - T. Poggio and C.R. Shelton

How to represent an image in a reasonable mathematical model in the spatial domain? This
question is still a hot topic in mathematics, computer vision and other related research com-
munities. This chapter presents a novel mathematical model represent an image in the space
of functions of Bounded Variation (BV). It can be directly used for adaptive data-driven vari-
ational image restoration. As we know, the discontinuities are important features in image
processing. The BV space is well adapted for the measure of gradient and discontinuities. More
over, the degradation of images includes not only random noises but also multiplicative, spatial
degradations, i.e., blur. To achieve high-quality image deblurring and denoising, a variant expo-
nent linear growth functional in the BV space is extended in Bayesian estimation with respect
to deblurring and denoising. The selection of regularization parameters is self-adjustable based
on spatially local variances. Simultaneously, the linear and non-linear smoothing operators are
continuously changed following the strength of discontinuities. The time of stopping the process
is optimally determined by measuring the signal-to-noise ratio. The algorithm is robust in that
it can handle images that are formed with different types of noises and blur kernels. Numerical
experiments show that the algorithm achieves more encouraging perceptual image restoration
results.

5.1 Introduction

5.1.1 Problem Formation and Proposed Approach

In classical Sobolev spaces, we can not make detailed analysis and measure for discontinuities.
A simple image including a white disk on a black background is not in any Sobolev space, but
belongs to the BV space. The BV space is the space of functions for which the sum of the
perimeters of the level sets is finite. Therefore, the BV space is well adapted for the measure of
discontinuities across edges. Compared to wavelet based methods in the frequency domain [95],
the assumption of BV space is still too restrictive to represent the tiny detailed textures and
infinite discontinuities [5]. However, currently, the BV space is still a much larger space than
the Sobolev space for modeling images in the spatial domain.

Since the seminal work from Rudin, Osher and Fatemi (ROF) [213], the BV space based func-
tionals have been widely applied to image restoration, super-resolution approaches, segmenta-
tion and related early vision tasks, e.g., modeling of oscillatory components from Meyer [164],
modeling of inpainting and super-resolution approaches from Chan and Shen [42]. Other more
work such as Mumford and Shah model [173] and its PDE version [40], Weickert [259], [260],
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Figure 5.1: (a) Ground truth. (b) Spatially degraded blurring image, Gaussian noise 15dB. (c¢) Restored
image b using shock filter. (d) Restored image b using the normal TV.

and Schnorr [267], [220] have been proven to be very effective for image restoration and image
enhancement.

Recently, [249], [16] propose a convex linear growth functional in the BV space for deblurring
and denoising using I'-convergence approximation. [48], [49] suggest a more general variable
exponent, linear growth functional in the BV space for image denoising. Due to the complexity
of image degradation, e.g., shown in Fig. 5.1, including spatial geometry distortion, additive or
multiplicative noises and multiplicative spatial degradations (blur), we need to design more flex-
ible and robust algorithms for denoising, deblurring and towards perceptual image restoration.
Generally, a scheme of image restoration is to get a trade-off between the noise suppression and
discontinuity (or edge) preservation, since noise reduction is achieved by constraining the image
to be smooth. The spatial-invariant (nonstationary) image constraints are used to emphasize
noise reduction in the “flat” region and preserve the discontinuities, edges and structures in
“non-flat” regions in images. The regularization parameters can be chosen based on the reduc-
tion of noise. Furthermore, through literature study, we find that only little work is done on how
to determine regularization parameters, and optimal diffusion operators for achieving optimal
image restoration results.

In this chapter, we extend the variable exponent, linear growth functional from Chen, Levine
and Rao [48], [49] to double regularized Bayesian estimation for simultaneously deblurring and
denoising. The Bayesian framework provides a structured way to include prior knowledge con-
cerning the quantities to be estimated [80]. Different from traditional “passive” edge-preserving
methods [45], [35], [86], [205], [281], our method is an “active” data-driven approach which in-
tegrates self-adjusting regularization parameters and dynamic computed gradient prior to self-
adjusting the fidelity term and multiple image diffusion operators. A new scheme is designed to
select the regularization parameters adaptively on different levels based on the measurements
of local variances. The chosen diffusion operators are automatically adjusted following the
strengths of edge gradient. It has several important effects: firstly, it shows a theoretically and
experimentally sound way of how local diffusion operators are changed automatically in the BV
space. Secondly, the self-adjusting regularization parameters also control the diffusion operators
simultaneously for image restoration. Finally, this process is relatively simple and can be easily
extended for other regularization or energy optimization approaches. The experimental results
show that the method yields encouraging results under different kinds and amounts of noise and
degradation.
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to gradient direction
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Figure 5.2: Orthogonal decomposition for image geometric analysis and an edge curve C separating
homogeneous regions.

5.1.2 Total Variational Regularization for Inverse Problems

According to the image degradation model that has been defined previously, we have the fol-
lowing form,

g=hf+n (5.1)

where an observed image in the image plane g is formed by two unknown conditions A and 7.

Let us reconsider the energy function in Eq.(5.2)

J(f) = 1/Q(g—hf)2d$dy+)\/QWf\pdxdy (5.2)

2
with p = 1. We would like to find the (unique) minimizer of f. Let  C R? denote the

open image domain. The total variation (TV) prior model is defined in the distributional sense
TV(f) = Jo|Df|dxdy in the BV space [213].

BV (Q) = f such that TV (f) < 400 (5.3)

The TV(f) is often denoted by [, |Df|dxdy, with the symbol D referring to the conventional
differentiation V. The absence of the Lebesgue measure element dz (1D) indicates that | D f| is
a general Radon measure. A Radon measure is a Borel measure that is finite on compact sets.
If |[Df] is the Borel sigma-algebra on some topological space, then a measure m : |[Df| — R is
said to be a Borel measure (or Borel probability measure). For a Borel measure, all continuous
functions are measurable. However, due to the complexity of the functions of BV space, one
uses f € L'(Q) to simplify the numerical computation (see [92], for instance),

/Df|dxdy:/ |V fldzdy (5.4)
Q Q

where V f belongs to L' which is simply the ordinary L' integral in the sense of Sobolev norm.
Adopting the TV measure for image regularization, the posterior energy for Tikhonov deblurring
takes the form which also appears in the TV functional [213],

3(5) =5 | (o= hpPdedy+ [ |9 fldady (5.5)
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Table 5.1: Convex and nonconvex functions (edge-preserving)

Functions o(t) ¢'(t)/(2t) convexity
Geman and Reynolds [86]: % m 1no
Hebert and Leahy [108]:  log(1 + t2) 1it2 no
Tikhonov [241]: t2 1 yes
Total Variation [213]: |t] ﬁ(if t#0)  yes
Green [97]: log(cosh(t)) tan;;(t) (if t #0) yes
Hybersurface [45]: 2V/1 12 -2 5 \/11+7 yes

where ¢ is the noisy image, f is an ideal image and A > 0 is a scaling regularization parameter.
A general bounded total variational function can be written in the following,

T(am) =5 | (9= hsPdodyex [ 6V 5 (e9)dady (56)

In such type of energy functional, the choice of the function ¢(-) is crucial. It determines the
smoothness of the resulting image function f in the space V = {f € L*(Q); Vf € L'(Q)} which
is not reflexive. For example, In Eq. 5.6, the first term on the right side is quadratic (convex).
The second term including ¢(-) function (could be convex or non-convex) has been intensively
investigated by researchers. According to the related work of Weickert and Schnérr [267], Aubert
and Vese [17], Rudin, Osher and Fatemi [213], Chambolle and Lions [39], the ¢-functions are
usually classified in two categories, the nonconvex ones and the convex ones. The theoretical
study shows that the convex term ¢(-) can lead the total energy function to an existing global
convergence, while the nonconvex has non-uniqueness of the minimum, if it exists. Nevertheless,
the non-convex functions are often used because they usually provide better results, e.g., shown
in Table. 5.1 [86], [108] while they use special methods to solve these non-convex functions.
Geman and Reyold [86] proposed to update the pixels one by one in the spatial domain in the
usual fashion, [108] developed a Bayesian reconstruction based upon locally correlated Markov
random field priors in the form of Gibbs function and upon the Poisson data model in discrete
spatial domain.

In order to study more precisely the influence of the term ¢(-) in the regularization, we need
to make an insight observation of geometric diffusion behavior which can help us to understand
the convexity criteria in variational regularization.

Supposing that the integral in J(f(,5) in Eq. 5.6 have the form of ¢(|V f(x,y)|), the minima of
J( f(g,n) must formally verifies the Euler equation J "( fig.n) = 0 or,

A (PUVED . )

2d1v< V7] Vf)—i—h hf =h"g (5.7)
where h* denotes the adjoint operator of h. Since h*h is not always invertible and the problem
is often unstable (could have many wrong solutions of PSF h), A is then chosen to regularize
the problem. It is also necessary to remove the noise. To do this, for each pixel point(x,y)
where V f(x,y) # 0, the vector T'(x,y) = (Vf)/|V f] in the gradient direction, and £(x,y) in the
orthogonal to T'(z,y), as shown in Fig. 5.2. With the usual notation fs, fy, foe, fyy for the first
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Figure 5.3: a|b. Convex and decreasing curves. (a) Functions ¢'(t)/(2¢t) with different choice of ¢. (b)
Scaled Functions ¢'(t)/(2st) with different choice of ¢ and scale s.

and second partial derivatives of f, and by formally developing the divergence operator, Eq. 5.7
can be formed in the following,

IVf]

coefficient 1

g () fee =5 GUTLY e+ = ng 6.9
—_——

coefficient 2

where fee and frr (fee+ frr = Af) denote the second derivatives of f in the direction of &(z, y)
and T'(z,y), respectively. Through geometric analysis, we can get criteria of ¢(-) in most exiting
variational methods [17] which achieve edge-preserving in convex optimization. It is also useful
for determining how the function ¢(-) be chosen.

1. The local edge curve separates the region part into two homogeneous regions of the image.
In the interior of the homogeneous regions {(z,y)|f(x,y) > 0} U{(z,y)|f(x,y) < 0}, where
the variations of f are weak, smoothing is encouraged, ¢'(0) = 0 and ¢”(0) > 0 is supposed.
The function ¢ : Rt — R* is of class C? due to nonnegative constraints of images.

2. Normally, the variations of the intensity are weak at homogeneous regions in an image. As-
suming that the function ¢(-) is regular, the isotropic smoothing condition can be achieved
by imposing,

#'(0) = 0, lim P _ lim ¢"(t) = ¢"(0) > 0 (5.9)

t—0t+ ¢ t—0t
Therefore, in this homogeneous regions, V f is small, Eq. 5.8 becomes
=A¢"(0)(fee + frr) + h*hf = h'g (5.10)
since fee + frr = Af, f locally satisfies the equation —A\¢”(0)Af + h*hf = h*g in this

region. It is a uniformly elliptic equation having strong regularizing properties in all
directions.
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3. In a neighborhood of an edge curve C, the image presents stronger gradients. For pre-
serving the edge curves, it is preferable to diffuse along the the direction of £ of the curve

and not across it. To do this, it is sufficient to annihilate the coefficient of frr in Eq. 5.8,
lim ¢”(t) = 0 and keep the coefficient of f¢e does not vanish: tlim ¢T(t) > 0. However,

t—4o00 —+oo
both conditions are incompatible, e.g., different weak intensities (different low gradients in

one region), one must make a compromise between these two diffusions. The strategy is
to make both coefficients converge to zero as t — 400, but at different rate. The function
is used ¢ : R™ — R™ which has the properties

lim ¢"(t) = lim 0 =0and lim (1)

t——400 t—+oo ¢ t——+o00 ¢'(t)

=0 (5.11)

Notice that many functions ® in Table. 5.1 satisfying these conditions. These qualitative
conditions have been imposed in order to describe the regularization conditions.

4. Furthermore, these conditions are not sufficient to ensure that the model is well posed.
Other hypothesis such as convexity, and linear growth conditions are necessary to obtain
the solution of well posed properties in calculus of variations.

We make a short summarization for Table. 5.1. This table presents different ¢(¢)-functions that
are commonly used. It is interesting to observe that some ¢ functions are non-convex. But
their ¢/(t)/2(t) exists in always convex and decreasing manner, shown in Fig. 5.3. This means
that non-convex function can be converted to convex during the computation. For example,
non-quadratic and non-convex functions to be minimized can be split into a sequence of half-
quadratic problems that is convex and easier to solve numerically. Thus, we will be able to give
a convergence result only for convex functions.

For example, in Fig. 5.3, we present six ¢'(t)/(2t) curvatures of their ¢ functions including
two non-convex functions Herbert and Leahy (H-L)[108] and Geman and Reynolds (G-R) [86].
Scaled G-R function takes 1/ [(1 + (3t/2)%)?], scaled H-L function takes 1/ [1+ (3t)?], scaled
hypersurface takes 1/4/1 + (10¢)2. Scaled hypersurface minimal function is close to 0.1 for ¢ = 1.
It shows a better comparison from a numerical point of view. Different from Tikhonov function
¢, the other ¢ are all edge-preserving functions. These ¢ satisfy the edge-preserving hypotheses
lim; 4o ¢'(t) = 0 and lim; , o+ ¢/(t) = 0. However, we call these methods are “passive” edge-
preserving methods which is totally different from our proposed “active” data-driven methods
in the BV space.

5.2 Description of Models in the BV Spaces

In this section, according to [58], [310], firstly, we discuss the basic properties of the Lebesgue
measure and integration. The main reason for providing the review of Lebesgue measure and
integration is to compare its difference with that of Riemann integration, and Hausdorff measure.
The Hausdorff measure (in Appendix D) is not as well known as Lebesgue measure but yet is
extremely important in geometric image analysis in the bounded variation spaces.

Secondly, we introduce the Sobolev space (also called Sobolev functions). This includes the
discussion of continuity properties of functions with first derivatives in LP in terms of Lebesgue

104
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measure, as well as the higher order Sobolev functions by means of LP-derivatives. While the
Lebesgue theory for Sobolev functions is relatively straightforward, the corresponding develop-
ment for BV functions is much more demanding. The intrinsic nature of BV functions requires
a more involved exposition than does Sobolev functions.

Furthermore, we focus on the introduction of the functions of bounded variation and their
characteristic properties in related functionals. A function of bounded variation of one variable
can be characterized as an integrable function whose derivative in the sense of distributions is
a signed measure with finite total variation. The multivariate analog of these functions is the
class of L' functions whose partial derivatives are measures in the sense of distributions. Just as
absolutely continuous functions form a subclass of BV functions, so it is that Sobolev functions
are contained within the class of BV function of several variables. While the BV functions of
one variable have a relatively simple structure that is easy to expose, the multivariate theory
produces a rich and beautiful structure based on geometric measure theory. An interesting and
important aspect of the geometric measure theory is the analysis of sets whose characteristic
function are BV (called sets of finite perimeter). These sets have applications in a variety of
settings because of their generality and utility.

Lastly, since the total variational functional has been introduced into image processing, the
functions of bounded variation become more important. we discuss several recently developed
linear-growth functionals in the BV () space and our proposed Bayesian estimation based
double variational regularization functional.

5.2.1 Spaces of Functions and Lebesgue Integration

Before embarking the functions of bounded variation, we first introduce two important concepts
of spaces (sets) of functions: (a) these are the spaces of continuous functions C™(2) etc. in the
space of C'(2) etc. (b) the Lebesgue spaces LP etc. whose pth powers are integrable in an open
set of R or R", shown in Fig. 5.4.

Continuous Functions

Roughly speaking, a continuous function of a single variable may be characterized as one whose
graph is an uninterrupted curve. On the other hand, a function is discontinuous in that its
graph has a break. Another type of discontinuous function is one that is unbounded at some
point. Continuous functions are defined on a subset {2 of R” and can be categorized:

Figure 5.4: The relationship between the LP spaces and spaces of continuous functions.
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1. The space C(Q2). For any domain  in R", the collection of all continuous functions
defined on Q) forms a set, or space, which is denoted by C(2), shown in Fig. 5.4. The
space of functions that are continuous on the closest set Q = QUT (T and its boundary
I') is denoted by C(T') and by C[a, b] for functions on the closed interval [a, b].

2. The spaces C™(2) and C*°(2). Among all the continuous functions defined on a
subset €2 of R™, some have the properties that their first derivatives and possibly some
derivatives of higher order are also continuous. It is very important to identify such
functions with their derivatives ( of order m) are continuous on €. That is, C"(Q2) =
{u : u,0u/0z,0u/dy, ...,0mu/0x*y™*(k = 0,...,m) are all continuous functions} for
Q c R? and so on. Clearly, the inclusions C*(Q) C ... ¢ C™(Q) ¢ O™ 1(Q) C ... C
CY()) = C(2) hold, so that C™ constitutes a gradation which permits continuous func-
tions to be classified according to their degree of smoothness: for any function in C™ (),
the higher the value of m, the smoother the function.

3. Continuous functions on compact sets. It turns out that continuous functions defined
on compact sets (closed and bounded sets in R™) may be characterized necessarily on such
bounded sets. A function f defined on a set €2 in R” is said to be bounded if it is possible
to find a number M > 0 such that f(z) < M for all x € Q. In other words, the function
does not “blow up” anywhere. Continuous functions behave in a special way on compact
sets, shown in the definition.

Definition 5.2.1.1 Let Q be a bounded domain (that is, a bounded open, connected set)
in R™, and f a continuous function defined on the compact set Q. Then, (a) f is bounded
on Q and, furthermore, f achieves its supremum and infimum on Q. (b) f is uniformly
continuous on Q.

The definition shows the function has a maximum for a given point z = sup f(Q) =
max f(Q2) for all points x € €. A similar interpretation applies with respect to the infimum.

4. Lipschitz continuous functions. A function f defined on a set {2 in R™ is said to be
Lipschitz continuous or Lipschitz, if there exists a constant L > 0 such that f(z) — f(y) <
Lz — y| for all z,y € Q. The definition of Lipschitz continuity does not require that the
derivative exists at every point. It is straightforward to show that every Lipschitz function
is uniformly continuous, although the converse is not true. If €2 is a compact set, then

every continuously differentiable function on € is Lipschitz.

Measures of Sets in R"
However, many functions in practical applications are not continuous, and cannot therefore be
accommodated in one of the spaces C™(£2), such as discontinuities, unconnected edges in images.

A simple example is to use Heaviside step function,

0 ifz<0
H(x)_{ 1 ifz>0

Although these functions are not continuous, they do possess the important property that they
are integrable. Our aim is to set up a space of functions that may be classified according to their
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Figure 5.5: alb. The basic idea behind (a) Riemann integration and (b) Lebesgue integration.

integrable powers, e.g., f; |f(x)|Pdz, p > 1. This permits the introduction of the space LP(a,b)
or, generally, LP(€2). For such demands, the case of the spaces C™ is possible to obtain a precise
idea of the degree of smoothness of a function by determining the largest value of m for which
it belongs to C™. The smoothness of two functions may then be compared by determining the
largest numbers m of the spaces C™ of which they are members. In the same way, we will see
that the LP spaces are also nested in the sense of LP C L4 for the case in which p > ¢. Therefore,
we note that these spaces also provide a means of comparing functions during the period of the
integrability.

In order to give such spaces a proper treatment, it is necessary to introduce the notion of
Lebesgue measure. This in turn allows us to introduce the notion of Lebesgue integration, which
is a generalization of the “standard” Riemann integration. Then we define the spaces LP(£2).
Lebesgue measure is an important measure method in the well-established measure theory in
mathematics. In order to introduce the Lebesgue integral, we return first to the definition of
the Riemann integral. The basic idea of the Riemann integral is to divide [a,b] into a finite
number N of subintervals, the kth subintervals having length Axy, and the approximation area
under the graph f is the sum of the forms: f(z1)Az1 + f(z2)Azs + ... + f(zn)Azy, shown
in Fig. 5.5(a). Thus, the Riemann integral is denoted by f: f(x)dx which is used widely and
adequate for most purposes.

However, the Riemann integral suffers from certain deficiencies, e.g., it is unable to deal with the
function f(z) = 1,x is rational (while f(z) = 0,x is irrational) on the interval [0, 1]. Secondly,
in contrast to the Riemann integral, for a more general Lebesgue integral, the approximation
to the integral of f can be progressively improved, not by further subdivisions of the domain,
but by refining the approximation to f. The approximating functions that serve this purpose
are indeed known as simple functions, and are defined to be functions that take on a finite
number of values. Provided that with the subsets My on their constant values, the integral of
f can be approximated by a sum of the form, yyu(Mi) + you(Msz) + ... + ynu(My), shown in
Fig. 5.5(b), where pu(My) is a measure of Mj. The limit number N is a nice improvement for
the approximation of f. Therefore, in this measurable space §2, the Lebesgue measure is defined
to satisfy those four criteria for measurable sets: (1) € itself; (2) Q — M, for M € M; (3) all
open sets in ; and (4) M; U Ms..., for any countable family {M;, Mo, ..., } of disjoint sets in
M. Also, functions that are Riemann-integral are also Lebesgue-integral, and the two integrals
coincide.

Lebesgue Integration and the Space LP(f2)

We say that a function defined on a measurable set {2 in R is measurable if the inverse image
f~Y(M) of any measurable set M in R is itself measurable. Therefore, we can verify any
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Figure 5.6: alblc. The positive and negative parts of a function in the Lebesgue integral.
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continuous function is measurable. Heaviside function is a measurable function. Since sums of
measurable functions are measurable, we can conclude that every step function is measurable.
Based on the intuitively obvious character, the Lebesgue integral of a simple function s on €2 is
defined by

/ sdr = arp(M1 N Q) + agu(Ma N Q) + ... + ayu(My N Q) (5.12)
Q

where M), are measurable and pairwise disjoint. To obtain the Lebesgue integral of a measurable
function f we first set up a sequence of nondecreasing simple functions that approximate f. Next,
we evaluate the integrals of these simple functions and take the limit to obtain the integral of
f. Of course, f is a nonnegative measurable function on R™ with a nondecreasing sequence S
of simple functions on R"™ such that nh_)ngo sp(z) = f(x) at all points « in R™. Therefore, when

f is a measurable function defined on a measurable set €2 and f is nonnegative on 2, then the
Lebesgue integral of f over € is defined by

/Qfda; = klggo ; sidx (5.13)

where s, are nondecreasing simple functions that approximate f. Indeed, for well-behaved
functions, e.g., piecewise continuous functions: it is clear that the Lebesgue integral like the
Riemann integral, amounts to the area under the graph of the function. However, there are
Lebesgue-integrable functions which are not Riemann-integrable. To complete the theory of
the Lebesgue integral, we extend the treatment to include functions that are not necessary
nonnegative. Suppose that f is any measurable function. Then f may be decomposed into
positive part ft(z) = f(z), if f(z) > 0 (otherwise f(z) = 0) and negative part f~(z) = 0,
if f(x) > 0 (f~(z) = —f(x), otherwise) shown in Fig. 5.6. More concisely, we can write
fr=3(f+1|f]) and f~ = 3(|f| — f) so that f = f© — f~. It is possible to show that f*
and f~ are both measurable. The summable function fQ f (Lebesgue integral exists) can be
decomposed as the sum of two nonnegative functions,

/Qfdx:/Qerdx—/Qf_d:E

Now we note that it is possible to have [, fdz = 400 for a nonnegative function. This lemma
is very useful in the function of bounded variation for image deblurring and denoising.

The space of Lebesgue integration LP(£2) is defined in an open set (2. Let p be a real number with
p > 1. A function f(z) defined on a subset Q of R™ is said to belong to LP(f2), if f is measurable
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and if the (Lebesgue) integral [, |f(z)[Pdx exits, i.e., is finite. The case p = 2 is special in many
ways, and is referred to as square-integrable. Therefore, every bounded continuous function
defined on a bounded set 2 belongs to LP. If we let p — oo, then we may define the space
L>(€2) to be the space of all measurable functions on € that are bounded almost everywhere
on €.

We note that although L*>°(Q) C ... C LP(Q) C ... C LY(Q), the space C(Q) of continuous
functions is not a subset of any of the LP spaces, shown in Fig. 5.4. For example, the function
f(xz) = 27! belongs to C(0,1) but not to L>(0,1) since it is not bounded. But the space of

bounded continuous functions, equivalently, the space C'(2) of continuous functions defined on a

compact set (2) is a subset of L>(Q2). Fig. 5.4 also shows schematically how the spaces C" ()
and LP(Q) are related.

Distributions and Sobolev Spaces

For m an integer, 1 < p < oo and Q C R, we define the Sobolev space,

W) i e 17(Q); D F € LP(9), 0 < |a] < m) (5.14)

where for a = {a1, ag,...,a,} € N* we put the partial derivative

olel
DYf = Oz 0x5?...0xR" and |of = a1 +ag + ... + oy (5.15)
Thus if || = m, then D®f denotes one of the mth derivatives of f. The space is a normed
space when endowed with the Sobolev norm || - ||, », The Banach space for the norm becomes
1/p
fllmp = D 1D flloy]| 1<p<oo (5.16)
0<|a|<m
and in the case p = c©
[ fllm,co = max [Df|peoq) (5.17)

0<|a|<m
In the particular case p = 2, we have
Wm™2(Q) = H™(Q) (5.18)

where the Sobolev space H™(£2) has been defined by taking as a point of departure in the Hilbert
space L?(f2). The results concerning the spaces WP (Q) are analogous to that obtained for the
space H™(Q2). The definition of the spaces W*P(Q) for non-integral values of s, can be given
by interpolation between LP(§2) and WP (Q). Fig. 5.7 shows the relationship between Hilbert
spaces and Banach spaces, and the others. The theory of Hilbert spaces forces the use of the
Lebesgue integral. As we have discussed previously, the widely used Riemann integral is only
valid under very restrictive assumptions, in contrast to the Lebesgue integral. The Riemann
integral leads only to pre-Hilbert spaces for which the fundamental Cauchy criterion is not valid.
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Lebesgue spaces Sobolev spaces
~1
RYC"  (L(G),L(G) (W, (G),W2(G))
Hilbert space Banach space

1 T
The Cauchy criterion is valid

Pre-Hilbert space Normed space Linear space
(inner product (u[v)) (norm [ull=((u )ty (@u+AY)

Figure 5.7: The relationship between Hilbert spaces and Banach spaces, and others. Each Hilbert space
is a Banach space; the most important Hilbert spaces are from the Lebesgue spaces Ly (G), LY (G) and

the related Sobolev spaces W3 (G) and W%(G) Roughly speaking, the real Lebesgue space La(G) (resp.
the complex Lebesgue space LS (G)) consists of all functions. The theory of Hilbert spaces forces the use
of the Lebesgue integral.

1. Real Lebesgue space Lo(G) is applied in Fourier series, integral equations, and partial
differential equations.

2. Sobolev spaces W, (G) and /V[721(G) are applied mainly in Dirichlet principle and the cal-
culus of variations.

3. Complex Lebesgue space Lg(RN ) is applied mainly in quantum mechanics and Fourier
transformation.

First of all, there is a category of Sobolev spaces that are Hilbert spaces. In Hilbert spaces, an
inner product (u|v) is defined, allowing us to introduce the fundamental notion of orthogonality.
The Sobolev spaces provide a very natural setting for boundary value problems. This Banach
space is a complete normed space, while Hilbert space is complete inner product space. Since
every inner product defines a norm, every Hilbert space is a Banach space. Second, it is possible
to obtain quite general results regarding existence and uniqueness of solutions in a variational
setting, using these spaces. A third advantage is that, like the space C™(£2), Sobolev spaces
provide a means of characterizing the degree of smoothness of functions. Finally, perhaps most
important, is the fact that approximate solution methods such as the Galerkin and finite element
methods. These methods are most conveniently and correctly formulated in finite-dimensional
subspaces of Sobolev spaces.

5.2.2 The Space of Functions of Bounded Variation

The idea of function of bounded variation (BV) developed along different streams, both in an
analytical and in a geometrical vein. From the classical analysis, BV functions were singled out
as a possible control on the oscillations and suitable insurance of the convergence of the Fourier
series. The functions of BV have been firstly introduced by C. Jordan in 1881 in connection
with Dirchlet’s test for the convergence of Fourier series [11]. The geometric counterpart is that
rectifiable curves, i.e., images of continuous parametrization with finite length, can be precisely
parameterized by BV functions.

However, it is not so easy to describe the situation of functions of several variables. Many
attempts have been needed to clarify the links between the possible extensions of the concepts
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of variation of a function and the finiteness of the area of its graph [11]. Fortunately, another
point of view came to the fore in connection with Schwartz’distribution theory, leading to a
definition of BV functions in terms of distributional derivatives. Here, the understanding of
the definition BV functions can be based on the definition of total finite variation and its
distributional gradients. The more properties in the BV spaces are discussed in the following
subsection of the convex linear-growth functional.

Normed Linear Vector Space and TV

The vector spaces of particular interest in both abstract analysis and applications have a good
deal more structure than that implied solely by the seven principle axioms such as commutative
law, associative law, distributive law and so on. The vector space axioms only describe algebraic
properties of the elements of the space: addition, scalar multiplication, and combinations of
these. What are missing are the topological concepts such as openness, closure, convergence,
and completeness. These concepts can be provided by the introduction of a measure of distance
in a normed linear vector space[151].

Definition 5.2.2.1 A normed linear vector space is a vector space X on which is defined a
real-valued function which maps each element x in X into a real number ||z|| called the norm of
x. The norm satisfies the following axioms:

1. ||z|]| > 0 for all x € X, ||z|]| = 0 if and only if x = 0.
2. ||z +yl| < |lz|| + llyl| for each x,y € X, it is also triangle inequality.

3. ||ax| = || - ||z|| for all scalars o and each x € X.

The norm is clearly an abstraction of the usual concept of length. Based on the normed linear
space, the function of bounded variation (BV) is one of useful consequences of the triangle
inequality. The space BVa,b] consists of functions of bounded variation on the interval [a, b].
By a partition of the interval [a, b], we mean a finite set of points ¢; € [a,b], i =0, 1,2,...,n, such
that a = tg < t1 < t2 < ... < t, = b. A function x defined on [a,d] is said to be of bounded
variation if there is a constant K so that for any partition of [a, b]

S lelt) —altia)| < K. (5.19)

The total variation of z is defined as
TV (z) = sup Zi:l lz(t;) — x(ti1)| (5.20)

where the supremum is taken with respect to all partitions of [a,b]. A convenient and suggestive
notation for the total variation is

b
TV(z) = / Dz (t)] (5.21)
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The total variation of a constant function is zero and the total variation of a monotonic function
is the absolute value of the difference between the function values at the end point a and b. The
BV [a, b] space is defined as the space of all functions of bounded variation on [a, b] together with
the norm defined in the following,

2]l = [z(a)] + TV (x) (5.22)

In general, let 2 be a bounded open subset of RN, N = 1,2, 3, ..., whose boundary 9 is Lipschitz

continuous. The Euclidean norm on RY is |z| = /32N 2. The norm on the Banach spaces
LP(Q) is denoted by || - [[zr(0), 1 < p < oo. Let 2 denote the Lebesgue measure of 2. Let an
image f be a function in L'(Q), we set

TV(f) = /Q|Df|daz (5.23)

= sup{/ f-divepdz 5 ¢ € CH(Q),Q € R™ and lo(@)| oo () < 1}
Q

where dp = Zfi 1 gij (z), dz is the Lebesgue measure, and C3(Q) is the space of continuously
differentiable function with compact support in Q2. The inequality |p(z)|1 ) < 1 means that all
the components of the vector-values function ¢ have a L (2)-norm less than one. If f € C1(€),
then [, f-divede = — [, Vf - @dz and [, |Df|ldz = [,|Vf(z)dz. By a standard denseness
argument, this also applies for f in the Sobolev space W1 1(Q). The equation is similar to Eq. 5.4
which is a special case in the BV () space.

Functions of Bounded Variation

Unlike Sobolev spaces, one of the main advantages of the BV space is that includes characteristic
functions of sufficiently regular sets and piecewise smooth functions (more generally) [11]. The
space of functions of bounded variation on 2 is defined by

BV(Q) = {f € LY(Q);TV(f) < 0o} (5.24)
The BV norm is given by

IfllBv = Ifllr@) + TV (/) (5.25)

BV is complete with respect to this norm, and hence a Banach space. The Sobolev space
W1(Q) is a proper subset of BV (£2). Note that for £ bounded, LP(2) C L'(Q) for p > 1. For
the definition, BV (Q) C L'(2). It is shown below that BV (Q) C LP(Q2) for 1 < p < N/(N —1).

We define BV (Q2) in the image domain, the space of functions of bounded variation,

BV (Q) = {f e L'(Q); /Q|Df\ < oo}. (5.26)

If f € BV(Q), then Df (the distributional gradient of f; notice that in this case D f is a function
and we can also denote it V f) can be identified to be a Radon vector-valued measure.

In the next section, we are going to show that Df can be decomposed as the sum of a regular
measure and a singular measure with the Hausdorff measure in the BV space.
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5.2.3 Convex Linear-Growth Functional

Following Rudin, Osher and Fatemi [213], Chambolle and Lions [39], Weickert and Schnorr
[267], Chan et al. [41], Aubert and Vese [17], [249] etc., we study the total variation functional
in the Bounded Variations (BV) space. The TV functional is strictly convex and is lower
semicontinuous with respect to the weak-star topology of BV. Therefore, the minimum exists
and is unique. The decomposition of the TV model heavily depends on the specific norm which
is chosen on BV. However, the TV functional is a special example of a more general smoothing
algorithm [164].

We relax the TV functional to a more general convex functional in the space BV()
where|Df| — ¢(|Df]). Let ©Q be an open, bounded, and connected subset of R™ and the
Lipschitz boundary I'. We use standard notations for the Sobolev W?(€) and Lebesgue spaces
LP(Q2). A variational function can be written in the form,

T(fq) =5 [ 0=0 e x [ o(Dfa,)dady (5.27)

where the function [, ¢(Df)dzdy is finite on the space WL which is a nonreflexive Banach
space. Nonreflexive property obviously does not satisfy the boundary conditions. As a result,
the minimization of fQ ¢(Df) may not have a solution. On the other side, we can observe
the importance of reflexivity. For these reasons, functions of bounded variation, the notions
of convex functions of measures and relaxed functionals on measures are used to obtain the
existence of a minimum. Furthermore, the space of BV -functions is the proper class for many
basic image processing tasks, because it allows discontinuities along or across the curves or edges.

On the BV () space, we recall the notation of lower semicontinuity of functionals defined on this
space. We denote by £y the Lebesgue N-dimensional measure RY and by H® the a-dimensional
Hausdorff measure. We say that f € L'(f2) is a function of bounded variation (f € BV(Q2))
if its distributed derivative Df = (D1 f, ..., D, f) belongs to a weak topology on M(2). M(Q)
is the set of all signed measures on ) with bounded total variation. Furthermore, the space
BV (Q) endowed with the norm,

£l Bvi) = IfllL1) + [DFI(L)

is a Banach space. The product topology of the strong topology of L'(€) for f and of the
weakxtopology of measures for Df is called the weak*topology of BV [66],

For any function f € L'(£2), we denote by S the complement of the Lebesgue set of f. Normally,
the set Sy is of zero Lebesgue measure and is also called the jump set of f. If f € BV (Q), then
[ is differentiable almost everywhere on €\ Sy. Moreover, the Hausdorff dimension of Sy is
at most (N — 1) and for HV=1 2 € S; it is possible to find unique f*(z), f~(z) € R, with
fT(z) > f~(x) and v € S"! of unit sphere in R", such that

lim / F@) — @)y = lim N / F) = F(@)ldy =0 (5.28)
BY(z) By (z)

r—0t r—0t

where BY(x) = {y € B(2)}|(y —z)-v > 0 and B, "(z) = {y € By(x)}(y —x) - v < 0. The
normal v means that they points toward the larger value in the image f. We denote by B, (x)
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N (X)

Br (X)

S

Figure 5.8: Definition of f*, f~, and the jump set Sy in the BV space. B, (z) be the ball of center z
and radius r. fT and f~ is the positive part f Vv 0 and negative part —(f A 0) of f.

the ball centered in x of radius r, shown in Fig. 5.8. The detailed definition of Hausdorff measure
has been described in Appendix D.

We have the Lebesgue decomposition,
Df=Vf-Ly+D°f (5.29)

where Vf € (L'(Q))" is the Radon-Nikodym derivative of Df with respect to Ly. Generally,
by the Radon-Nikodym theorem we set Df = D®f 4+ D?f where D®f < Ly is the absolutely
continuous part of Df with respect to the Lebesgue measure, and D®f is singular part of Df
with respect to Ly. In other words, V f is the density of the absolutely continuous part of D f
with respect to the Lebesgue measure. We also have the decomposition for D?f,

Df =Cy+ Jy, (5.30)
where

Tp= (" = ng - Mg
is Hausdorff part or jump part and Cy is the Cantor part of Df. The measure Cy is singular

with respect to Ly and it is diffuse, that is, C¢(S) = 0 for every set S of Hausdorff dimension

N —1. legf—l is called the perimeter of related edges in 2. Finally, we can write Df and its

total variation on Q, |Df|(€2), in the following,

Df:Vf-£N+Cf+(f+—f*)y-Hf§;1 (5.31)
i@ = [+ [ el o+ [ gre et G
Q Q\Sf St
W Ve Ve
Lebesgue measure  Cantor measure Hausdorff part

It is then possible to define the convex function of measure ¢(| - |) on M(£2), which is for Df,

o(IDf]) = o(IVf]) - Ln + o= (1)[D*f], (5.33)
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and the functional following [93],

/Q (D) = /Q (I f)dz + /Q o= (D)|D* 1], (5.34)

where the functional ¢(] - |)(£2) is proved in weakly*lower semi-continuous on M (). That is to
say that [ ¢(|Df]) is convex on BV (), ¢ is convex and increasing on RY.

By the decomposition of D?f, the properties of C'y, J¢, and the definition of the constant ¢, the
functional [, ¢(|Df|) can be written as,

Joups= [ otwsiae e | iesite [ (-, (5.35)

Sy

Based on this equation, Vese [249] proposed an energy functional for image deblurring and
denoising in the BV space,

inf T (figm) = = /Q (g — hf)?dedy + \ /Q o(1Df () dady (5.36)

FEBV(Q) 2

where

| eps ety = [ (9fidzdye [ gl [ (5F =

Q\Sy Sy

Although some characterization of the solution is possible in the distributional sense, it remains
difficult to handle numerically. To circumvent the problem, Vese [249] approximate the BV
solution by Sobelev functions, using the notion of I'-convergence which is also an approximation
for the well-known Mumford-Shah functional [173]. The Mumford-Shah functional [173] and its
extended Mumford-Shah functional [291] have similar underlying mathematic concepts with the
variational energy modeling in the BV spaces.

The target of studying these functionals in the BV space is to understand and deduce a more
general variation functional. In the following section, we study a more general variable exponent
LP linear growth functional ¢(|Df(z,y)|) — ¢(x, Df(x,y)), which is a deductive functional in
the BV space.

5.2.4 Convex Linear-Growth Variable Exponent Functional
The fundamental goal is to find f given an observed image g and an estimated PSF h by

minimizing the image cost function. In the image domain, the cost function can be minimized
according to the following formulation,

_ 1 _ 2 ;
T (fgn) = /Q(g h* f)*dxdy+ A min )/Qd)(a:,Df)d:cdy (5.37)

2 fEBVENL2(Q

where p(g|f,h) x exp { - (g — h % f)2dxdy} and p(f) is extended to a nonlinear diffusion

functional with variable exponent [48]. Edge-driven piecewise smoothing can be considered
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5 Data-Driven Regularization for Variational Image Restoration in the BV Space

as a priori knowledge for the estimation of image, then p(f) x exp{ fQ x, Df d:cdy}
BV(Q) :={f € BV(Q)|f = B on 99}, and its associated flow,

—%div(qb?«(a:, Df))+h*hf =h"g , in 02 (5.38)

where f(x,t) = B(x), on 9Q", and f(0) = g, in Q. Q7 := Q x [0,T] and 9QT := 9Q x [0,T).
This very general case where the functional has a variable exponent and ¢ = ¢(x,Df) are
proved according to Chen, Levine and Rao [48], [49], Chan et al. [41], [107]. We integrate this
more general variable exponent LP, linear growth convex ¢ = ¢(x, D f) function in the bounded
variations (BV) space to our double variational regularization. More related work on linear
growth functionals an their flows in [21] and alternate variational approach [39] for reducing
stair-casing by minimizing second order functionals.

For the definition of a convex function of measures, we refer to the works of Goffman-Serrin
[93] Demengel-Temam [59], and Aubert [15]. Therefore, based on the previous analysis for
f € BV (Q) space, we have,

/qb(x,Df)d:Udy:/¢(:J:,Vf)dxdy+/ |D? f|dzdy (5.39)
Q Q Q
where
1 . R
. |V fle) IVfI<B
A )dmy_{ Sy REREER I (5:40)

where > 0 is fixed, and 1 < ¢(z) < 2. The term ¢(z) is chosen as ¢(z) = 1+ m
based on the edge gradients shown in Fig. 5.9, I(x) is the observed image g(z), G,(x) =
L exp[—|z|?/(20?)] is a Gaussian filter. k > 0, ¢ > 0 are fixed parameters. The detailed proof
in the functions of BV space is available in appendix B.

The main benefit of this equation is that the local image information are computed as prior
information for guiding image diffusion. As we have presented previously, TV-based diffusion
is a stronger noise smoothing method but it can not performs “smoothly” for the homogeneous
regions and the regions that have weak discontinuities. This filter integrates TV-based filter (LP,
p = 1), Gaussian filter, Laplace filter (LP, p = 2) and continuous (LP, 0 <p <1U1l < p < 2)
filters in the BV space.

We extend this functional into Bayesian estimation based double variational regularization for
simultaneous image deblurring and denoising. There are several main differences between this
approach (TV based approach) and the suggested approach in the last chapter(Tikhonov based
approach). Firstly, different from the Tikhonov based double regularization approach in the last
chapter, the proposed approach in this chapter is extended from the total variational functional
in the BV space. It is an “active” data-driven variational image diffusion and variational image
restoration approach. Second, this variational functional has similar convexity properties with
the total variational functional. Third, this approach has more advantages for image denoising
than the Tikhonov based regularization approaches. Furthermore, in this approach, we focus
on perceptual and high-fidelity image restoration. Finally, although our approach also uses the
alternating minimization method for the solution. It mainly focus on PDE based numerical
approximation in the spatial domain for image processing.
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5.3 Bayesian Data-Driven Variational Image Deblurring and Denoising

5.3 Bayesian Data-Driven Variational Image Deblurring and
Denoising

From Bayesian point of view, we get the joint regularization for the estimation of image and
PSF. The resulting method attempts to minimize double cost functions subject to constraints
such as non-negativity conditions of the image and energy preservation of PSFs. The objective
of the convergence is to minimize double cost functions by combing the energy function of the
estimation of PSFs and images. Following a Bayesian paradigm, the ideal image f, the PSF h
and an observed image g fulfill

p(glf,h)P(f,h)
p(g)

Based on this form, our goal is to find the optimal f and h that maximize the posterior p(f, h|g).

I (flh, g) = —log{p(g|f. h)P(f)} and T (h|f,g) = —log{p(g|f, h)P(h)} express that the energy
cost J is equivalent to the negative log-likelihood of the data.

The proposed double variational regularization functional in a Bayesian framework in the BV
spaces is formulated according to

J(f.h) :/Q(g—ﬁ*f)dedy-i-)\/qu(m,Df)dxdy +3 /Q|vﬁ|dxdy (5.42)

fidelity Term image Smoothing psf Smoothing

where dxdy = dxdy. The estimates of the ideal image f and the PSF h are denoted by f and h,
respectively, which can be iteratively alternating minimized (AM) [289]. The image smoothing
term is a variable exponent, nonlinear diffusion term [48]. The PSF smoothing term represents
the regularization of blur kernels.

5.3.1 Alternating Minimization of PSF and Image Energy

During the numerical computation, we compute V f instead of Df. Furthermore, we remove
the singularity when |V f| = 0, by approximating J(f) by J:(f) with € > 0 a small parameter.
Although the most common algorithm has been based on the lagged-diffusivity technique [39],
[43], [250] using an iterative procedure, we can also use it for solving the denoising and deblurring
respectively. Therefore, the data-driven variant exponent, linear growth div operator becomes,

div <¢ (x \e2+ yvfy2>) = div(¢(z, Vf)) (5.43)

As we have discussed in the previous chapter, the scale problem between the minimization of
the PSF and the image is avoided using the alternate minimization approach. We propose to
solve the joint regularization equations in an alternate minimization approach with decreased
complexity. The formulation is derived from Eq. (5.42) in the following:

inf  J.(f, h) = ;/ﬂ(g— ﬁ*f)2d:cdy+A/Q¢5(a;,vf)dxdy+5/ﬂ (Vh)dzdy — (5.44)

FfEBV(Q)
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5 Data-Driven Regularization for Variational Image Restoration in the BV Space

This equation is in strictly convexity. We can also solve this equation in the alternating mini-
mization (AM) algorithm for the augmented energy using two partial differential equations with
respect to the image f and PSF. Furthermore, the lagged-diffusivity algorithm corresponds to
exactly the AM algorithm for the augmented energy with £ — H® — f(+1)  This algorithm
is used the continuous section for achieving blur identification, and data-driven image restora-
tion. The two equations derived from Eq. (5.44) are using finite differences which approximate
the flow of the Euler-Lagrange equation associated with it,

~ A

8J./0f = aih(—z,—y)* (h* f —g) — Adiv (gb(x, Vf)) (5.45)

0J.)0h = aof(—x,—y)* (f*h—g)—BVh-div (|§Z|> (5.46)

In the alternate minimization, blur identification including deconvolution, and image restoration
including denoising are processed alternatingly for the estimation of the image and the PSF.
The partially recovered PSF is the prior for the next iterative image restoration and vice versa.
The algorithm is described in the following:

Initialization: g(z) = g(x),ho(x) is random numbers
while (nmse > threshold

(1). nth it. fn(2) = argmin(fn|hn_1,9), £ix hp_1(z)

(2). (n+1)th it. hyyy = argmin(hy,41|fn, g), £ix fo(2), R(z) > 0
end

The data-driven diffusion term in Eq.5.46 is numerically approximated in the following,

div(¢(z, Vf)) =

N . . vf . R
VP72 [(p(x) — DA + (2 p(x))lvfldlv(‘v‘]};') +Vp - Vflog|Vf]]
Coefficien IsotropicTerm H rbolicTerm
oeticient P CurvatureTerm yperbonete (547)
with
p(z) = q(m)El—Fm, \VJi| <p
L, IVf =8

We indicate with div the divergence operator, and with V and A respectively the gradient and
Laplacian operators, with respect to the space variables. The Neumann boundary condition
2] g]]\c, (z,t) = 0 on 0N x [0,7] and the initial conditionf(x,()) = fo(x) = g in Q are used,
where n is the direction perpendicular to the boundary, g is the observed image. The numerical
implementation of the nonlinear diffusion operator is based on central differences for coefficient
and the isotropic term, minmod scheme for the curvature term, and upwind finite difference
scheme in the seminal work of Osher and Sethian for curve evolution [213] of the hyperbolic
term based on the hyperbolic conservation laws. We use here the minmod function, in order to
reduce the oscillations and to get the correct values of derivatives in the case of local maxima
and minima.

The image is restored by denoising in the process of edge-driven image diffusion as well as de-
blurring in the process of image deconvolution. Firstly, the chosen variable exponent of p(x)
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5.3 Bayesian Data-Driven Variational Image Deblurring and Denoising

Figure 5.9: Strength of p(x) in the Lena image. (a) Strength of p(x) between [1,2] in the Lena image.
(b) Strength of p(z) is shown in a cropped image with size [50, 50].

is based on the computation of gradient edges in the image. In homogeneous flat regions, the
differences of intensity between neighboring pixels are small; then the gradient VG, become
smaller (p(x) — 2). The isotropic diffusion operator (Laplace) is used in such regions. In
non-homogeneous regions (near edge or discontinuity), the anisotropic diffusion filter is chosen
continuously based on the gradient values (1 < p(x) < 2) of edges. The reason is that the
discrete chosen anisotropic operators will hamper the recovery of edges [177]. Secondly, the
nonlinear diffusion operator for piecewise image smoothing is processed during image deconvo-
lution based on a previously estimated PSF. Finally, coupling estimation of PSF (deconvolution)
and estimation of image (edge-driven piecewise smoothing) are alternately optimized applying a
stopping criteria. Hence, over-regularization or under-regularization is avoided by pixels at the
boundary of the restored image.

5.3.2 Self-Adjusting Regularization Parameter

We have classified the regularization parameters A in three different levels. Here, we present the
method for the selection of window-based regularization parameters \,, (window w based A,
1st level). When the window size is amplified to the size of the input image, A becomes a scale
regularization parameter for the whole image (2nd level). If we fix A for the whole process, then
the selection of regularization parameter is conducted on the level of one fixed A\ for the whole
process (3nd level). We assume that the noise is approximated by an additive white Gaussian
noise with standard deviation o to construct a window-based local variance estimation. Then
we focus on the adjustment of parameter \ and the operators in the smoothing term ¢. These
two computed components can be prior knowledge for preserving discontinuities and detailed
textures during the image restoration. The Eq. 5.44 can be formulated in the following,

arg min/ ¢(z, D f(z,y))dzxdy subject to / (g — hf) dzdy
Q Q

where the noise is Gaussian distributed with variance o?. A can be a Lagrange multiplier in the
following form,

1 )
A=~ | divl6(e. Df @) (o = b )dady (5.48)
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L
=]

Figure 5.10: a|b. (a) Computed A € [0.012,0.028] values in sampling windows for the image with size
[160, 160]. (b) Zoom in (a) for showing the distribution of the regularization parameters A,.

A is a regularization parameter controlling the “balance” between the fidelity term and the
penalty term. The underlying assumption of this functional satisfies || f|gy ) = [[fllz1@) +
TV (f) in the BV space. The distributed derivative |D f| generates an approximation of input
“cartoon model”and oscillation model [164]. Therefore, this process preserves discontinuities
during the elimination of oscillatory noise. We note that the term fQ (g—nh f)gdwdy is the
power of the residue. Therefore, there exists a relationship among the non-oscillatory sketch
“cartoon model” [173], [33], oscillation model [164] and the reduced power of the original image
with some proportional measure.

We formulate the local variance Ly, (i, 7) in a given window w based on an input image.
Luli.d) = g [ [fulisd) = BUR Pl )did (5.9

where w(i,7) is a normalized and symmetric small window, E(f,) is the expected value with
respect to the window w(i,7) on the size of the estimated image f in each iteration. The local
variance in a small window satisfies var(f,) = Ly(i,7). Thereby, we can write A for a small
window w according to Euler-Lagrange equation for the variation with respect to f Therefore,
the regularization equation with respect to the windows becomes

Je(£) = MuLulis §) + Sp(f) (5.50)

where A\yis a A in a small window w. C is a constant is a small window. g, and f, is the
observed image and the estimated image in a small window w. Thus, we can easily get many
Aw for moving windows which can be adjusted by local variances, shown in Fig. 5.10. These
Ay are directly used as regularization parameters for adjusting the balance during the energy
optimization. They also adjust the strength of diffusion operators for keeping more fidelity
during the diffusion process. The related regularization parameters 8 and - incorporate A,
while the parameter A of the fidelity term needs to be defined.

During image restoration, the parameter A can be switched among three different levels. The
window-based parameter \,, and the scale-based (entire image) parameter can be adjusted to
find the optimal results. Simultaneously, A thus controls the image fidelity and diffusion strength
of each selected operator in an optimal manner.
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5.4 Numerical Approximation

5.4 Numerical Approximation

We studied the problem of image reconstruction when the PSF operator h = I,, (corresponding
to a denoising problem, I, is the identity matrix I,, = diag(1,1,...,1). If h # I, (generally
a convolution operator), the existence and uniqueness results remain true, if h satisfies the
following hypotheses: (a) h is a continuous and linear operator on L?(2). (b) h does not
annihilate constant functions. (c) h is injective.

5.4.1 Numerical Approximation of Image Denoising

Let for the moment h = I,,. The proposed double variational regularization functional Eq. 5.42
becomes only denoising. For numerical reasons, we need to compute J., the continuous approx-
imation of the BV solution f, with € > 0 small enough. The Eq. 5.44 becomes only for image
denoising without including deconvolution process

N R . Vf . .
g=F=AVIPO 2 (p(x) - DA+ (2 ~pE)IVldin( S5 + Y- Vi log V]
Coefficient  IsotropicTerm Hyperb:)rlicTerm
CurvatureTerm
where g—]{, = 0, along the boundary 0 .
— 1 ¢
p(z) = () =1+ pvaT0E |VJi| <p (5.51)
L, VIl =8

We describe the extension to the two-dimensional problem with V f = (fy, f,), @ C R? and with
Of/on =0 on I' = 0Q. Assume spatial step 7 > 0, and let z; = ir, y; = jr, 7 = 1/M, for
0 <14, j <M, be the discrete points. We recall the following usual notations:

L fr(zi,y5) = fij = f(@i,95), for(xi,y5) = fous = 9(xi,y;5)-

2. m(a,b) = minmod(a, b) = ((signa + signb)/2) min(|al, |b]).
3. V& fij = F(figry — fij) and V4 fij = F(fijz1 — fij)-

with the boundary conditions

fn+1_ n+1 fn+1_ n+1 fn+1_fn+1 n+l _ en+1
0y — J1,3 » JMz; — JM-135 Ju —Ji1 o S M T i, M—1"

7
We use here the minmod function, in order to reduce the oscillations and to get the correct values
of derivatives in the case of local maxima and minima. The detailed evolution can be classified
into three types such as explicit scheme f*+1 — f* /7 = A(f*¥)f* implicit scheme f*¥*1 — f*/7 =
A(fFH1) fE+1 ] recently developed semi-implicit scheme f*+1 — fF/7 = A(fF)f5*+! by Weickert
et al. [265]. The semi-implicit scheme are stable for all time steps in arbitrary dimensions using
a discrete nonlinear diffusion scale-space framework based on Thomas algorithm [240].
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5.4.2 Numerical Approximation of Image Denoising and Deblurring

Now we consider the case h # I,,. In many cases the degradation operator h, the blur, is a
convolution type integral operator.

In the numerical approximations, (hmn)m n=0,4 is a symmetric matrix with

and an approximation of h, can be

d
h fij z P fivdjo—m.j+dj2—n

m,n=1
Since h is symmetric, then h* = h and h*hf = hhf is approximated by

d d

hhflj = Z Z hmnhrtfi+d—r—m,j+d—t—n.

mn=1rt=1

Then we use the same approximation of the divergence term and the same iterative algorithm,
with a slight modification.

5.5 Experiments and Results

5.5.1 Denoising and Image Restoration for Noisy Images

Firstly, we have studied the importance of diffusion in the regularization based image deconvo-
lution, shown in Fig. 5.11. The second experiments demonstrate the efficiency of the suggested
edge-driven diffusion method. From visual perception and denoising viewpoint, our unsuper-
vised edge-driven method favorably compares to some state-of-the-art methods: the TV [213], a
statistic-wavelet method (GSM) [198] and a Markov random field based filter learning method
(FoE) [209] using a PIII 1.8GHz PC. In Fig. 5.12 and Fig. 5.14, the structure of the restored
fingerprint is largely enhanced than the original image in our method and more recognizable
than the restored image using the GSM method [198]. Fig. 5.13 shows the advantage of our
method, while the TV method [213] has some piecewise constant effects during the denoising.
Table 5.3 shows the different properties of different methods and also shows our method out-
performs most of these methods. To achieve similar results, FoE [209] needs more time. Our
method (100 iter.) is faster than the TV method (30 iter.) in that our method that does not
over-smooth and generate redundant image discontinuities. The GSM [198] method is relatively
faster due to the computation in the Fourier domain. However, the GSM is only designed for
denoising. The dual-purpose edge-driven method is not only for denoising but also for compen-
sating the “ringing” and “staircase” effects and for protecting the image structure and textures
during the image deconvolution.
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5.5 Experiments and Results

A, blurred image. B, without operator. C, 0.1* operator. D, 10* operator

Figure 5.11: The role of smoothing operators in regularization based image deblurring. Even with
known PSF, the staircasing effects are generated during the deconvolution process.

Figure 5.12: 3‘ Compare two methods in fingerprint denoising. (a)(d) Cropped noisy image,
SNR =8 dB. (b)(e) GSM method[198] PSNR=27.8. dB. (c)(f) The suggested method PSNR= 28.6 dB

~
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m m
(b) (c)

Figure 5.13: Denoising. a: Unblurred noisy image, SNR=8dB, size: [256,256]. b: Normal TV method,
PSNR =27.1 dB. ¢: data-driven diffusion, PSNR = 30.2 dB.

Figure 5.14: alb. Data-driven image denoising using the suggested method. (a). Additive Gaussian
noise. SNR = 8 dB. (b). Restored using the suggested method PSNR= 28.6 dB

Table 5.3 shows the different properties of different methods and also shows that our method
outperforms the total variation methods in signal-to-noise-ratio improvement (SNRI)(dB). The
advantage of our method is its high-fidelity and smoothness of visual perception so that the
SNRI is higher than that of the related TV methods. From these experiments, we conclude that
the regularization functional in the BV space has some advantages for image denoising.

Table 5.2: Denoising performance of different methods on PSNR (dB)

[PSNR || =175, SNR~8.7dB, size [512,512] | Iter(n) [ Time(s) |
(dB) Lena |Barbara|Boats|House|Pepper|fingerprint|| Number Second
Our Met. ||32.26| 31.25 [31.01|31.85| 30.61 28.81 100 600 ~ 650
TV.[213] ||31.28| 26.33 |29.42|31.33| 24.57 | 27.29 30 800 ~ 820
FoE[209] ||32.11| 27.65 |30.26|32.51| 30.42 26.41 |1 ~3x1033~9x 103
GSM[198](132.72| 30.12 |30.58|32.69 | 30.78 28.59 100 140 ~ 180
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Table 5.3: ISNR (dB) Results on Test Data

SNR||TV-fixed A|TV- adaptive A\|Our met.
13.8 15.39 17.85 19.16
12.5 14.42 17.12 18.14
8.7 11.58 15.03 16.26
8.6 11.34 15.02 16.09

5.5.2 Denoising and Unsupervised Deblurring for Blurred Noisy Images

For blind deconvolution, synthetic and real natural images are processed for the testing. First,
a synthetic blurred image (noise = 30 dB) is considered for blur identification and restoration,
shown in Fig.5.15. The results show the efficiency of the proposed approach.

Second, we compare the classical Lucy-Richardson (L-R) deconvolution method with known PSF
to the suggested method with unknown PSF. A MRI image is heavily blurred with two levels of
noise 20 dB and 12 dB, shown in the first column of Fig. 5.16. The noise is amplified during the
L-R deconvolution with known PSF, shown in the middle column. In the suggested method, the
self-initialized PSF is iteratively parametric optimized in the AM algorithm. Diffusion operators
vary with the coefficient p(z) in the interval [1,2] continuously. The estimated PSF supports
the image smoothing coefficients progressively till the best recovered image is reached, shown
in the right column. From the restored images, we can observe that the low frequency regions
are more smooth while the fine details of discontinuities (high frequency regions) are preserved
during the image deconvolution. The experiment demonstrates the flexibility of Bayesian based
double regularization method which can accurately identify the blur and restore images using
edge-driven nonlinear image operators. The results also show that the denoising and debluring
can be achieved simultaneously even under the presence of stronger noise and blur.

Our experiments show that blur identification is sensitive to the noise level in the observed
image. However, the blur kernel (PSF) in a given blurred noise image cannot be identified and
recovered using deconvolution methods. The reason is that the blur kernels are totally modified
after the denoising procedure including linear and nonlinear diffusions. The best strategy is to
achieve blur identification and image restoration in an interleaved manner. Thus, the alternating
minimization with respect to the estimation of PSFs and images can avoid such difficulties.

5.5.3 Effects of Different Types and Strengths of Noise and Blur

We have also tested this approach in different types of noises, speckle, impulsive noise, Poisson,
Gaussian noise in different level of strength. Fig. 5.17 and Fig. 5.18 show that the image
denoising can be successfully achieved even on the very strong noise level SNR = 1.5dB. The
intermediate restoration results with detailed diffusion effects can be observed in Fig. 5.17.
Fig. 5.20 shows that the suggested approach in the BV space is robust for different types of
noise. The impulsive noise (salt-and-pepper) with different strength can also be successfully
eliminated, while structure and main textures are still preserved. We have also tested this
approach in different types of noise, speckle, impulsive noise, Poisson, Gaussian noise in different
strength levels, shown in Fig. 5.19, Fig. 5.20, and Fig. 5.21. Some more results are shown in
Fig. 5.22, Fig. 5.23, and Fig. 5.24 to demonstrate that the suggested method keeps high-fidelity
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(@)

(b) (© (d)

Figure 5.15: (a) Ground truth image. (b) Ground truth PSF. (¢) Blurred image with white Gaussian
noise 30dB. (d) Blind deconvolution for image c. (e) Estimated PSF

Figure 5.16: a|b|c Deconvolution and denoising. (a) From top to bottom: SNR = 20dB and 12dB,
size: [256,256]. (b) L-R method with known PSF. (¢) The suggested method with unknown PSF.

during image restoration.

Improvement of signal-to-noise ratio (SNR) sometimes might not match human visual percep-
tion. For example, for the salt-pepper noise, while the SNR value becomes larger (Normally,
the restoration result goes well), the visual perception can not be improved continuously but
becomes worse, e.g., shown in Fig. 5.20 and Fig. 5.21.

5.6 Discussion

This chapter introduces a novel Bayesian based variational image restoration model incorpo-
rating the dynamic computed prior knowledge. This model can achieve adaptive data-driven
image restoration in an integrated mathematical functional in the BV space. This functional
is derived using Lebesgue integral based on the total variation functional in the BV space. It
is a more accurate approximation of images in the spatial domain. Moreover, although this
functional can be considered as a sibling of the well-known Mumford-Shah functional [220],
it has different computation mechanism. In Mumford-Shah functional, we need to simultane-
ously compute the length of curves and piecewise regions by using I'-convergence. It increases
the difficulties in discrete computation. The proposed functional and method can be directly
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".' |

SNR 1.5dB 100 lteration 200 lteration 300 lteration

W

400 lteration 500 lteration 550 lteration 580 lteration

Noise image, SNR = 1.5d

B, sigma 75 Restored Image using the suggested method

Figure 5.17: Restored image using the suggested method. The noise image has stronger distributed
noise level, SNR = 1.5dB. In this figure, we can observe that the number of iteration is dependent on
the noise strength. If the noise is stronger, the number of iteration is bigger.

computed using different discrete image diffusion methods following the gradient of edges and
discontinuities. Therefore, the computation of regions and discontinuities are “separated” and
more well-posed to achieve high fidelity image restoration. As these experiments show, the reg-
ularization functional in the BV space has some advantages on image denoising, deblurring and
image restoration. The suggested method can also be easily extended to other regularization
functionals for solving image restoration and other related early vision problems.

From another point of view, inverse scale space interpreted regularization methods introduced by
Scherzer, Grotesch [217] and Weickert [218] based on a different paradigm are gradually applied
to image restoration. Simultaneously, recent methods like combination of nonlinear diffusion
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Figure 5.18: Zl—ls. The surface of restored images using the suggested method. The noise image has

stronger distributed noise level, SNR = 1.5dB. (a)(b) Noisy surfaces. (c)(d) Surfaces of the restored
image.

and wavelet shrinkage from signal scale to multiscale [61], [277], [276] make some progress on
image denoising. Different from these methods, our proposed method is based on a more general
function which is a deduction in the BV space. Our approach is also one kind of “active” image
restoration method based on the Bayesian framework.

Further improvements in performance of state-of-the-art algorithms might be possible through
a further reduction of unknowns in a Bayesian estimation based optimization framework. More
over, the initialization of the location of the centers of the basis functions is crucial for regulariza-
tion based optimization. On the other hand, Stochastic optimization approaches from Winkler
[273], Hellwich [111], [113] uses a priori information concerning line continuity expressed as
neighborhood relations between pixels. This method can be extended to supply more descrip-
tive and generative prior knowledge to the suggested approach for solving such ill-posed inverse
problems.

5.7 Conclusions

The main structure and skeleton of images are well approximated in the BV space. In order
to preserve textures and detailed structures, more constraints or generative prior information
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Figure 5.19: ;ll\blldld Image denoising using the suggested method. b)Speckle noise image and de-

noising. (¢)(d) Zoom in from (a)(b) respectively, 100 iterations. (e)(f) P01sson noise image and denoising.
(g)(h) Zoom in from (e)(f) respectively, 100 iterations.

Figure 5.20: gll;fll;lli. Restoration of impulsive noise images. (a) 10% salt-pepper noise image. (b)

Restored image, 200 iterations. (c¢)(d) Zoom in from (a)(b) respectively. (e)25% salt-pepper noise im-
age. (f) Restored image, 900 iterations. From visual perception viewpoint, 700 iteration is better than
900 iteration. However, the SNRI value is less than that of 900 iterations. (g)(h)Zoom in from (e)(f)
respectively.

are called for. We develop a self-adjusting scheme that controls the level of denoising by local
variances based on the edge-driven convex semi-continuous functionals. The performance of
image denoising is not only based on the computed gradient but also based on the computed
local variances of the residues. Therefore, linear and nonlinear smoothing operators in the
smoothing term are continuously self-adjusting to the gradient power. Also, the fidelity term
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L N |
25% Impulsive noise 100 iteration 200 iteration

300 iteration 400 iteration 500 iteration

700 iteration 800 iteration 900 iteration

Figure 5.21: %\%. Restoration of impulsive noise images. (a) 10% salt-pepper noise image. (b)

Restored image, 200 iteration. (c)(d) Zoom in from (a)(b) respectively. (e)25% salt-pepper noise image.
(f) Restored image, 900 iteration. (g)(h)Zoom in from (e)(f) respectively.

in the functional is self-adapting the fidelity value of the input image. The consistency of self-
adjusting local variances and the global convergence can be achieved in the iterative convex
optimization approach. We have shown that this algorithm has relatively robust performance
for different types of noise and different noise levels. The restoration keeps high fidelity to the
original image.
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5.7 Conclusions

Figure 5.22: Image denoising using the suggested method. Image denoising using the suggested method.
(a) column: Original images. (b) column: Noisy images with SNR = 10 dB . (¢) column: Restored images
(100 iterations) using the suggested method.
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5 Data-Driven Regularization for Variational Image Restoration in the BV Space

Figure 5.23: Edge-driven denoising. (a) Noisy image with PSNR =25.38dB, sigma = 25. (b) Restored
image after 120 iterations. (¢) Restored image after 150 iterations

i L H i K i i H I H i
1) 50 100 160 200 260 o 0 100 160 200 250 a 0 100 150 200 250

Figure 5.24: ;||:||;' (a)(d) The original color image and its R,G,B color profile. (b)(e) The noisy image
and its R,G,B color profile, SNR = 8.6dB. (c)(f) The restored image and its R,G,B color profile. SNR
Improvement =16.1 dB.
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6 Nonuniform Blurred Image ldentification,
Segmentation and Restoration

We must envision the present state of the universe as the effect of its anterior state and as the
cause of the following state. - Laplace(1795)

Since the restoration of a nonuniform-blurred (e.g., partially-blurred) image is to restore blurred
regions or objects without influencing unblurred regions or objects, we can not directly apply
traditional methods for this task. We derive a regularized spectral graph clustering approach
on discrete graph spaces for partially-blurred image restoration, and show that it is possible
to achieve high-quality blurred regions segmentation, and perceptual blind image restoration.
Based on the assumption of image foreground and background, natural image learning help us to
find differences between foreground and background regions in given images. These differences
are labeled as prior information for smoothing spectral clustering energy in an iterative regu-
larization framework. Nonlinear diffusion methods and Hausdorff distance are used to enhance
and maintain the learning and labeling for optimal image segmentation. We then show how the
global optimization can be efficiently found by combining bottom-up and top-down principle via
learning and sparse labeling in an iterative regularization approach.

Furthermore, these identified and segmented blurred regions or objects are mostly non-stationary
blurred. It means that we cannot directly to represent these real blur kernels using some simple
parametric blur kernels. Therefore, based on previous work, we extend our previous double
regularized Bayesian estimation to a more tractable variational Bayesian learning approach. This
approach allows the true posterior to be approximated by a simpler approximate distribution
for which the required inference are tractable. Moreover, reasonable and effect prior probability
is important in Bayesian learning. Natural image learning can help us find translation and
scale-invariant spatial prior distribution. In particular, the approach makes effective use of the
natural image statistics through the whole variational learning scheme. Our experiments show
that the results derived from the algorithm are superior to this type of blurred images. The
scheme can be further extended to other types blurred image restoration in real environments.

6.1 Introduction

6.1.1 Problem Formation

The regularization theory [241] has been recognized as a unified framework for studying several
problems in computer vision and image processing [195]. It also presents numerous challenges
as well as opportunities for further statistical and mathematical modeling, e.g., Markov random
fields based regularization [85], neural networks based regularization [91], kernel based regu-
larization [222], variational regularization [173], [184], [267], and discrete analogue of Tikhonov
regularization [24], [300]. Although some of these regularization approaches can be used for

133



6 Nonuniform Blurred Image Identification, Segmentation and Restoration

Figure 6.1: alb|c columns. (a) Entirely, uniform and relatively stationary blurred image . (b) uniform
and nonstationary blurred image. (¢) nonuniform, partially blurred image.

entirely linear-invariant (stationary) blurred image restoration, we can not directly apply these
approaches to partially-blurred restoration.

Due to the complexity of blurring, we classify blurred images into three main groups so that we
can design related methods for reconstructing these images, shown in Fig. 6.1. The first group
in Fig. 6.1(a) is uniform and stationary blurring. The blur kernel for the entire image can be
approximated by only one parametric blur kernel like Gaussian blur kernel, motion blur kernel
and so on. The second group in Fig. 6.1(b) is uniform but nonstationary blurring. Such blurred
images are entirely blurred and the blur kernel can not be represented by a single parametric
model. The blur kernel of such images can be considered as a generalization from parametric to
nonparametric approximation. The third group in Fig. 6.1(c) is partially-blurring. Such blurred
images are nonuniform partially-blurred and the restoration should not influences unblurred
regions. In this paper, we focus on entirely unform, partially nonuniform and nonstationary
blurred image restoration in real environments.

Partially-blurred image restoration is to restore blurred regions without influencing unblurred
regions for achieving better visual perception based on the Gestalt theory [270]. It generates
an interesting question. From the mathematical viewpoint the question is, how to get a global
convergence of multi-levels of local distributions. These multi-levels of local distributions include
local pixel gray level distributions, randomly distributed local blurry regions and unblurred
regions or objects. Therefore, it becomes a challenging partial convergence problem [248]. A
novel mathematical model needs to be constructed for the solution.

6.1.2 Prior Work

Image segmentation is an important but large topic. Here, we limit our discussion on closely
related work in discrete spaces and continuous partial differential equation spaces, respectively.
Then we present our proposed algorithm based on an integration of regularization and spectral
clustering methods.
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6.1 Introduction

Figure 6.2: Level set method for identifying and segmenting blurred regions and unblurred regions.
(Here the method is performed automatically without judging the parameters). (a)(b) initial images.
(c)(d) Related results. The better segmentation results are closely related to the selection of reasonable
parameters and how to fix a desired contour corresponding to a local energy minimum.

Supervised Image Segmentation

Supervised image partition and segmentation methods typically are based on one or two
paradigms [96]: (a) Labeling of pieces of boundary includes the desired boundary for the de-
sired object. (b) Labeling some sets pixels belongs to the desired object or background. Many
current automatic segmentation methods can be considered as directly supervised or indirectly
supervised and towards the target of unsupervised perceptual image segmentation.

In continuous spaces, partial differential equations based variational segmentation methods have
been intensively investigated by researchers. For example, the level set method is inspired by
the classical geodesic snake method but it has a lot of advantages than the snake method and is
different from the snake method. Normally, the level set method evolves the boundary to a local
energy minimum. For this purpose, an initial closed contour is generally needed near the desired
boundary. However, some main difficulties of the level set method are the selection of reasonable
parameters and how to fix a desired contour corresponding to a local energy minimum, especially
on cluttered images, e.g., blurred images or partially-blurred natural images, shown in Fig. 6.2.
The reason is that the level set methods are defined in the continuum and achieve a local
energy minimum, leading difficulties to achieve a global solution for cluttered images. To avoid
such difficulties, Cremers et al. [55], [56] integrate the level set method and statistical shape
knowledge based on an energy functional, e.g., the Mumford-Shah functional. The statistical
coded prior knowledge can be considered as constraints for guiding the curve evolution process
and obtain stability and noise robustness results.
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6 Nonuniform Blurred Image Identification, Segmentation and Restoration

In the discrete spaces, there is also a lot of state-of-the-art methods developed, e.g., Markov
random field based segmentation methods [273], [112], [143], [247] and so on. Recently, the
graph cuts method has been developed as an interactive, seeded (labeling) optimization method
for segmentation. The foreground and background of the image are labeled with some seeds
so that the max-flow/min-cut computation can be performed to estimate the minimum-weight
cut between the “source” and the “sink” region. Current work on the graph cut method are
mostly focused on several aspects. First, since the method returns the cut that often separates
the seeds from the rest of the image, a user needs to mark the seeds continuously to avoid the
small cut problem. Second, since the K-way graph-cut problem is NP-Hard, the optimal cut
becomes more difficult. Third, the graph-cuts segmentation algorithm has been extended in two
different directions in order to address several issues. The issue of speed is addressed by applying
a multi-level approach [149], by applying a watershed basin as “supernode” in a coarse graph
[144]. The iterative estimation of a color model with some user interaction such as the graph
cuts algorithm [32], the “Grabcut” algorithm [210], the closed form algorithm and optimization
[141], [142] for image matting and segmentation.

Different Spectral Clustering Criteria for Segmentation

Spectral graph theory is well developed and gradually investigated for image processing and
computer vision problems. Zahn [284] introduced graph-theoretical methods for detecting and
describing Gestalt clusters. Wu and Leahy [275] firstly introduced a general approach of seg-
menting images by way of optimally partitioning an undirected graph using a global cost func-
tion. According to a cost function including boundary-cost metric, the sum of the edge weights
along a cut boundary is minimized in a polynomial-time algorithm for finding optimal bisection
partitioning results.

Since the bisection-partitioning problem is NP-complete, we need to approximate this intractable
problem by some relaxing constraints. Likewise, to avoid unnatural bias of partitioning, a
general strategy has to scale the cut weight. The crucial kernel of segmentation is how to
use eigenvectors to achieve the possibly normalized “affinity matrix”. Through the literature,
several optimized cutting criteria such as normalized cuts [226], ratio cuts [53], average cuts
[216], or “affinity factorization” [190] are used to measure the disassociation between two groups
by efficient eigenvector calculations.

Shi and Malik [226] showed that for bi-partitioning, an approximate solution may be obtained
by scaling and thresholding the eigenvector corresponding to the second smallest eigenvalue of
the normalized Laplacian. Cox et al. [53] normalize the boundary-cost metric to avoid this
bias using a ratio regions using a polynomial-time algorithm for finding bisection partitions in
an undirected graph. The minimum ratio cut of an arbitrary graph is NP-hard. The ratio
cut is limited to connected planar graphs, consisting of three reductions: minimum ratio cut
to minimum ratio cycle, minimum ratio cycle to negative-cost cycle, and negative-cost cycle to
minimum-cost perfect matching. The above reductions all operate on undirected graphs. Based
on Cox’s work, Wang et al. [254] propose a cut ratio cost function in a undirected graph. The
cut ratio is defined as the ratio of the corresponding sums of two different weights of edges
along the cut boundary, and the mean affinity is modeled between the segments separated by
the boundary per unit boundary length. This cost function does not introduce a size, shape,
smoothness, or boundary-length bias so that this method allows efficient iterated region-based
segmentation as well as pixel-based segmentation.
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Induction Deduction

Transduction

Figure 6.3: The underlying relationship among induction, deduction and transduction.

Statistic methods are incorporated with more information for image segmentation. Swendsen-
Wang Cuts [20] use Bayesian based Markov Chain Monto Carlo to split and merge the sub-
regions. Berkeley nature boundary detector [159], was recently successfully applied to object
recognition. Region cues are computed as the similarity in brightness, color, and texture between
image patches. Boundary cues are incorporated by looking for the presence of “intervening
contour”. The self-tuning clustering method [286] suggests that local adaption of the scaling
parameter improves the image segmentation results.

Spectral Clustering for Segmentation Given Partial Constraints

Researchers have tried to give some interactive constraints to guide the segmentation. Yu et
al. [282] enforce grouping smoothness and fairness on labeled data points so that sparse partial
grouping information can be effectively propagated to the unlabeled data. The given partial
grouping prior as constraints can often be derived based on a crude spatial attentional map that
places common salient features and focuses on expected object locations. By generalizing the
Rayleigh-Ritz theorem to project matrices, the global optimum in the relaxed continuous domain
by eigen-decomposition, from which a near-global optimum to the discrete labeling problem can
be obtained effectively.

Since the publication of Karmarkar’s famous paper [122] in 1984, the area of interior-point
polynomial-time methods for convex programming have been intensively developed by many
researchers, focusing on linear and quadratic programming. Problems of special interest covered
by the approach are those with positive semidefinite matrices as variables. These problems in-
clude numerous applications in modern control theory, combinatorial optimization, graph theory
and computer sciences. Keuchel et al. [130] apply the semidefinite programming relaxations to
the combinatorial problem of minimizing quadratic functions in binary decision variables subject
to linear constraints. They introduce an interior-point methods (convex programming) and a
random hyperplane to achieve parameter-free and high-quality combinatorial solutions based on
spectral graph theory. Recently, the random walking algorithm [96] has used a similar affinity
function for the segmentation problem, but the affinity value is computed after applying a linear
transformation to the distance measure with human interactive interface.

6.1.3 Our Approach: Perceptual Image Segmentation and Restoration

Our target is to perceptually restore the nonuniform blurred (partially-blurred) images. There-
fore, we describe our approach in two steps. The first step is how to automatically and per-

137
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ceptually identify and segment blurred regions or objects. The second step is how to identify
blur kernels and perceptually restore these identified and segmented regions or objects without
influencing unblurred regions or objects.

Regularized Spectral Graph Clustering

We present a novel approach for perceptual image segmentation in this chapter. Here we present
some closely related theory and work. Any supervised learning algorithm can be applied an
inference problem, e.g., by training a classifier based on a certain data set, and then using the
trained classifier to predict the labels of the unlabeled objects. Following this approach, one will
have estimated a classification function defined on the whole domain of data set before predicting
the labels of the unlabeled objects. According to Vapnik, [248], Zhou and Schélkopf [300],
[301](see also page 221-232) estimating a classification function defined on the while domain is
more complex than the original problem which only requires predicting the labels of the given
unlabeled objects, and a better approach is to directly predict the labels of the given unlabeled
objects. Therefore, we consider estimating a discrete classification function which is defined on
the given objects only. Such estimation problem is called transductive inference [248], [300]. In
psychology, transductive reasoning means linking particular to particular with no consideration
of the general principles. It is generally used by young children. In contrast, deductive reasoning,
which is used by adults and older children, means the ability to come to a specific conclusion
based on a general premise. The diagram is shown in Fig. 6.3. It is well known that many
meaningful inductive methods such as support vector machines (SVMs) can be derived from a
regularization framework based on a empirical cost and a regularization term. Inspired by this
work [248], [300], we consider to construct an approach by integrating regularization theory and
spectral graph theory. Much existing work including spectral clustering, transductive inference
and dimensionality reduction can be understood in this framework.

We formulate the problem of partially-blurred image restoration including identification, parti-
tion and restoration of blurred regions or objects. To motivate the algorithm, different charac-
teristic properties [80], [153] (gradient, frequency, entropy, etc.) [67], [191] between blurred and
unblurred regions or objects endowed with pairwise relationships can be naturally considered as
a graph. We treat blind image restoration (BIR) of partially-blurred images as a combinatorial
optimization problem [130], [85], [80] based on regularization theory [241], and spectral clus-
tering theory on discrete graph spaces [51] and its related algebraic graph transformation [65],
[80], [226], [282]. Some connections between some of these interpretations are also observed in
[300], [282], [142], [51] based on transductive inferences and differential geometry. More impor-
tant, this integration brings crucial insights to the understanding of these theories, underlying
relationships and their potential roles.

As we know, segmentation is only a computing process not a final target. A meaningful segmen-
tation needs to be integrated with a specific task. Discrete regularization can achieve meaningful
segmentation from intrinsic ambiguities of a given image in that this approach induces and stores
high-level knowledge (top-down: identify and segment partially-blurred regions or object) to con-
trol low-level image processing (bottom-up: pairwise measure between blurred and unblurred
pixels and regions) via regularization. For example, the penalty term in regularization becomes
a carrier of learned priors with certain smoothing weights and scales. Also, the concepts of
using non-negative physical constraints are well matched and integrated into the discrete reg-
ularization. For example, blur kernels and images are non-negative. Therefore, the resulting
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simplicity of this approach differs in an interesting way from those algorithms generated without
the non-negativity constraint and generated descriptive priors.

A more fundamental problem that arises in ill-posed inverse problems is the scale problem. In
other words, which scale is the right resolution to operate on? Scale-space theory [191], [267], [67]
considers the behavior of the result across a continuum of scales. On the other hand, scale-space
theory is an asymptotic formulation of the Tikhonov regularization [241]. Based on the regu-
larization theory, the concept of scale is related quite directly to the regularization parameter.
The discrete regularization can obtain an optimal regularization parameter as the optimal scale
for the associated instance. The global optimization solution is guaranteed to directly relate to
the energy function rather than to a numerical problem during the minimization. Therefore, the
consistency of multiple levels of local distributions and the global convergence can be achieved
in a reliable and robust manner.

In a summary, the main objective of the standard regularization techniques is to obtain a rea-
sonable reconstruction which is resistant to noise in inverse problems. Based on these inherit-
ing advantages, discrete regularization is about converting high-level targets (human demands),
guiding low-level image processing and learning the optimal scale for achieving the global conver-
gence with multi-levels of local distributions. Conceptually, the discrete regularization paradigm
also reveals the roles of some well-known optimization algorithms. Algorithms such as graph-
cuts [132], and variational regularization [184], [173], [267] can be viewed as either discrete
regularization [24] with energy in binary discrete spaces or in continuous bounded variation
spaces. Compared to Markov random fields based stochastic optimization approaches [85], [80],
this paradigm in the discrete graph space is optimized in a deterministic way.

Natural Image Statistics and Variational Bayesian Leaning based Image Restoration

On the second step, these identified and segmented blurred regions or objects are mostly non-
stationary blurred. It means that we cannot directly to represent these real blur kernels using
some simple parametric blur kernels. Therefore, based on previous work, we reformulate and
extend our previous double regularized Bayesian estimation approach to a more tractable vari-
ational Bayesian learning approach based on natural image statistics.

Our work relates to statistical approximation inference [181], variational free energy [183], vari-
ational Bayesian learning [14], ensemble learning [114], [27], [166], [167], natural image statistics
based image restoration [227], [209], [73], [109] and variational methods in graphical models
[121]. In the Bayesian estimation, in general, we may consider two approaches to determining
the posterior distribution of the weights. The first is to find the maximum of the posterior
distribution, and then to fit a Gaussian function centered on this maximization. The second
approach is to express the posterior distribution in terms of a sample of representative vectors,
generated using Monte Carlo techniques. The third method is called Bayesian ensemble learning
which has been firstly introduced by Hinton [114], [27] and further developed by Miskin and
Mackay [166], [167]. Although the Bayesian estimation provides a structured way to include
prior knowledge concerning the quantities to be estimated. However, it is often intractable to
perform inferences using the true posterior density over the unknown variables, especially for
ill-posed inverse problems. Ensemble learning allows the true posterior to be approximated by
a simpler approximate distribution for which the required inference are tractable.

This approach allows the true posterior to be approximated by a simpler approximate distri-
bution for which the required inference are tractable. Moreover, reasonable and effect prior
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probability is important in Bayesian learning. Natural image learning can help us find transla-
tion and scale-invariant spatial prior distribution. In particular, the approach makes effective
use of the natural image statistics through the whole variational learning scheme. Our exper-
iments show that the results derived from the algorithm are superior to this type of blurred
images. The scheme can be further extended to other types blurred image restoration in real
environments.

6.2 Regularization on Discrete Graph Spaces

In this section, we present an overview about the integration of regularization and spectral graph
clustering methods in discrete graph space. Our goal is to design a practical regularization al-
gorithm that is adopted to the structure of graphs for partially-blurred image segmentation,
identification and restoration. The discrete regularization has the flexibility to derive a family
of transductive [248], [300], [51] algorithms based on the integration of spectral graphs, regular-
ization and image formation, composition theory in combinatorial optimization.

6.2.1 Discrete Regularization on Graphs

A general weighted undirected graph G = (V, &) consists of a finite set V with two subsets A
and B, together with a set £ C A x B. The elements of V = {v;}}' ; are the vertices of the graph
G, and the element of £ C {(i,7)} are the edges of the graph, i.e., edges with one endpoint in A
and the other in B. A self-loop is an edge which starts and ends at the same vertex. A graph
is connected when there is a path between any two vertices. A graph is undirected when the
set of edges is symmetric, i.e., for each edge (i,j) = (j,7) € £. A undirected graph is shown in
Fig. 6.4.

For a given blurred image g = hf + 7, we approximate a regularization functional on a lattice-
pixel based graph G = (V, £), with the weight matrix w;;. To restore the observed image g to the
ideal image f by deconvolving the unknown blur kernel h, the direct solution of the least squares
problem J(f) = argmin{(h * f — g)?} may lead to a vector f that is severely contaminate with
noise. Therefore, Tikhonov regularization [241] is employed to get a more meaningful solution.
The objective function is to minimize the square loss function with a smoothing penalty term
Sp(f). Thus, we have

J(f) = argmin{A(g — b f)* + S,(f)} (6.1)

where J(f) represent the total energy need to be minimized. The first term on the right side
is a squared fidelity term. The regularization parameter A controls the trade-off between the
fidelity and the smoothness term S, (f),

Sp(f) =Y wij(fi — fj) (6.2)

where the sum is taken over all the adjacent vertices V. The Sp(f) term can be seen as an discrete
analogue of its continuous case. The gradient, divergence, Laplacian and curvature operators
between these vertices and edges can be thought of as discrete analogous of their counterparts in
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Figure 6.4: An undirected graph with vertices and edges

the continuous case [300], [51]. For example, LP-norm Laplace operators, p € {1,2} € N are also
possible, e.g, p = 2 is a Tikhonov regularization form, p = 1 becomes a total variation functional.
Both these regularization functionals are strictly convex with some nonnegative constraints.

To solve the optimization problem of the discrete regularization, we can either use some uncon-
strained optimization methods like conjugate gradient descent, Gauss-Seidel, etc. in an iterative
approach, or in direct factorization methods, e.g., using Laplacian in spectral graph spaces.
Laplacian provides a unifying framework for regression, classification, data representation and
clustering in a regularization framework. It also allows to replace difficult optimization problems
with standard linear algebra. The optimization can also be achieved with an existing, unique
and stable solution in a convex manner. Furthermore, some related smoothing operators in
graph spaces can be deduced in a transductive manner [300], [51]. In the following, we describe
these smoothing operators in discrete graph spaces.

6.2.2 Discrete Operators on Weighted Graphs

The weighted undirected graph G has associated with it a weight function w : V xV — R
satisfying w(j,4) = w(i,j) and w(i,j) > 0. W = {w;;} is the n x n symmetrical adjacency
matrix with rows and columns indexed by V, and entries is equal to the number of edges
between vertices ¢ and j. The degree d; of a vertex i € V defined to be d; = >_; w(i,j) that
represents the total connection from vertex ¢ to all other vertices. D is the n xn diagonal matrix
indexed by V with vertex degrees d on the diagonal. The un-weighted graph is just a special
case where all the weights are 0 and 1.

The gradient, divergence, Laplacian and curvature operators between these vertices and edges
can be thought of as discrete analogous of their counterparts in the continuous case. These
operators are defined in the following.

Definition 6.2.2.1 Let H(V) and H(E) denote the Hilbert space of real-valued functions for
the set of vertices and edges, respectively. The graph gradient is an operator V : H(V) — H(E)
given lattice-pizel based vertices image f defined at a vertex i

) fwl)
(V) 5) = 200 f(@) 20) f(),(4,7) € &, € H(V)

where the gradient measures the variations on each edge, i.e., (Vf)(i,5) = —(Vf)(j,i) means
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that V f is skew-symmetric. While the graph gradient is defined on each vertex, the norm of
the graph gradient ||V f|| is defined by

vl = (3, v20) "

Intuitively, the norm of the graph gradient measures the roughness of a function around a vertex
(i.e., in lattice pixel image).

Definition 6.2.2.2 The graph divergence is an operator div : H(E) — H(V) where the inner
product satisfies

<Vf7 1/}>H(5) = <f7 _diw>H(V)v fe H(V)a Y e H(5>

The negative gradient -div is defined to be the adjoint of the graph gradient. The graph diver-
gence can be computed by

le’lﬁ Z bJ l,])—¢(172)),¢€H(5)

’I/Vj

Intuitively, we can observe that the divergence measures the net data flow of function ¥ at each
vertex. Note that if ¢ is symmetric, then div(i) = 0 for all i € V.

Definition 6.2.2.3 The Laplace-Beltrami operator on differentiable functions on a manifold is
intimately related to the heat flow. The Laplacian L can be thought of as discrete analogue of the
Laplace-Beltrami operator on a manifolds,e.g., Riemannian manifold. The Laplacian operator
A H(V) — H(V) defined by A = —div(V f). Substitute the gradient and divergence into this

definition, we have

L) = (BN =10 -3 25l wz—

The Laplacian is a linear operator because both the gradient and divergence operators are linear.
Furthermore, the Laplacian is self-adjoint. It is easy to verify that the Laplacian L is symmetric
and has row and column sums equal to zero. It can also be expressed in

di —w(i,j), ifi=j
L(i,5) =< —w(t,7), ifi # 4, (i,7) € € are adjacent (6.3)
0, ifi# 7, (i,7) ¢ €, otherwise

where the term of two matrices associated with a graph as L = D — W is positive semidefinite
[199]. The eigenvalues of L are discrete 0 = A\g < A\ < ...\, <, ... corresponding eigenfunctions.

Definition 6.2.2.4 The graph curvature as discrete analogue of the curvature of a surface is
measured by the change in the unit normal. The graph curvature is an operator IC : H(V) — H(V)
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defined by Kf := —%div( |I§§H ). Substituting the gradient and divergence operator into this form,
we obtain,

1= w(ig) 1 1 f@  f0)
(K@) = 5 2 /o) <||Vif|] * ||ij||> (W w(j))

The curvature operator is a nonlinear operator and the Laplacian operator is a linear operator.
In image processing, the Laplace-Beltrami operator is used as a linear isotropic diffusion oper-
ator. Recently, nonlinear operators [191], nonlinear anisotropic operators [259] and hyperbolic
conservation laws based curvature operators [186], [184] are intensively studied in continuous
regularization for improving the image restoration and visual perception in early vision.

6.2.3 Spectral Graph Clustering

As we know, physically, the original Laplace Beltrami operator on differentiable functions on
manifold M is intimately related to the heat flow. The definition and utilization of Laplacian
is very important for spectral clustering methods.

Spectral Clustering using Laplacian

Let D = diag(}_, wis, ..., ), Wn;i) be the diagonal matrix with d;; = deg[i]. The matrix is called
the degree matrix of the graph G with adjacency matrix W. As we have discussed previously,
the unnormalized graph Laplacian L = D — W is defined. L is the main object in spectral graph
theory [51], [168].

Given a vector = (x1,...,2,) € R™, we get the following key identity in a quadratic objective
function by means of the unnormalized Laplacian matrix L = L(G) of the graph G,

1

T 2

x Lr= 5 g 4 wij(x; — x5) (6.4)
27]

This equation also shows that L is positive semi-definite, and D/2 is positive definite. The
bisection problem can be formulated as the minimization of this identity, where as before,
L =D —W. To see this, notice that W is symmetric and D;; = ZZ wi;. Thus

(@i w)wiy = Y (3F +2F - 2ws)wy; (6.5)

ij i,j
= Z HTZZD” + ZHJ?D]']' -2 Zmimjwij =22 Lz (6.6)
( J i,J
Let x be an n-vector with component z; =1 if i € A and x; = —1 if € B, then
x' Lz = Z wij(z; — 1;)% = 4vol|5(A, B)| (6.7)

(4,7)€E
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6 Nonuniform Blurred Image Identification, Segmentation and Restoration

where ¢ € A, j € B. On the other hand,

T T T "
' Lx =2 Dr—=x W:U:Zizldixg—2 Z Ty = Z (zi — x;)?
(i.5)€€ (i.5)€€

Thus the bisection problem is equivalent to the problem of minimizing the quadratic form x " Lz
over n-vectors with components z; = +1 and ) ;" ; z; = 0. Formally,

I6(A, B)| = min(z " La), ;= %1, Z; =0 (6.8)

It is equal to maximizing similarity of the objects within each cluster, or, finding a cut edge
through the graph G with minimal weight in the formulation of

max(z ' Wz) <= min(z Lz) (6.9)

Since the bisection-partitioning problem is NP-complete, we cannot expect to solve this problem
exactly. However, we can approximate this intractable problem by a tractable one if we relax
the constraint that x; = £1 and let each component z; vary continuously in value between ++/n
and —/n. Thus we obtain the relax problem and its solution given by:

min(acTL:U)mi:j:LZ?:1 vi=0 = min(z:TLx)Zn 22=n, 3 2=0 (6.10)

=11

=z Lxy = Ao(L)xg T3 = no(L)

where xo is the eigenvector corresponding to the smallest positive eigenvalue of the Laplacian
matrix L(G). The minimizer of the relaxed problem is the second eigenvector of the Laplacian.
The closest partition vector to the second eigenvector is obtained by rounding the most positive
n/2 components of the latter to +1, and the remaining components to —1.

The discrete optimization problem has a simple relaxation by letting x to take real values instead
of {—1,1}. A standard linear algebra argument using L; = 0 shows

x' Lx

Ay = min S —
TER™,xD1=0 l‘TDl'

(6.11)

where Ao is the second smallest eigenvalue of the generalized eigenvector problem Lx = ADz.
It is clear that the smallest eigenvalue A\; of L is 0 and the corresponding eigenvector is 1.
Moreover, the second eigenvector satisfies Ao > 0 in a connected graph. Thus, the eigenvector z
corresponding to Az > 0 is obtained by minimizing this equation. The line of reasoning is that
a “cut edge” leads directly to the bipartitioning as relaxation of the weighted balanced cut.

6.2.4 Analysis of Eigenvectors
Recently, graph spectral methods have proved highly effective for image segmentation. The

advantage of graph spectral methods is that they can be approximated or relaxed without the
need for parallel iterative updates at the pixel level and sites. The method can also avoids the
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complexity of searching. The graph spectral method is in fact the energy minimization in a cost
function since the eigenvectors can be shown to be minimizers of a quadratic form. Another
advantage of graph spectral methods is their stability with respect to noise.

Image is considered as a pixel-level lattice-grid graph and each pixel is a graph vertex. Since the
image graph is not sparse, the computation of multiple eigenvectors is required. Therefore, a
lot of authors like Shi and Malik [226], Scott and Longuet-Higgines [224], Peronan and Freeman
[190], Weiss [269], Sarkar and Boyer [215], Jacobs, Weinshall and Gdalyahu [117] have suggested

spectral clustering methods that are based on eigenvectors of the “affinity matrix”.

In the following, we study and extend the normalized criterion to discrete regularization to
achieve a global optimization. Several main reasons are summarized. First, the normalized
term is modified in the optimization measure. The cost of a cut is normalized by the sum of
the internal weights of a segment rather than by its area. Second, the graph is initialized with
weights that directly reflect the intensity difference between neighboring regions. Third, the
underlying connections between Laplacian and regularization can be unified into an integrated
optimization framework.

Spectral clustering using Normalized Cuts Criterion

Shi and Malik [226] proposed a new measure of the disassociation between two groups. Instead of
looking at the value of total edge weight connecting the two partitions, the cut cost is computed
as a fraction of the total edge connections to all the nodes in the graph. This disassociation
measure is called the normalized cut (Ncut): Ncut(A, B) = ;“3150(&7@) + ;Szto(&ﬁ/)) . Aand B are two
initial sets. The similar objects grouping algorithm is fully exploited by an eigensolver called
the Lanczos method which speeds up the running time. The degree of dissimilarity between
two pieces can be computed as total weight of the edges that have been removed. The two
partition criteria in the grouping algorithm is to minimize the disassociation between the groups
and maximize the association within the group. They also showed an efficient computational
technique based on a generalized eigenvalue problem that can be used to optimize this criterion.
The minimization of this criterion can be formulated as a generalized eigenvalue problem; the
eigenvectors of this problem can be used to construct good partitions of the image

For unnormalized spectral clustering, a similar argument shows that Lx = Az is used for unnor-
malized spectral clustering. In the normalized case, the second eigenvector of the generalized
eigen-problem Lx = ADz is equivalent to the second eigenvector of the normalized Laplacian,

~ 1 1 1 1
L=D:LD 2=]—-D:2WD" 2 (6.12)
The algorithm of spectral clustering using normalized cuts criterion is described in the following;:

1. Given a set of features, set up a undirected weight graph G = (V, E).
Compute the weight, and summarize the information into W, L and D.
2. Find eigenvectors to the 2nd smallest eigenvalue of: Lx = (D — W)x = ADx
3. Obtain the partition:A =[i|:2z; > 0,B = [i] : z; > 0 using the Ncut.
4. Decide if the current partition should be subdivided by checking
the stability of the cut, and make sure Ncut is below pre-specified value.
5. Recursively repartition the segmented parts if necessary.
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6 Nonuniform Blurred Image Identification, Segmentation and Restoration

In image segmentation algorithms based on normalized cuts [226], one attempt to find the second
smallest eigenvector of the matrix D — W where W is a n X n pixels matrix whose elements
are the pairwise affinities between pixels (i.e., the i, j entry of the matrix is w;;) and D is a
diagonal matrix whose diagonal elements are the sum of the affinities( i.e., equals 1). The second
smallest eigenvector of any symmetric matrix A is a unit norm vector = that minimizes z ' Az
and is orthogonal to the first eigenvector. By direct inspection, the quadratic form minimized
by normalized cuts is exactly the cost function J, that is " (D — W)z = J(z).

Thus, the algorithm minimizes the same cost function but under different weight constraints.

W =wgj = exp®i/(27%) (6.13)

where o is a free parameter. d;; can be represented in different affinity structures which measure
the similarity between image features. Here, we use d;; = ||; — z;]|? to measure some vector
data set in vector spaces, shown in Fig. 6.5. Several synthetic data clusters are clustered using
this criterion. We also compared eigen-vectors for segmentation of the blurred and the unblurred
image using the normalized cut criterion, shown in Fig. 6.6

6.3 Regularized Spectral Graph Clustering for Perceptual Image
Segmentation

Our goal is to design a practical regularization approach that is adopted to the structure of
graphs for nonuniform(partially-blurred) blurred image restoration. The detection and partition
of blurred regions or objects is the first crucial step. In this approach, we consider the partially-
blurred image as the composite of blurred regions and unblurred regions in linear blending of
radiance values based on pixel-level information. The sum of blurred regions aF and unblurred
regions (1 — a)B is equal to the entire image I.

I=aF+(1-a)B (6.14)

where « is the opacity of blurred regions or objects. The blurred regions can be formulated as
aF =hxf+mn,

I=(h+f+n)+(1—a)B (6.15)

where 7 is additive white Gaussian noise 7, (1 — «)B is the rest part of unblurred regions or
objects. This equation brings us several meaningful interpretations. First, one interpretation
of this form is to reduce the dimensionality, either by extracting blurred regions, by extracting
unblurred regions or by combining two distributions linearly into an entire image. Second, such
interpretation of combination can directly avoid overlapping or over-fitting problem [63] for
searching different classes of local distributions. There are some related similar assumptions in
image processing and vision. Forstner [79] has used similar model for the detection of feature
operators (inlier and outlier feature operators), where the distribution of outlier (here F}) is
simulated the Laplace-distribution or the Cauchy-distribution. Image matting methods [214],
[50] assume the image based on foreground matting objects and background scene based on
earlier proposed image matting techniques [76], and some extended methods [142]. Graph cuts
methods measure the energy distance between the source and the target using maximum-flow and
minimum cut theorem. Keuchel et al. [130] apply binary decision subject to linear constraints
to a combinatorial problem. Spectral bi-section is to classify objects in two classes.
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Figure 6.5: alb|c|d columns. Segmentation using the second generalized eigenvector with normalized
cut criterion (D —W)x = ADz, Wa = (1 — A\)Dz. In (a)(b)(c)(d) columns (from top to down): A simple
clustering problem, the affinity matrix, the corresponding graph weight matrix W, and the clustering
results.

6.3.1 Regularized Spectral Graph Clustering

Our goal is to design a discrete regularization approach that is adopted to the structure of
graphs and prior information (labeling) for perceptual and optimal image segmentation. We
consider the image as the composite of foreground regions F' and background regions B in linear

blending of radiance values based on i-th pixel-level information. The sum of foreground aF
and background (1 — «) B is equal to the entire image I,

I=aF+(1—-a)B (6.16)
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6 Nonuniform Blurred Image Identification, Segmentation and Restoration

Figure 6.6: ¢ groups. Comparison of synthetic unblurred (checkerboard(8)) and blurred image (motion
blur with angle at 45 degrees and 8 pixels strength) in group (a) and group (b). In group(a) and
group (b): the first row (from left to right) is the test image (1st), the corresponding graph weight
matrix W (2nd), semi-transparency marked clustering regions (3rd), color marked clustering regions
(4th). The second row (from left to right) shows the eigenvectors corresponding to the second smallest
to fifth smallest eigenvalues of the system. The eigenvectors are reshaped to have the size of the image.

where « is the opacity of foreground regions or objects. (1 — «)B is the rest part of background
regions or objects. This equation brings us several meaningful interpretations, e.g, reducing
the computation complexity and avoid over segmentation, etc. The computation of « is crucial
to segment foreground regions. We use a transform to simplify the formulas by allowing v =
1/(F - B),v=—B/(F — B), the Eq. 6.16 becomes o = ul 4+ v, where I is the input image, and
output parameters a, u and v. For an entire image, the cost function on discrete image spaces
with respect to i-th pixel-vertex becomes,

J(ao,u,v) = arg min{Z( Z | Liug + v — og||* + eui)}

kel icwg

148
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2

where eu® is a penalty smoothing term with parameter ¢, and wy, is a small window around the

pixel k.

For each small window wy, in the image, the solution can be formed in a least squares form,

2
(6.17)

Uu _
J(ag, uk, vk) :ZH[ v: ] Wy — oy,
ks

where k is a pixel vertex. Uy is defined as a matrix (Jwy|+ 1) x 2 and contains a row of the
form [I;,1] for each window i € wy, and the last row of Wy, is [/£,0]. The partition region ay is
a (Jwg| + 1) vector with elements «;, (i € wy) and the last element is 0, |wy| is the number of
pixels in this window. To solve the segmented regions oy, the optimal ug,0; is the solution to
the minimization of least squares (LSQ) problem.

Uk, _
o] s

Substituting this solution into the energy minimization in Eq. 6.17, we get a quadratic cost
function with unknown «.

2

(tis, ) = min = (U U)ol

2
Jau) =3 H\Ifk(q/;\pk)—qugak - akH (6.18)
k

where we denote Wy, = I — Uy (U] U,)~10 7 then we get

— _ 2 _ — — _
J(a) =3 |[a]* = 6l Ul g = o La (6.19)
k k
where L = \I/;\i/k can be expressed in the following,

K- o (14 - 000 - 00+ 50 (6.20)

|wi| |wg|

where Kj; is the kronecker delta, 05, and J,% are the mean and variation of the intensities in the
window wy, around k. We refer the semidefinite matrix L to an affinity Laplacian matrix. The
matrix L can also be explained in L = D —W in spectral graph theory, with D(i,i) = Zj W (i, j)
is a diagonal matrix. The W is a symmetric matrix and its off-diagonal matrix are defined by
the definition of weights.

6.3.2 Semi-supervised Learning and Labeling: From Local Patches to Global
Image Understanding

Our target is to identify and segregate blurred and unblurred regions in an unsupervised man-
ner. Pairwise difference between blurred and unblurred regions or objects (gradient, frequency,
entropy, etc.)[67], [80], [153] are one kind of useful empirical image statistics. Therefore, to en-
hance pairwise differences and attenuate the difference inside of both regions can be a reasonable
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i

Figure 6.7: a|blc. Unsupervised feature operators and gradients. (a) Partially-blurred images. (b)
Unsupervised labeling using feature corners on unblurred regions is prior for partition. (c¢) Pairwise
differences of edge gradients between blurred and unblurred regions.

way to improve the partition results. We transfer the empirical knowledge (high-level) as prior
labeling to guide low-level segmentation processing. We combine the edge gradient difference
(edge prior) and unsupervised feature operators labeling (feature patches) [79], to collect the
affinities and segregate the dissimilarities, shown in Fig. 6.7.

To extract the optimal opacity of blurred regions «, we construct a regularization energy function
which can use these unsupervised patch prior and gradient prior,

o =argmin{a' La +&(a’ —d) )Dy(a —d))} (6.21)

where £ is a regularization parameter and denotes the strength of smoothing penalty term. This
smoothing penalty term is adjusted by prior labeling patches d;. d; is the vector containing the
unsupervised patch-values of labeling and 0 for all other pixels. D; is a diagonal matrix with
diagonal value 1 for detected feature patches and 0 for all other pixels. Since this energy function
follows quadratic regularization, we can differentiate the equation and set the derivatives to 0.
This equation can be well adapted to use patch labeling (detected feature patches) and pairwise
difference of edge gradients for partitioning the blurred and unblurred regions or objects. It also
allows a globally optimal partition of « using these sparsely distributed priors via this equation.
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Figure 6.8: a|b|c columns. The detection of feature corners in background and foreground are controlled
by a nonlinear image diffusion filter. After nonlinear image diffusion, some stronger edges or corner are
enhanced, while some weak edges or corners are eliminated, e.g., boundary of car, power line and the tree
behind the house. (a) column: test images. (b) column: The detection of feature corners is performed
on original partially-blurred images. (c) column: The detection of feature corners is performed after
nonlinear image diffusion, K = 10. For such methods it can be shown that small scales are smoothed
faster than large ones, so if the method is stopped at a suitable final time and given a suitable K, we
may expect that noise is smoothed while large-scale features are preserved to some extent. By this way,
we can judge the distribution of feature corners using nonlinear image filtering.

6.3.3 Maintenance of Foreground and Background
Nonlinear Filtering Adjusting Feature Detection

As we have discussed in the 2nd chapter, Perona and Malik’s nonlinear diffusion filters has some
different roles on image diffusion which can be further developed for different targets.

2
C(VI) = exp ®@ , and C(VI) = (6.22)

2
1+ 7]
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6 Nonuniform Blurred Image Identification, Segmentation and Restoration

Figure 6.9: a|b. Comparison of feature corners in original and diffused images (Zoom in images) in
unblurred regions. (a) column: Zoom in original images. (b) column: Zoom in diffused images with
feature detection.
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These two functions generated by the scale-spaces are different: the first privileges high-contrast
edges over low-contrast ones, the second privileges wide regions over smaller ones. These char-
acteristic properties can be further extended to control the distribution of feature detection and
strength of affinity weights. Recently, these two diffusion functions have been also considered as
diffusion kernels for controlling the optimal classification on graph spaces in machine learning
community.

Inspired by these difference in these filters, we use the C(VI) = 1/ (1 + ”3{7]2”2) for improving

the unsupervised detection of feature corners and label the unblurred regions with sparse feature
corners. Through the experiment, it can be shown that small scales are smoothed faster than
large ones, so if the method is stopped at a suitable final time and given a suitable K, we may
expect that noise is smoothed while large-scale features (most are unblurred discontinuities)
are preserved to some extent. By this way, we can judge the feature corner detection using
nonlinear image filtering. Fig. 6.8 and Fig. 6.10 show that partially-blurred images can get more
accurate labeling of unblurred regions after diffusion. Fig. 6.9 shows that weak strength image
discontinuities (small scale, tree behind house, one power line) are eliminated, while large scale
objects (one power line can get more feature corners after diffusion) are enhanced.

Therefore, the unblurred regions and blurred regions can get more accurate labeling using opti-
mal controlled nonlinear diffusion filters.

Maintenance using Adaptive Nonlinear Diffusion

To achieve high-quality partition, an idea is to enhance the difference between blurred and
unblurred regions or object. That is to say, intraclass differences need to be decreased and
interclass difference need to be increased. Based on this idea, we attenuate the contrast inside
one blurred or unblurred regions (intraclass) so that the boundary between these two kinds of
regions (interclass) can be enhanced and increased. Simultaneously, other inner edges or inner
discontinuities in one region are eliminated.

Motivated by nonlinear inhomogeneous diffusion [191], [235], we extend the nonlinear diffusion
method to attenuate the difference inside the background region while preserving the contrast
Z;j across the boundaries between blurred and unblurred regions.

1

Zij = |11 = > - (6.23)

2
1+ |VIg|?/K?- exp(—%)

where K is a contrast parameter to be tuned for a particular application. This diffusion
filter is scalar-valued, decreasing with isotropic but non-homogeneous effects. d;; measures
the dissimilarity between pair (I;,I;) in the image I and VIg = I[P — I JB measures pair-
wise pixel difference inside background Ip (Here we only measure the background). The
d;j = max {|IZ —IB|,|; -1 jB \} is a Hausdorff distance-like definition. The Hausdorff distance

has been widely used for image matching, object recognition due to its underlying properties
[116]. If d;; is small, the attenuation strength should be large (exp(—d?j /o4) — 1), and the pixel
pair (I;, I;) might belong to the same region(blurred or unblurred). Otherwise, if d;; is large
(exp(—d?j /oq) — 0), the attenuation strength is small, and it probably belongs to the boundary
contrast between blurred and unblurred regions. In our experiments, we take K = [5,10] and
o4 = [10,50).
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(©)

Figure 6.10: (a) Partially-blurred images (b) Unsupervise detected feature corners are a natural prior
for labeling unblurred regions in the suggested method. (c) Unblurred objects or regions have highest
feature density in Voronoi

154



6.4 Variational Bayesian Learning for Nonuniform Blurred Image Reconstruction

6.4 Variational Bayesian Learning for Nonuniform Blurred Image
Reconstruction

The Bayesian approach is, in fact, the framework in which the most recent blur kernel estimation
methods have been introduced, e.g, simultaneous kernel estimation and image restoration [289],
estimating Bayesian hyperparameters [169], factorizing kernels into parametric models [166],
[167], [289], and measuring the strength of discontinuities in Gaussian scale space [67], etc.
However, these methods are limited in certain parametric models to stationary blurred images.

This section presents the method for restoring uniform and nonstationary blurred images in
a variational Bayesian ensemble learning framework. First, through large observations and
experiments, we classify natural blurred images into three main blurred groups so that we can
design an efficient methods. As a result, we obtain an approach, which can compute and use the
translation and scale-invariant marginal probability distribution of image gradients as a priori
through the Bayesian learning scheme. In a sense, the distribution can be shared by most similar
type of blurred images and therefore requires relatively few training images.

Based on variational Bayesian approaches [114], [14], Miskin and Mackay [166], [167] have firstly
applied this method to deal with blind deconvolution using a prior on raw pixel intensities.
Results are shown on synthesized image blur. Using image statistical prior, Fergus et al. [73]
have extended this method for removing camera shaking blur from a single blurred image.
The blur kernel is estimated and interpolated in high-accuracy using a multi-scale approach
[227]. Although the ringing effects has been observed by Fergus et al., the image deblurring is
directly using an extended Richardson-Lucy (RL) method without using image statistical prior
and local spatial conditions for deblurring. Inspired by Fergus’s et al, in our approach, we use
image statistical prior not only for kernel estimation but also for weighted space-adaptive image
deblurring with ringing reduction.

For image deblurring, ringing effects and amplified noises influence the results due to Gibbs
phenomena in Fourier transformation. One type of ringing effects often happens around edges
and discontinuities due to the high frequency loss during blurring. The other type of ringing
effects is due to the mismatch between nonstationary real blurred images and stationarity as-
sumption. Such phenomena have been observed by [289], [73], [135]. Since most original scenes
are without ringing, such restoration results are usually undesirable. Therefore, the deblurring
approach needs to be designed for both two types of ringing reduction.

Furthermore, in Bayesian estimation, a generic prior model needs to represent common descrip-
tive or generative information from an observed image. Such prior distribution can be translation
and scale-invariant for representing a global image. Natural image statistics based prior learn-
ing has such properties to represent image structure, textures [109], discontinuities and blurred
edges [73]. On the other hand, natural images are often inhomogeneous with piecewise uniform
regions separated by edges and discontinuities. Therefore, the measure of distributions of local
edges, textures as well as the pixel intensity values can be used as local spatial conditions for
ringing reduction in image reconstruction.

Different from Fergus’s work [73], [166], [167], our approach has several effects. First, through
some observations and experiments, we classify natural blurred images into three main groups
so that we can design an efficient method. Second, in contrast to previous work [166], [167],
[73], [197], natural image statistics is used not only for kernel estimation in a global image but
also for piecewise image reconstruction in a newly designed regularization function. Therefore,
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we obtain an approach, which can use the scale-invariant statistical prior for kernel estimation
and integrate with local spatial conditions for deblurring with ringing reduction.

6.4.1 Natural Image Statistics for Prior Learning

The objective of learning a generic prior model is to look for common descriptive or generative
information from observed natural images. Such information are then incorporated into a prob-
ability distribution as a prior model which will bias learning algorithms. For this objective, find
a translation and scale-invariant prior distribution is expected. Natural images statistics has
some properties to represent image structure, textures, and discontinuities so that it has great
potentials to find such prior distribution.

From a combination of psychophysical and computational approaches, Field [74], [75] has pre-
sented that real cluttered images obey heavy-tailed distributions in their gradients. The dis-
tribution of gradients has most of its mass on small values but gives significant probability to
large values than a Gaussian distribution but rather a Student’s t-distribution. Later, Olshausen
and Field [179] have proposed an approach to understanding such response properties of visual
neurons and their relationship to the statistical structure of natural images in terms of efficient
coding.

From signal and image processing approaches, Mallat [156], and Simoncelli [227] have described
that non-Gaussian nature of the statistical distribution, e.g., high kurtosis, heavy tails, it is a
similar distribution as an exponential density with exponent less than 1. These heavy-tailed
natural image priors have shown the usefulness in state-of-the-art methods, e.g., image segmen-
tation [109], denoising [227], [209], removing camera shake [73], Gibbs-reaction diffusion [303]
and so on.

To compute such distributions, one way is compute the joint statistics of derivative filters at
different locations, size or orientations [197]. The other way is to observe marginal statistics of
more complicated feature detectors [305]. In this paper, we extend these methods to yielding
translation and scale invariant prior. For example, Fig. 6.11 illustrates this fact and shows several
natural images and their histogram of gradient magnitudes. Similar histogram are observed for
vertical derivative filters and the for the gradient magnitude VI, and VI,,.

6.4.2 Construction of Variational Bayesian Estimation Model

Following a Bayesian paradigm, the true f and the PSF h will be estimated by using only a given
observed g. However, how to efficiently build the Bayesian estimation which can optimally use
the information from the observed image? During the blurring, the changes of image discontinu-
ities and edge gradients are larger and more representative than the changes in the homogeneous
regions. Therefore, we construct a probabilistic model based on marginal distribution of image
gradients. We process the gradients of f and g and construct the new convolution equation
using the original equation g = h * f + 1. Suppose we have a model which tells how a number
sequence Vf = Vf(1),..., Vf(t) transforms into sequence Vg = Vg(1),..., Vg(t), we then have
Vg(t) = Vf(t) * h +n(0,0%) with zero-mean identical and independently distributed Gaussian
noise.

Based on this model, the Bayesian MAP estimation utilizes an input P(Vg) to achieve two
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Figure 6.11: leﬂglli. Comparison of marginal distribution of blurred and unblurred gradients. (a)(b)

Blurred image. (c)(d)Unblurred image. (e)(f) Histogram and Log-histogram (y) of gradients V,I. (g)(h)
Histogram and Log-histogram (y)of gradients V1.

convergent posteriors p(h)and p(V f), and is formulated in

p(VglVf,h)P(Vf, h)
p(Vg)

p(Vf,hVyg) = x p(Vg|Vf,h)P(V f)P(h) (6.24)

In p(Vf,h|Vg), we can easily have more stable prior distribution, e.g., log-histogram of image
gradients. However, computing the full posterior distribution p(V f, h|Vg) is more difficult than
computing p(f, hlg) in direct Bayesian MAP estimation using normal gradient descent methods.
The minimization of all gradients Vg in p(V f,h|Vg) is not the right output value, while we
always want to have high image gradients for the restored images. Moreover, marginalizing the
posterior distribution is difficult. We cannot take a point estimate (e.g.,the MAP estimate)
because this leads to overfitting. This is because the MAP estimate does not guarantee a high
probability mass in the peak of the posterior distribution and so the posterior distribution may
be sharp around the MAP estimate. Therefore it is necessary to approximate the posterior
density by a more tractable form for which it is possible to perform any necessary probability
mass of the posterior.

In order to apply the Bayesian approach for modeling, the model needs to be given in proba-
bilistic terms, which means stating the joint distribution of all the variables in the model. In
principle, any joint distribution can be regarded as a model, but in practice, the joint distribution
will have a simple form.

Joint Posterior Distribution

According to Vg(t) = Vf(t) x h+n(0,02), the prior P(Vf) on the restored image gradients is a
Gaussian mixture model with variance v; and weight w; for the i-th Gaussian (i € N). The blur
kernel prior P(h) is a mixture of K blur kernel parametric models with exponential distributions
and the size factors s and weights wy, for the k-th distribution component. Therefore, the joint
density of all the variables in Eq. 7?7 can be formulated for posterior distribution given the image
gradient distribution P(Vg),

p(Vf,hVyg) < p(VgIV [, h)P(Vf)P(h) = (6.25)
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where ¢ indexes over image pixels and ¢’ denotes blur kernel pixels. G and E denote Gaussian and
Exponential distributions respectively. For the application of these equations, some constraints
of the PSF and the image are assumed due to the fact that the image pixels are independent
identically distributed and does not influence the pixel correlations.

In the field of statistical approximate inferences, mean field methods [181], [182], variational
free energy [183] have also been investigated intensively. According to the variational meth-
ods for graphic models [121], Attias [14], the posterior distribution in Bayesian estimation can
be simplified in variational transformations based on convex duality. The original full poste-
rior p(Vf,h|Vg) is then approximated by a tractable distribution ¢(V f, h) by minimizing the
Kullback-Leibler information which acts as a distance measure between the two distributions.
The tractable distribution can be further processed in an ensemble learning approach.

6.4.3 Variational Ensemble Learning for Blurred Regions Reconstruction

Ensemble learning [114], [166] is a method for parametric approximations of the posterior distri-
butions. It assumes a Gaussian distribution or other parametric distribution, but in which the
mean and the variance are allowed to evolve during the learning process. Based on Miskin and
Mackay’s ensemble learning method [166], [73], the distributions for each estimated gradients
and blur kernel element are represented by their mean and variance. The variational ensemble
learning can be expressed in terms of a minimization of the Kullback-Leibler distance between
the model distribution and the true posterior. It is formulated as,

KL{g(V . h)|[p(V f,h|Vg)} = / a(f,1)In WD) 5 fan (6.26)

(Vf,h|Vg)
q(Vf,h)

= / AV G N F PV )

dV fdh + Inp(Vg)

The Kullback-Leibler information is greater than or equal to zero, with equality if and only if
the two distributions, p(V f, h|Vg) and ¢(V f, h) are equivalent.

Training and learning the approximating ensemble can be done by assuming a fixed paramet-
ric form for the ensemble (for instance assuming a product of Gaussians). As a consequence,
the parameters of the distributions can be set to minimize the cost function. Therefore, the
q(Vf,h) — q(Vf, h,o?) can be further approximated by adding a noise prior o~2(inverse vari-
ance) in the form of a Gamma distribution according to [166]. Thus, we have hyper-parameters
z,y : p(0?|z,y) = I'(6c~2|z,y). The variational posterior is ¢(¢~2) in a Gamma distribution. If
we note that the term p(Vyg) is a constant over all the models, we can define a cost function
Ck 1 which we are required to obtain the optimum approximating distribution,

Ckr = KL{q(Vf,h,o*)|[p(Vf,h|Vg)} — (Inp(Vg)) (6.27)
_ L25) L4l oI
= [avom 5Z8avs+ [amm B+ [o-otm LT a0
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Where the subindex of C'x 1, denotes the variables that are marginalized over in the cost function,
(Inp(Vg)) is the average over all variables. In general, they are the unknown variables of the
model. Because of the product from of the true posterior density, the cost function C'xy, can be
factorized into a sum of simpler terms.

On the other hand, the Kullback-Leibler information is a global measure, providing that the
approximating distribution is a global distribution. Therefore, the measure will be sensitive
to probability mass in the true posterior distribution rather than the absolute value of the
distribution itself.

According to the cost function Cgr, the parameters of the distributions are minimized alter-
nately using the coordinate descent method. The most crucial part is the initial value that we
choose the means of the distributions ¢(h) and ¢(V f) (a trained prior distribution from other
similar type of blurred images). The variance o2 is given high value due to the uncertainty of
the initial value. The minimization are repeated until the change in Cx1 becomes negligible.

According to the cost function C'if, in Eq. 6.26, the parameters of the distributions are minimized
alternately using the coordinate descent method. The most crucial part is the initial value that
we choose the means of the distributions ¢(h) and ¢(V f) (a trained prior distribution from other
similar type of blurred images). The variance ¢ is given high value due to the uncertainty of
the initial value. The minimization are repeated until the change in Ck becomes negligible.
The ensemble learning algorithm is provided online by Miskin and Mackay [166]. Furthermore,
multi-scale [227], [73] and multigrid [37] methods have been proven to be very useful in computer
vision. These methods can avoid local minima. Following Fergus et al. [73] and Simoncelli [227],
we implement our algorithm using multi-scale based coarse-to-fine refinements. At the coarsest
level, the blur kernel is initialized at very coarse level. The initial estimation for ideal image
gradients is then adapted to the blur kernel till the edge gradients distribution is well adjusted.
At the finest resolution, the blur kernel is full interpolated.

6.4.4 Image Deblurring and Reconstruction without Ringing Effects
Analysis of Ringing Effects

According to g = h * f 4+ 1, using the Tikhonov-Miller regularized solution, the restored image
F' in the frequency domain is,

) - H*(u,v)
PO = T )+ ol 0P

G(u,v) =T (u,v)G(u,v) (6.28)

where G, H, F' are the DFT of g,h, f, respectively, (u,v) are the spatial frequency variables,
L(u,v) represents a regularizing operator with a regularization parameter a. T'(u,v) deviates
from the inverse of the blur kernel H~!(u,v). The deviation is expressed by the error spectrum
E(u,v;a) =1 — T(u,v; @) H (u,v). The restored image F' in the frequency domain is given by,

F(u,v) = T(u,v;a)[H(u,v)F(u,v)+ n(u,v)] (6.29)
= F(u,v) — E(u,v;a)F(u,v) + (1 — E(u,v; ))H 1n(u,v) (6.30)

where the restoration error is || F'(u,v) — F(u,v)|. On the right side, the second term denotes
the error due to the use of filter T, i.e., a regularization error; the third term presents the noise
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1 magnification error. There exists an optimal value a between two types of errors. The noise
magnification error has a global degrading effects resulting from the observed noise. Also, the
regularization error is a function of F', and its effect will therefore be related strongly to the
local spatial structures encountered within the image. Ringing effects can be seen as a structure
dependent phenomenon and can be classified as a regularization error.

Iterative Reweighted Regularization for Deblurring and Reconstruction

Therefore, we propose an iterative reweighted regularization function which can use the measure
distributions of local edges, textures as well as the pixel intensity values for image deblurring.
Similar to Eq. 6.24, p(g|f, h) follows a Gaussian distribution and p(f) is prior with some con-
straint conditions,

T (flg,h) o argmin{ 5 S wn(g(r) — h(e) « f@)* + 20D wa(er(a) » f(2)))

where J(f|h,g) = —log{p(g|f,h)p(f)} express that the energy cost [J is equivalent to the
negative log-likelihood of the data [181], [289], [292]. A is a regularization parameter that controls
the trade-off between the fidelity to the observation and smoothness of the restored image. The
smoothness constraint ¢;(x) is an regularization operator and usually is a high-pass filter. The
energy function achieves an optimal result by searching for f minimizing the reconstruction
error (g — h* f)? and the weights prior wo controlling f to be satisfactorily smooth.

The weights w; and we reduce these ringing effects adaptively to achieve better visual evaluation.
wy = 1, if data at x is reliable, otherwise w; = 0; the image weight wy = 1/[1 + k:&]%(a:)], &J%(a:)
is local variance of the observed image g(x) at z in a P x Q window, k is a contrast parameter.
However, it is difficult to directly compute such local variances in a small moving window for
a single blurred image and its unknown ideally restored image. In contrast to most existing
approaches [289], [73], we use the distributions of statistical edge gradients as the local prior

weights, which can bias the results. We use a w), = expk&?‘ @) from a general exponential function
family and has similar effects as wy [191]. The heavy-tailed curve of w} is directly controlled by
using the image statistical prior distribution. The cost function of this equation is minimized in
an iterative reweighted optimization approach [178] via conjugate gradient descent.

6.5 Experimental Results

Experiments on synthetic and real data are carried out to demonstrate the effectiveness of
our algorithm. At the first step, we propose to use edge gradient prior based on spectral graph
clustering methods for identifying and segmenting blurred regions or objects, shown in Fig. 6.12.
However, this approach can not achieve optimal segmentation results. The detailed explanation
will be presented on experiments parts. Second, we propose a novel method based on the
integration of sparse (unsupervised or semi-supervised learning and labeling) labeling prior and
regularization on graph spaces. This approach can achieve high quality and perceptual image
segmentation for nonuniform (partially-blurred) blurred images via optimal control, shown in
Fig. 6.16. The approach is summarized in the following steps. Finally, some experiments on
natural images show the robustness of our method.
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Figure 6.12: Diagram of segmentation using edge gradient prior and the normalized cut criterion. Edge
gradient prior in spectral clustering using normalized cut criterion for image segmentation.

6.5.1 Segmentation Using Different Affinity Functions
Partitioning Using Exponent Affinity Function

We extend two different affinity functions [226], [282], [142] in this discrete regularization ap-
proach and compare the results. We measure the degree of dissimilarity between pairwise blurred
and unblurred regions based on the special characteristic properties, i.e., stronger difference of
edge gradients, pairwise blur and unblur. The edge weight w;; between node ¢ and j as the
product of a feature similarity term and spatial proximity term:

—11R()-Qy)

a1

X=X ()3 (6.31)

Iz
* exp ox

’LU(Z'J) = exrp
if (| X (7)) — X(4)]ly) <r, and w;; = 0, otherwise. Q(i) = VG, * I(x) is the edge gradients and
large differences between pairwise blurred and unblurred regions. G, is a Gaussian filter, I(x) is
an input image, X () is the spatial location of node i. The partitioning of blurred and unblurred
regions or objects is guided dynamically by computed edge gradient prior values without any
supervision. For some natural images like Fig. 6.13, we can get accurate segmentation results,
while the number of segmentation is given manually. However, for some complex partially-
blurred and cluttered images, shown in Fig. 6.14 and Fig. 6.15, we can easily find there are
some small errors on some regions of segmentation, e.g., the cutting edges, and some regions are
misclassified. The reason is that the o; and ox are global constant. The affinity is large and

rough so that those nearby pixels with relatively similar intensity values are misclassified.

Partitioning Using Window-Based Affinity Function

Firstly, using the affinity weight can be improved by given more descriptive prior to guide the
cut edges at the first step. Secondly, the affinity weight can be small and window-based so that
the affinity can reasonably and accurately represent pixels in small windows. Here, we extend a
window-based weight function from [142] into discrete regularization for measuring the affinity.

1 (i — 0x) (L5 — 0g)
Dy = 1 6.32

where 6, and 02 are mean and variance of the intensities in the window wy, around k, and |wg| is
the number of pixels in this window. The main difference of this affinity function is that it uses
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Figure 6.13: alb|c|d. Performance of the spectral clustering using normalized-cuts criterion on natural
scene images. Clustering number is manually defined. The first row is original images. The second row
is marked clustering regions. The third row is color marked regions.

local estimates of means of variances instead of the global derivation o; and ox. The affinity
between two pixels of the intensity decreases with distance, while the affinity between pixels of
different intensity is zero. Neighbor pixels with similar intensity have high affinity, otherwise,
the affinity is small.

As we know, a meaningful segmentation needs to be integrated with a specific task, i.e., inte-
gration of top-down and bottom-up processing. The flexibility of the smoothing term in the
discrete regularization allows to integrate edge-based prior, and patch-based descriptive prior
or constraints. Simultaneously, different from most image matting and segmentation methods,
pairwise differences between blurred and unblurred regions support many types of unsupervised
descriptive and generative priors to guide the Laplacian “cut edges”. Fostner [79] feature opera-
tor (except Lowe’s SIFT descriptor, it is based on different principle.) finds most intensity cross
corners as prior labeling, shown in Fig. 6.17 (b) and Fig. 6.18 (a). The Laplacian partitions
tends to be piecewise constant in the same region where the smallest eigenvectors are piecewise
constant. If the values inside a partition in the eigenvector image are coherent, a simple seeds
or patch labeling within such a partition is sufficient to attenuate the difference and find the
right cut edges to the entire segment.

In the experiment, we note that these sparse feature corners and edge gradient prior are sufficient
to segment the blurred and unblurred regions, shown in Fig. 6.17 (b) and Fig. 6.18 (b)(c).
Fig. 6.17 shows the segmentation of gray value partially-blurred images. The video frames are
captured from films or video data. The unsupervised labeling is controlled using Perona-Malik
image diffusion filter shown in Fig. 6.17 (b). The blurred region and unblurred foreground car
are segmented in different layer, shown in Fig. 6.17 (¢) and (d). The color images are separated
into RGB colour channels and each channel is processed accordingly. However, there are still
some parts that are not well segmented in that the intensity of gray values are too similar for a
small sized window, e.g., 3 x 3. Therefore, by an optimal control of the weights, unsupervised
labeling can achieve high-quality segmentation results.
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(b)

Figure 6.14: (a) Identified blurred foreground walking man in front of unblurred background. (b)
Identified unblurred foreground walking man in front of blurred background. However, some small blurred
regions are misclassified.

6.5.2 Restoration on Entirely Nonstationary Blurred Images

To evaluate this algorithm, the performance of the approach has been investigated by using
different types of real images. In these experiments, first, we show that it is easy to get ringing
effects in normal deblurring methods. Second, we reconstruct several types of blurred images and
compare the results with other methods. Finally, we make a summarization for the suggested
approach.

The first experiment is performed for an indoor image, shown in Fig. 6.19. Based on the
estimated blur kernel in Fig. 6.21(a), we reconstruct this image using two methods. We can
easily find that the classical Richardson-Lucy (RL) method can achieve sharp deblurring results
but suffering stronger ringing effects. Fig. 6.19(c) is reconstructed using our suggested method
with natural image statistical prior weights and space-adaptive smoothing. Compared to the
RL method, the reconstructed result in our method is smoother and without ringing effects.

The second experiments present image restoration on blurred images to demonstrate the deblur-
ring and restoration results of the proposed algorithm. The restored images are illustrated in
Fig. 6.20 and their identified blur kernels are shown in Fig. 6.21, respectively. In this experiment,
we compare our deblurring with a multi-scale based RL methods that was used by Fergus et al.
[73]. From the results, we note that the multi-scale RL method can achieve sharp restoration
results but the noise is also amplified, shown in Fig. 6.20(b) column. Our method can achieve the
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Figure 6.15: alblc. (a)(b)(c) are three partially-blurred images. The 3rd row and 4th show the cut
edges with some errors in blue circles. Some parts are misclassified in that the affinity weight is too large
an rough to represent these small corner regions.

sharp deblurring results with more smoothing surfaces due to different reconstruct mechanism,
shown in Fig. 6.20(c). In this experiment, we show three blurred images with different illumi-
nation, contrast and environments. The first image is an indoor image of a person, the second
image of a copper sculpture has some reflections, and the third one has cluttered movements
in the evening. The results show the robustness of image deblurring and reconstruction of the
suggested approach for different types of nonstationary real blurred images.
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Figure 6.16: Diagram of regularization on discrete graph space for segmentation via semi-supervised
learning and optimal control.

Figure 6.17: z‘—‘s The performance of segmentation for partially-blurred image in pure gray value. (a)

Original video data. unblurred foreground car with blurred background. (b) Feature detection after
Perona-Malik nonlinear image filtering, K = 10. (c¢) Segmented and identified blurred background in
gray value. (d) Segmented and identified unblurred car.

From these experiments, we note that these estimated blur kernels cannot be simply represented
by some parametric models. The reason is that the random movements and different noise influ-
ences (illumination, projective distortion based blur changing, reflections etc.) during the image
formation period. In a sense, based on natural image statistics, we can estimate blur kernels in
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Figure 6.18: a|b|c. Partition and identification of partially-blurred images. (a) Detected feature corners
(Fostner operator [79]) as unsupervised prior labeling. These labeling corners can be high-level seeds
indicating regions of the image belongs to one regions or object. (b) Segmented unblurred regions or
objects. (c) Segmented and identified blurry regions or objects.

Figure 6.19: a|blc. (a) Blur degraded images. (b) Restored image using the normal RL method with
ringing effects. (c) Restored images using the suggested method.

a variational Bayesian learning method and restore and reconstruct the images sequentially in
an iterative reweighted energy function. On the other hand, we also note that image noise is
smoothed during image deconvolution in our approach.
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Figure 6.20: a|b|c columns. (a) Blur degraded images. (b) Restored image using a similar method in
[73]: multi-scale based RL method. (c) Restored images using the suggested method with natural image
statistical prior weights and space-adaptive smoothing.

Figure 6.21: alb|c. Identified blur kernels with respect to the image of people, street and horse,
respectively. (a) for people. (b) for horse. (c) for street.

6.5.3 Discussion of Image Priors and Probability Models

This method is robust regarding different types of noises and blur, because it searches the
differences of regions or objects based a global optimization and natural related descriptive prior
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information. These prior information can be as seeds growing, merging to find the “biggest”
similarity affinity matrix. The descriptive information here means that more representative
eigenvectors can achieve better segmentation results. The search for eigenvectors is based on
the guidance of descriptive prior information. Furthermore, these descriptive information can
be simply based on image contrast, feature descriptors [150], [207], gray scale, gradient, or can
be computed through statistical learning.

Identification and segmentation of blurred and unblurred regions or objects in partially-blurred
images is a relatively specific task. We utilize the potential differences between blurred and
unblurred regions to find the descriptive prior information, so that we can achieve high-quality
segmentation results in a discrete regularization approach via unsupervised learning and optimal
control. Although these two different types of prior information are computed from different
view points, the underlying principle is still to find the descriptive information for the guidance
of clustering and merging. Therefore, a number of difficulties of identification and segmentation
can be solved and avoided via the descriptive prior information which is also a penalty term in
the discrete regularization. This method can be applied in general segmentation cases. In such
cases, different descriptive information and its related labeling may achieve different task-driven
results. Another underlying idea in the suggested discrete regularization is to make progress on
scale problems and find some invariant information for segmentation.

Recently, Zhu [302] classifies the probability model into descriptive and generative model based
on the study of natural image statistics, the analysis of natural image components, the group-
ing of natural image elements, and the modeling of visual patterns. The descriptive model is
constructed based on statistical descriptions of the image ensembles via natural image statistics
and natural image patterns. Thus, the descriptive model is attractive in that a single descrip-
tive model can integrate all statistical measures of different image features. For example, Gibbs
model of texture, Gibbs model of shapes (2D simple curves).

Different from the projection of pursuit method (a simple product of the likelihoods or marginals
on different features), the descriptive model uses sophisticated energy functions to account for
the dependency of these features. Also, the descriptive model are all built on certain lattices-
graph structures in homogeneous models (statistics are assumed to be same for all vertices of the
graph) and inhomogeneous model (the vertices of the graph are labeled, and different statistics
of features are used for different regions or sites ). To tackle the computational complexity of
descriptive models, generative models are used to reduce dimensions based on some vocabulary
of visual descriptions. The elements in the vocabulary specify how images are generated from
hidden variables.

In the Bayesian framework, descriptive and generative models are used as prior probabilities
and likelihoods, while discriminative models approximate the posterior probabilities of hidden
variables based on local features. The underlying of our approach belongs in a Bayesian esti-
mation based descriptive model for classifying and identifying blurred and unblurred regions for
partially-blurred images.

Firstly, our approach can be considered as a combination of these two models, i.e., the interac-
tion between unsupervised learning and labeling (generative models) and partially-blurred image
segmentation and identification. Secondly, the probability models of stationary blurred images
and non-stationary blurred images can be interpreted as homogeneous and inhomogeneous mod-
els. It leads to the choice of probability models and prior knowledge. Zhu and Mumford [303],
[304] call the generic prior models the first-level prior. A more sophisticated prior model should
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incorporate concepts like object geometry; such prior models are called the second-level prior.
For example, diffusion functions derived from this second-level prior are studied in image seg-
mentation [306], and in scale space of shapes [131]. In our approach, diffusion functions are used
to adjust the semi-supervised labeling and segmentation.

6.5.4 Noise Robustness

The theoretical results describe how the expected segmentation should behave in response to
different weights of i.i.d. random noise. The behavior of the partition considers the segmentation
globally, even in a small window. From these experiments on synthetic and natural images, we
can find that different amounts of noise and different levels of natural noise do not influence
image segmentation. It is also one of the most distinguished advantages of spectral clustering
methods in comparison to other state-of-the-art segmentation methods. Window-based weight
affinity function can achieve more accurate segmentation results in natural partially-blurred
images.

6.6 Conclusions

We have proposed a unifying discrete regularization approach to achieve high quality partially-
blurred image partition, identification and blind restoration. This approach integrates and shares
the advantages from both spectral graph theory and regularization theory for solving ill-posed
inverse problems. Different from existing off-line and supervised labeling methods, this approach
allows on-line unsupervised learning and labeling so that we can achieve a meaningful task-driven
segmentation. Perceptual blind image restoration can be achieved in a different identified layer
via optimal scale control. This approach has robust performance on different types of partially-
blurred natural images. The integrated approach also demonstrates that the mutual support
between natural prior knowledge and low-level image processing has great potential to improve
the results in early vision.

we have introduced a new approach to enable variational Bayesian ensemble learning for restor-
ing real nonstationary blurred images. The experiments suggest that the approach enables
an efficient trade-off between intractable inferences and tractable solution for difficult inverse
problems. In particular, the approach makes effective use of the natural image statistics prior
through the learning scheme. By alternating the radius of the natural image statistics, we are
able change the approach to restore more types of blurred images including nonuniform blurred
images. A thorough evaluation has shown that the proposed approach has more flexibilities for
identifying and restoring blurred images in real environments. The new approach outperforms
state-of-the art methods on challenging real blurred data, underlining the effectiveness of the
approach.
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7 Summary and Future Work

Wir missen wissen, Wir werden wissen. - David Hilbert

7.1 Summary

In this thesis, we have proposed three main approaches for blur identification, image restoration
and partially-blurred identification, segmentation and restoration in an integrated Bayesian
estimation and regularization framework based on continuous Hilbert, bounded variation spaces
and discrete graph spaces.

The observation and experiments have guided us to seek alternative approaches of scoring can-
didate statistical learning based optimization methods. Furthermore, convex optimization cri-
teria are employed to achieve existing, unique, stable solution for blind image reconstruction or
restoration and segmentation. These approaches are an integration of statistics and regulariza-
tion, and transductive inference of regularization on discrete graph spaces. The soundness of
these approaches is demonstrated by numerical experiments. The main contributions of this the-
sis to the computer vision, image processing and pattern recognition community are summarized
in the following.

The first part of our work focuses on the strategy of global nonparametric estimation to local
parametric optimization for high-accuracy blur identification. The nonparametric estimation
used to adapt adaptation of the parametric methods to the data when the parametric structural
assumption is not fulfilled. This approach is based on statistical learning priors and determin-
istic regularization for blur identification and image restoration for stationary-blurred images.
The proposed double regularized Bayesian estimation is strictly convex so that the approach
can achieve the global convergence. The accurate initial value can also speedup the conver-
gence for the estimation of point spread function and image restoration. An early work of this
approach has been published in [295], [289]. Simultaneously, a family of variational function-
als like Mumford-Shah, and total variation have been investigated and implemented for image
restoration and segmentation, published in [294], [293], [291] and natural image statistics and
variational Bayesian learning in [287], [298].

The second part of this work focuses on high-fidelity and perceptual image restoration. Vari-
ational regularization in the BV space has been extended in a Bayesian framework to achieve
simultaneously blur identification and image restoration. Based on a family of general and
more general linear-growth functional in the BV space, we propose a Bayesian based double
variational blind image restoration functional which can be optimal controlled via self-adjusting
diffusion operators, self-adaptive regularization parameters, and the optimal time of stopping
the process. The underlying mathematic principles and practical roles are embodied in an en-
ergy optimization approach. Related works have been published in [294], [290], [292], [296] and
the submitted journal paper [297].
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The third part of this work focuses on partially-blurred image segmentation, identification and
restoration [292],[299]. The original idea of this work is to find underlying mathematic rela-
tionship between regularization theory and spectral graph theory, since these two theories can
be individually used for image segmentation based on the same strategy of global optimization.
Moreover, both theory based approaches can use Laplacian for controlling and smoothing the
convergence results. The proposed discrete regularization approach integrates spectral graph
theory and regularization theory in graph spaces based on the underlying mathematic connec-
tions and generalization. First, this novel approach can efficiently utilize, covert, and store the
high-level knowledge to guide low-level image segmentation and restoration. Second, the seg-
mentation is also optimized by modifying weight affinity function. Furthermore, the flexibility
and generality make this approach easily extendable to solve many related image processing and
vision tasks. Several related papers have been submitted recently.

In this thesis, we have introduced several new approaches for low-level vision problems based on
an integrated statistical learning, Bayesian estimation and regularization framework. These ex-
periments suggest that our strategy and our suggested approaches enables efficient and tractable
solutions for difficult inverse problems. In particular, these approaches makes effective use of the
natural image statistics based generative and discriminative prior information through their re-
lated learning scheme. By alternating the radius of the image statistics and learning in Bayesian
estimation, we are able change our approaches to solve other inverse problems in pattern recog-
nition and computer vision. These approaches outperforms state-of-the art methods on chal-
lenging real vision problems, underlining the effectiveness of our strategy and these introduced
approaches.

7.2 Future Work

7.2.1 Theoretical Aspects

The target of this research can be formulated as the systemic conception of feasible unsuper-
vised signal and image restoration, and segmentation methods. These methods make use of all
available information, i.e., with respect to the data acquisition, perturbation models and natural
generative priors which can largely improve the performance. We feel there are several directions
that can be further and fruitfully explored at the next step in theoretical and practical aspects.
Also, the underlying mathematic concept is widely open for future research and arouses a lot of
new questions.

1. Minimization of various cost-functions. The optimization is important for several reasons.
Primarily, it allows obtaining rigorous solutions with respect to parameter selection and
optimization techniques, and an opportunity to find solutions in a robust convex manner.

2. Construction of a variational statistical framework combining discrete regularization. An
important extension of the analytical results regarding the properties of optimization is
the integration into a statistical estimation framework. Statistical description of these
properties as a function of the randomness of the data will be further explored.

3. The computational aspects are crucial for the success of a signal and image restoration
method. The properties of convex optimization schemes lead us to reduce the search space
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and thus simplify the optimization. Also, the integration of knowledge in form of partial
differential equations into convex optimization can be further explored for achieving more
robust automatic visual perception results.

The regularization is integrated in discrete graph spaces through spectral graph theory.
Discrete regularization operators are simultaneously used to smooth the image and smooth
the spectral clustering information. The encouraging results inspire us to further explore
the potential properties of this unified discrete regularization approach.

. The utilization of bottom-up and top-down segmentation and recognition strategy. We

can combine low level image processing and mid or high level knowledge for repartitioning
or grouping blurred and unblurred objects or regions.

7.2.2 Practical Applications

1.

Control of static and dynamic convergence behavior of isotropic and anisotropic regions.
The cost function, or average convergence performance of blind identification and im-
age restoration can be classified as static convergence analysis and dynamic convergence
analysis of the the stochastic dynamics of equalization algorithms.

. Nonstationary recursive image estimation. The identification and restoration of non-

stationary blur is more useful for real life data. Currently, we have built a robust statistic
estimation and convex optimization framework so that we can investigate the deblurring
and denoising of non-stationary, partially-blurred and entirely-blurred images.

. Simultaneous blur identification, image restoration and segmentation for more compli-

cated blurred images. A more general blurred image is partially-blurred, or nonstationary
blurred. The proposed approach integrates and shares the advantages from both regu-
larization, spectral graph theory and statistical learning theory. Also, these advantages
of this approach can be directly or indirectly applied to the data coming from different
sources, e.g., tomograph, synthetic aperture radar or electronic microscope data.

. Apply the proposed regularization and Bayesian learning framework to other related pat-

tern recognition, computer vision problems. The proposed strategy and approaches are
demonstrated to be a more flexible and robust learning and optimization framework then
most state-of-the-art methods for inverse problems, low-level vision problems etc.

. Add new statistical strategies and approaches into current work. For example, statistical

approximate inferences including mean field methods, variational methods and free energy
are well developed and can be further applied in the research of computer vision.
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A Methods Not Requiring Evaluation of
Derivatives

All the gradient methods require calculation of at least the gradient V f(xj) and possibly the
Hessian matrix V2f(x;) at each generated point (pixel level) zj. It is possible to use the same
algorithms as earlier with all unavailable derivatives approximated by finite differences. Thus,
second derivatives may be approximated by the forward difference formula

fa) 1 Df (it hey) _ 9f (i), 1)
ox'0z) h ox? ox?
or the backward difference formula
2 — hes
or the central difference formula
0% f (xy) N 1 E?f(xk—i—'hej) B Of(xx, — hej) (A.3)

oxtoxi 2h oxt ozt

In these relations, h is a small positive scalar and e; is the jth unit vector (jth column of the
identity matrix). The central difference formula has the disadvantage that it requires twice
as much computation as the forward difference formula. However, it is much more accurate.
Practical experience suggests that a good policy is to keep the scalar h for each derivative a
fixed value which balances the truncation error against the cancelation error. A good practical
rule is to use the forward and backward difference formulas until the absolute value of the
corresponding approximate derivative becomes less than a certain tolerance; i.e.,

|(L/R[f (xk + hes) — f(ap)])| < e

where ¢ is some small pre-specified scalar. At that point a switch to the central difference
formula is made, i.e., whenever the inequality above is satisfied. An extensive discussion of
implementation of gradient methods based on finite difference approximations can be found in
Gill et al. (1981) [90]. There are several other algorithms for minimizing differential functions
without the explicit use of derivatives, the most interesting of which, at least from the theoretical
point of view, are coordinate descent methods [152, 285].

We discretize (using a fixed point finite differences scheme) the Euler-Lagrange equation asso-
ciated with the minimization of the total variation model of Rudin-Osher-Fatemi.
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A Methods Not Requiring Evaluation of Derivatives

We would like to find the (unique) minimizer, u, of

inf F(u) = A / |f — u|® dedy+ / \Vu| dzdy, (A.4)
w Q Q

where f is the noisy data and A > 0 is a scaling parameter. The associated Euler-Lagrange
equation of the Rudin-Osher-Fatemi model formally is

u=f+ %div(%) in Q,
% =0 on 0f.

First, we remove the singularity when |Vu| = 0, by approximating F'(u) by F(u), where

F.(u) = )\/Q |f — u|2dmdy+/Q \/ €2 + |Vul*dzdy,

with € > 0 being a small constant. Then, the Euler-Lagrange equation minimizing F.(u) formally
is:

Vu

\e2 + |Vul?

u = f—{—idiv(

N ) in (A.6)

i 0 on 092. (A.7)

Assume for simplicity Q = (0,1)%, h > 0 and let z; = ih, y; = jh, h=1/M, for 0 <4, j < M,
be the discrete points (in our numerical calculations, we have h = 1). We recall the following
notions:

wij ~ u(x;, y5),

fig = f(xi,y5),

AT uij = £(wix1,; — i),
Afluij = +(uije1 — uig),
Afuij = (wit1,; — ui-1,7)/2, and
Afuij = (wij1 — uij-1)/2.
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A discrete form of the Euler-Lagrange equation is:

1 AT ug,y
R

uij = fij+ 2)\hA— ATu N2 [ AYu N2
T Ui 0 Yij
e (H) (M)
y 1 Alui,

1
+on Al — ok
-

Uitl,j—Wig

— f . 1
- fW + 2)\h? “ 2 2
o (it i Ui =1
\/8 +( n + 2h
1 Ui j— i1,
2\h? W o — 1 N2 T 2
2 i, " %i—1,5 Yi—1,541"%i—1,j—1
N
1 Wit 1 Wi,
o o (Bl —%im15\2 ) (i1 )2
et (PRI ) o (Rt )
_ 1 Wij—Uij—1
2\h? o 1—w 1. 2 s 2
2 i+1,5—1"%i—1,5—1 Ui,j —%i,5—1
\/5 +( 5h + 7

We use a fixed point Gauss-Seidel iteration method for the above equation and so we now
introduce the following linearized equation:

n n+1
u" ! Uit1,5 " %4

— f. . 1
4,J f’t,j 2)\h?2 n —am N 2 n _aun 2
62—‘1- xil »J + »J T »J

n+1_un

_ 12 U j i—1,j
2\h n n 2 n . 2
PO (k% B O 1 WU (o O e S A Y
h 2h
n+1

n —
Yij+1" i

1
+2)‘h2 ull g —ul g 2 ul g —ul 2
2 1 5J ot SV ] K2¥)
(e ) ()

n+l_ n
Yij U1

1
_2)\}12 n n 2 n n 2
ul . —ul . ult —ult .
2 i+1,j—-1 "i—1,j—1 j 4,j—1
\/E +( 2h ) +< h )

Introducing the notations:
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A Methods Not Requiring Evaluation of Derivatives

and solving for u;; + 1, we obtain:

2V 1+ﬁ(01+02+c3+04)

T n n n n
‘ [fw + 2z (Cluiﬂ,j + Uyl 3y syt C4ui,j71)]

We let ugj = fij- Then, we note that if m; < f;; < mo, for any 0 < 4, j < M, we have
m1 < ug'; < mg, for any n > 0. We use the above equation for u T for all interior points (z;, ;)

17‘7
such that 1 <4, 5 < M — 1.

The boundary condition can be implemented in the following way: if u;’; has been computed
using the above numerical scheme for 1 < i, 7 < M — 1, then we let ug’j = ufj, u?{m = u}bfl’j,
n

n — n n _ n n J— n n J— n n J— n n J—
Uio = Ui1s U pr = Uy pr—1o and ugo = uyy, Uo, v = U pm—10 Yaro = Unr—1,10 Y = Yr—1,m—1-

e The coefficient A\ has to be optimized for each image. Too small A will introduce too much
smoothing in the recovered image u. However, too large A will keep noise in the solution
u.

e Note that this scheme may introduce some asymmetry, but not visible in general. Other
schemes can be proposed, for instance alternating at each iteration the discretization of
the div operator, with all four (schematic) choices

> >
£8 |8 | 848
s
te ey
> >
et | et

— — —

Upwind Differences

Once f and V are defined at every grid point on the image pixel grid, we can apply numerical
methods to evolve f forward in time moving the diffusion across the grid. Updating f in time
consists of finding new values of f at every grid point after some time increment At. We denote
these new values of f by f"*! = f(#"*1), where "1 =" + At.

The first-order accurate methods for the time discritization of f; + Vf - V =0 is the forward
Euler method given by

fn+1__fn n
L L ivm. V= 0, A8
IR (A.8)
where V" is the given external velocity field at time t", and V f™ evaluates the gradient operator
using the values of f at time t".

Naively, one might evalute the spatial derivative of f in a straightforward manner using equa-

tion: first-order accurate forward difference % = fi%;ﬁ abbreviated as DT f, first-order accu-

rate backward difference % = % abbreviated as D~ f, or a second-order accurate central
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: of o, fixr1—fi—1
difference 3, ~ “= 1=

will fail.

abbreviated as D°f. However, this straightforward manner approach

One generally needs to exercise great care when numerically discretizing partial differential
equations. The Eq. A.8 in expanded form is,

fn+1 o fn

O w2 =0, (A.9)

and address the evaluation of the u” fI' term first. The techniques can be applied in a dimension-
by-dimension manner.

For simplicity, consider the one-dimensional version of Eq. A.9,

fn—i—l _ fn

i (A.10)

when the sign of 4™ indicates whether the values of f are moving to the right or to the left.
Since u” can be spatially varying, we focus on a specific gird point x;, when we write,

fn+1 _ fn " "

when (f,); denotes the spatial derivative of f at the point z;. If u; > 0, the values of f are moving
from left to right, and the method of characteristics tells us to look to the left of z; to determine
what value to f will land on the point z; at the end of a time step. Similarly, if u; < 0, the values
of f are moving from right to left, and the method of characteristics implied that we should look
to the right to determine an appropriate value of f; at time t"*1. Clearly, D~ f should be used
to approximate f, when u; > 0. In contrast, DT f can not possibly give a good approximation,
since it fails to contain the information to the left of x; that dictates the new value of f;. Similar
reasoning indicates that DT f should be used as approximate f, when u; < 0. This method of
choosing an approximation to the spatial derivatives based on the sign of u is known as upwind
differencing or upwinding. Generally, upwind methods approximate derivatives by biasing the
finite difference stencil in the direction where the characteristic information is coming from.

The upwind discretization is summarized as follows.

1. At each grid point, define f; as D~ f and f;" as DT f.
2. If w; > 0, approximate f, with f, . If u; < 0, approximate f, with f.I.

3. When u; = 0, the u;(f,); term vanishes, and f, does not need to be approximated.

This is a first-order accurate discretization of the spatial operator, since D~ f and D™ f are
first-order accurate approximations of the derivatives; i.e., the error are O(Ax).

The combination of the forward Euler time discretization with the upwind difference scheme
is a constant finite difference approximation to the partial differential equation, since the ap-
proximation error converges to zero as At — 0 and Ax — 0. According to the Lax-Richtmeyer
equivalence theorem a finite difference approximation to a linear partial differential equation is
convergent, i.e., the correct solution is obtained as At — 0 and At — 0, if and only if it is
both consistent and stable. Stability guarantees that small errors in the approximation are not
amplified as the solution is marched forward in time.
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B Proof of Data-Driven Image Diffusion
Functional

Given a blurred noise image formation model I = u + noise, we get an energy optimization
functional.

j(f(g)) = % /Q (u—1I)°dA+ Amin / é(x, Du)dA (B.1)

feBVNL2(Q) Jq

where u € BV (), Du = Vu.L"™ + D*u is a Radon measure, Vu is the density of the absolutely
continuous part of Du with respect to the n-dimensional Lebesgue measure, L™ and D%u is the
singular part referred to [69)].

A general convex linear-growth functional ¢ = ¢(Du) is proposed by [107]. A more general
functional has a variable exponent and ¢ = ¢(x, Du) [48]. More related work on linear growth
functionals and their flows are refer to [21], and alternate variational approach [39] reduces
staircasing by minimizing second order functionals.

Definition. For 2 C™, define

/ngﬁ(x,Dv) ::/ng(a:,Vv)dx—F/Q|st| (B.2)

where ¢ is defined in the following,

(gc) !qu |Vf| <p
¢(z,r)dA = 2 (@)1 A (B.3)
Ir| - 2 |VF > 8

Furthermore, denote
/gi)xDv /]v—I| dx (B.4)

— [o@Doy+ [ Jo-gldm! (B.5)
Q o0
and

Py, (v /¢ z, Dv) /\u—f| d:z—i—/ v — g|dH" ! (B.6)
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B Proof of Data-Driven Image Diffusion Functional

Remark. For simplicity, we assume that the threshold § =1 in (1.4) for all of our theoretical
results. We can establish lower semi-continuity of the functional ®4 [34]. The proof is presented
in the following,

LEMMA. Using the notation in definition,
D, (u) =, (v) (B.7)

for all uw € BV () where furthermore, ®, (u) is lower semi-continuous on L' (2); that is, if u;,
u € BV () satisfy u; — u in L' (Q) as j — oo, then @, (u) < liminfj_o D, (u;).

Proof. For each ¢ € C*(,R), u — [, —udivy) — x) ! |@Z)|‘I<Z> Tdx + [0 1 - ngdH" ! is contin-

uous and affine on LI(Q) Therefore, <I>g (u) is convex and lower semi-continuous on <I> (u) and
the domain of @, (u), ®, (u), is precisely BV ().

We now show that &, (u) = ®, (u). For u € BV (), we have that for each 1 € C" (Q,R"),

- / udivipdr = / Vu.pdz + / DSu.ap— / wp ngdH"
Q Q Q oN

Therefore, since the measures dz, D%u, and dH" ! are mutually singular, standard arguments
show that

—1 (x)
/ vy - A1 yqu?x>—1dx+/ | D54l +/ ju—gldf"!
Q q (X) Q o0
The proof is then complete once we establish that

do — oo ® -1 e B.
/(b(x,Vu) x sup wgl/Vuw e || a1 dx (B.8)

YeC! (QR")

Since any p € L> (£, R") can be approximated in measure by ¢ € C* (ﬁ, ]R"), we have that

—1 q(x)
sup / Vu.) — atd)—1 |th|aG=T dx: (B.9)
$eC (AR?) |¢I<1 q(x
—1 ()
— sup / vu p— & |p|q?x)71 dx
peL>=(QR) |p|<1 q(x

Choosing p (z) = 1{jvy<1} |V 2@ 1 |Vu| + 1{\Vu|>1} rvu]> Where 1p is the indicator function on
E, we see that the right hand side of Eq. B.10 is

z)—1
>/Qq()|vulq L{vu/>1y + [Wuf—q(q()m)} 1{VU|>1}d$=/Q¢(3«“7VU)d$ (B.10)

To show equality in Eq. B.8, we proceed as follows. For any p € L (ﬁ,”), since ¢ (x) > 1 we
q()
have that for almost all z, Vu (x) - p(z) < ﬁ V2@ + % lp (x )|q<r> T< o ]Vu\q
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In particular, if |Vu| <1,

1
< V4
@ [Vl

(B.11)

On the other hand, if [Vu| > 1 and |p| < 1, then since g (z) > 1 for almost all x we have that

Vu-p=|Vul Ff - p < [Vl [ + q(x Iﬂ\q@ Il and so

g(x)—1,  _a@_ 1 q(x)—1,  _a@_
Vu p— LI 2@ < [Vl + (V| — 1) B2 pjaeT
el 5 IVl (vl =) T )
-1
< \vu|—7q®)
q (x)

Combining Eq. B.10, Eq. B.11, and Eq. B.12, we have that

sup /Vu.w—cm]wlc&x—)ldx:/ﬂ¢(x,vwdx

PeC (QR™) |h|<1 /L

and so for all u € BV (Q), ®, (u) = &, (u), where &, is defined in Eq. B.5.

(B.12)
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C Proof of Fully Discrete Image Formation
Model

A stochastic model for the data recorded by the ijth pixel of a CCD array is given
D;; o< Poisson(gi;) + Normal(0,5?) (C.1)

The Poisson component models the photon count, while the additive Gaussian term accounts
for background noise in the recording electronics.

We consider the continuous image formation equation in a discrete manner. We denote a real-
ization of the random variable D;; by d;;. The n, x n, array d, whose components are the d;;’s,
is called the noisy blurred discrete image. For each index pair (,7), d(i,j) is a realization of
a Gaussian random variable with zero mean and variance o2 added to a realization of a Pois-
son random variable with mean and variance g;;. These random variables are assumed to be
independent of each other and independent of the random variables corresponding to the other
pixels.

Thus, the continuous image formation model can be denoted in a discrete form.

A fully discrete model may be obtained truncating the region of integration to be the discrete
union 2;; and each union has area Az x Ay, and let (z;,y;) denote the midpoint. we get a
discrete image formation model

Ngy—1 Ny—1 d
8ij = ZM:O o M=y =y fae ) + € (C.2)

The blurring process is sometimes assumed to be invariant under spatial translation. This means
that the PSF is linear invariant under spatial translation, we simplifies the computation. Since
the integral in

olz,y) = / / ha—a'y — o) f () da'dy +n(z,y) (C3)

can in principle compute the continuous image ¢ using the convolution theorem g =
F~'F(R)F(f). Here the continuous Fourier transform of a (possibly complex-valued) function f
defined R (d =2 for two-dimensional imaging) is given in a Fourier form. From g = F~'F(h)F(f),
one can derive the Fourier inversion formula f = F~1[F(g)/F(h)]. In this case, if F(h) takes
on zero values, the formula is not valid. If it takes on small non zero values, this reconstructed
f is unstable with respect to perturbations in the data g.

Discrete convolution product can then be given by

ng—1 ny—1
dij = Z Zyio ti—,u,j—lz,fu,u + Nij (C4)

u=0

with PSF t;; = h(iAz, jAy)AzAy. The Discrete convolution product defines a linear operator.

185



C Proof of Fully Discrete Image Formation Model

186



D Hausdorff Measure and Hausdorff Dimension

Given a real number @ > 0 we are going to define a Borel external measure H* on R" with
values in [0, +oc] which will comprehend and generalize the concepts of length (for a = 1), area
(v = 2) and volume (« = 3) of sets in R™. In particular if M C R™ is an m-dimensional regular
surface then one will show that H™ (M) is the m-dimensional area of M. However, being an
external measure, H" is defined not only on regular surfaces but on every subset of R™ thus
generalizing the concepts of length, area and volume. In particular, for m = n, it turns out that
the Hausdorff measure H" is nothing else than the Lebesgue measure of R”.

Given any fixed set E € R™ one can consider the measures H*(F) with « varying in [0, +-00].
We will see that for a fixed set E there exists at most one value « such that H*(E) is finite and
positive; while for every other value 3 one will have H?(E) = 0 if 3 > a and H?(E) = +oo if
8 < a. For example, if F is a regular 2-dimensional surface then only H2(E) (which is the area
of the surface) may possibly be finite and different from 0 while, for example, the volume of FE
will be 0 and the length of F will be infinite.

This can be used to define the dimension of a set (this is called the Hausdorff dimension). A
very interesting fact is the existence of sets with dimension which is not integer, as happens for
most fractals. Also, the measure H® is naturally defined on every metric space (X, d), not only
on R™ .

Definition D.0.2.0.1 Let (X,d) be a metric space. Given E C X, we define the diameter of

E as diam(E) := sup d(z,vy).
ryekl

Given a real number a, we consider the conventional constant

7.{.a/2

YT Pla/2 1)

where I'(x) is the gamma function, which can be thought of as the natural way to generalize the
concept of the factorial to non-integer arguments. The first gamma function was by Euler(1729).

For alld >0, >0 and B C X, let us define

o

o . diam(B;j) > . .
H$(E) := inf Zwa(Tj) . Bj € X, U Bj D E,diam(B;) < 6,¥j = 0,1,---
7=0 7=0
The infimum 1is taken over all possible enumerable families of sets By, B1, ..., Bj, ... which are

sufficiently small (diam(Bj) < 6) and which cover E.
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D Hausdorff Measure and Hausdorfl Dimension

Notice that the function H§(E) is decreasing in 6. In fact given &' > 0 the family of sequences
Bj considered in the definition of HS contains the family of sequence considered in the definition
of H§ and hence the infimum is smaller. So the limit in the following definition exists:

H3(E) = lim HE(E) (D.1)

The number H$(E) € [0,+00] is called a-dimensional Hausdorff measure of the set E € X.
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