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Summary. We consider a semiparametric regression model that relates a normal outcome to covariates
and a genetic pathway, where the covariate effects are modeled parametrically and the pathway effect of
multiple gene expressions is modeled parametrically or nonparametrically using least-squares kernel ma-
chines (LSKMs). This unified framework allows a flexible function for the joint effect of multiple genes
within a pathway by specifying a kernel function and allows for the possibility that each gene expression
effect might be nonlinear and the genes within the same pathway are likely to interact with each other in a
complicated way. This semiparametric model also makes it possible to test for the overall genetic pathway
effect. We show that the LSKM semiparametric regression can be formulated using a linear mixed model.
Estimation and inference hence can proceed within the linear mixed model framework using standard mixed
model software. Both the regression coefficients of the covariate effects and the LSKM estimator of the ge-
netic pathway effect can be obtained using the best linear unbiased predictor in the corresponding linear
mixed model formulation. The smoothing parameter and the kernel parameter can be estimated as variance
components using restricted maximum likelihood. A score test is developed to test for the genetic pathway
effect. Model/variable selection within the LSKM framework is discussed. The methods are illustrated using
a prostate cancer data set and evaluated using simulations.
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1. Introduction
Analysis of microarray data has been mainly focused on detec-
tion of individually significantly expressed genes (Efron et al.,
2001; Tusher, Tibshirani, and Chu, 2001). This approach has
some major limitations: (1) long list of individually signifi-
cant genes without a single encompassing theme is difficult
to interpret; (2) cellular processes often affect sets of genes
and individually highly ranked genes are often downstream
genes, so moderate changes in many genes may give more
insight into biological mechanisms than dramatic change in
a single gene (Mootha et al., 2003); (3) individually highly
ranked genes can be poorly annotated and are often not re-
producible across studies (Fortunel et al., 2003). Researchers
have now become more interested in knowledge-based studies
on gene sets, for example, genetic pathways that are more bio-
logically interpretable and reproducible (Goeman et al., 2005;
Subramanian et al., 2005).

A data example motivating the proposed research is the
data from the Michigan prostate cancer study (Dhanasekaran
et al., 2001). Prostate-specific antigen (PSA) has been

routinely used as a biomarker for screening prostate cancer.
Recently there have been significant breakthroughs in the
effort of finding candidate genes related to prostate cancer.
The early results of Dhanasekaran et al. (2001) indicate that
certain functional genetic pathways seemed dysregulated in
prostate cancer relative to noncancerous tissues. One is inter-
ested in studying the genetic pathway effects on PSA after
adjusting for effects of clinical and demographic covariates.
Due to the complicated unknown relationships between genes
and PSA, we propose a flexible framework to model the ge-
netic pathway effect parametrically or nonparametrically.

There is a vast literature on multidimensional nonparamet-
ric modeling. Methods such as multivariate kernel smooth-
ing (Wand and Jones, 1995), projection pursuit regression
(Friedman and Stuetzle, 1981), and multivariate adaptive re-
gression splines (MARS) (Friedman, 1991), are usually com-
putationally expensive. Popular spline-based methods include
generalized additive models (GAMs) (Hastie and Tibshirani,
1990), thin-plate splines (Wahba, 1990; Green and Silverman,
1994), penalized regression splines (Ruppert, Wand, and
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Carroll, 2004), and smoothing spline ANOVA (Gu, 2002).
These methods require the specification of the smoothness
condition of an unknown function using differentiability con-
ditions, which is much more involved and awkward in multi-
dimensional settings.

In the past decade, the kernel machine method has been
developed in machine learning as a powerful learning tech-
nique for multidimensional data (Vapnik, 1998; Schölkopf and
Smola, 2002; Suykens et al., 2002; Rasmussen and Williams,
2006). Popular examples of kernel machine methods include
support vector machine (SVM) (Vapnik, 1998) and Bayesian
Gaussian process (Rasmussen and Williams, 2006). In the
context of function approximation, kernel machine methods
and spline-based methods share a similar theoretical founda-
tion, but their model-fitting philosophies are different. Kernel
machine methods start with a kernel function that implicitly
determines the smoothness property of the unknown function.
By contrast, spline-based methods start with the smooth-
ness conditions of the unknown function and a corresponding
kernel function can usually be derived from these conditions
(Wahba, 1990). Kernel machine methods hence greatly sim-
plify specification of a nonparametric model, especially for
multidimensional data.

In this article, we propose a semiparametric model for co-
variate and genetic pathway effects on a continuous outcome
(e.g., PSA), where covariates effects are modeled paramet-
rically and genetic pathway effect is modeled parametri-
cally or nonparametrically using least-squares kernel machine
(LSKM). We establish a connection between LSKM and lin-
ear mixed models, and show that the LSKM estimator of the
regression coefficients and the pathway effect can be obtained
by fitting a linear mixed model. This connection provides a
unified framework for inference of parameters in models with
multidimensional covariates, including the regression coeffi-
cients, the nonparametric function, and smoothing param-
eters. Our work extends the connection between univariate
smoothing splines and linear mixed models (Speed, 1991;
Wang, 1998; Zhang et al., 1998) to multivariate smoothing
with an arbitrary kernel function. We also propose a score
test to test for the nonparametric genetic pathway effect,
and a model/variable selection method within the LSKM
framework.

The rest of the article is organized as follows. In Section 2,
we present the semiparametric model for Gaussian outcomes.
In Section 3, we describe the LSKM method. In Section 4,
we establish a connection between LSKMs and linear mixed
models and propose a score test for testing for the genetic
pathway effect. We discuss the variable selection problem in
LSKM in Section 5. The performance of the proposed method
is evaluated by simulations in Section 7, and is illustrated
using the prostate cancer microarray data in Section 6. The
article ends with a discussion in Section 8.

2. Semiparametric Model for Multidimensional Data
2.1 The Model
Suppose the data consist of n subjects. For subject i (i =
1, . . . ,n), yi is a normally distributed continuous outcome, xi

is a q × 1 vector of clinical covariates and zi is a p × 1 vector
of gene expressions within a pathway. We assume an inter-
cept is included in xi. The outcome yi depends on xi and zi

through the following partial linear model

yi = xT
i β + h(zi) + ei, (1)

where β is a q × 1 vector of regression coefficients, h(zi) is
an unknown centered smooth function, and the errors ei are
assumed to be independent and follow N(0, σ2).

Model (1) models covariate effects parametrically and the
pathway effect parametrically or nonparametrically. When
h(·) = 0, (1) reduces to the standard linear regression model.
When xi = 1, it reduces to LSKM regression (Suykens et al.,
2002).

2.2 Specifications of a Function Space of h(z) Using a Kernel
We assume the nonparametric function h(z) lies in a func-
tion space HK generated by a positive definite kernel function
K(· , ·). From Mercer’s theorem (Cristianini and Shawe-
Taylor, 2000), under some regularity conditions, a kernel
function K(· , ·) implicitly specifies a unique function space
spanned by a particular set of orthogonal basis functions
(features) {φj(z)}J

j=1. In other words, any h(z) ∈ HK can be

represented using a set of bases as h(z) =
∑J

j=1 ωjφj(z) =

φ(z)T ω (the primal representation), where ω is a vector of
coefficients. Equivalently, h(z) can also be represented using a

kernel function K(· , ·) as h(z) =
∑L

l=1 αlK(z∗
l ,z; ρ) (the dual

representation), for some integer L, some constants αl and
some {z∗

1, . . . , z
∗
L} ∈ Rp . For a multidimensional z, it is more

convenient to specify h(z) using the dual representation, be-
cause explicit basis functions or features might be complicated
to specify, and the number of features might be high or even
infinite.

Two popular kernel functions and the corresponding func-
tion spaces are as follows: (1) The dth Polynomial Kernel:
K(z1, z2) = (zT

1 z2 + ρ)d, where ρ and d are tuning pa-
rameters. The dth polynomial kernel generates the function
space HK spanned by all possible dth-order monomials of the
components of z. For example, if d = 1, the first polynomial
kernel generates the linear function space with basis functions
{φj(z)} = {z1, . . . , zp}. If d = 2, the second polynomial kernel
corresponds to the quadratic function space with basis func-
tions {φj(z)} = {zk , zk zk′ } (k, k′ = 1, . . . , p), that is, the main
effects, all two way interactions and quadratic main effects of
the zk’s. (2) The Gaussian Kernel: K(z1, z2) = exp{−||z1 −
z2||2/ρ}, where ||z1 − z2||2 =

∑p

k=1(z1k − z2k)2. The Gaussian
kernel generates the function space spanned by radial basis
functions. See Buhmann (2003) for their mathematical prop-
erties and desirable features. Examples of other choices of
kernel functions include the sigmoid and neural network ker-
nels, and the B-spline kernel (Schölkopf and Smola, 2002).
The choice of a kernel function determines which function
space one would like to use to approximate h(z).

3. LSKM Estimation in the Semiparametric Model
Assume h(·) ∈ HK , the function space generated by a kernel
function K(· , ·). Estimation of β and h(·) in (1) proceeds by
maximizing the scaled penalized likelihood function

J(h,β) = −1

2

n∑
i=1

{
yi − xT

i β − h(zi)
}2 − 1

2
λ‖h‖2

HK
, (2)

where λ is a tuning parameter which controls the tradeoff be-
tween goodness of fit and complexity of the model. When
λ = 0, the model interpolates the gene expression data,
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whereas when λ = ∞, the model reduces to a simple linear
model without h(·).

By the Representer theorem (Kimeldorf and Wahba, 1970),
the general solution for the nonparametric function h(·) in (2)
can be expressed as

h(·) =

n∑
i=1

αiK(·,zi), (3)

where α = (α1, . . . ,αn)T are unknown parameters. Substitut-
ing (3) back into (2) we have

J(β,α)

= −1

2

n∑
i=1

{
yi − xT

i β −
n∑

j=1

αjK(zi,zj)

}2

− 1

2
λαT Kα,

(4)

where K is an n × n matrix whose (i, j)th element is K(zi,
zj). Differentiating J(β,α) with respect to β and α, some
calculations give

β̂ = {XT (I + λ−1K)−1X}−1XT (I + λ−1K)−1y (5)

α̂ = λ−1(I + λ−1K)−1(y − Xβ̂), (6)

where X = (xT
1 , . . . , xT

n )T and y = (y1, . . . , yn)
T . Plugging

(6) into (3), we have that the function h(·) evaluated at the
design points (z1, . . . , zn)T is estimated as

ĥ = Kα̂ = λ−1K(I + λ−1K)−1(y − Xβ̂). (7)

Using (3) and (6), ĥ(·) at an arbitrary z is

ĥ(z) = λ−1{K(z,z1), . . . ,K(z,zn)}(I + λ−1K)−1(y − Xβ̂).

(8)

Equivalently, if h(z) = φ(z)T ω, where {φj(z)} are orthogo-
nal basis functions, the corresponding LSKM regression coef-
ficients ω̂ are

ω̂(z) = λ−1{φ(z1), . . . ,φ(zn)}(I + λ−1K)−1(y − Xβ̂). (9)

The kernel function K(· , ·) usually depends on an unknown
parameter ρ, such as the scale parameter in Gaussian kernel.
Inference on β̂, ĥ(z) depends on λ, ρ and the residual variance
σ2, which need to be estimated. Cross-validation can be used
to estimate λ; however, its computation is often intensive.
Little literature is available on the systematic estimation of ρ
and σ2. In the machine learning literature, ρ is often preset at
some fixed values. Further, estimation of σ2 needs to properly
account for the loss of degrees of freedom from estimating β
and h(·). Hence it is desirable to develop a systematic method
to estimate these parameters simultaneously. We accomplish
this by establishing a connection between LSKM and linear
mixed models.

4. LSKMs and Linear Mixed Models
4.1 Connection Between LSKMs and Linear Mixed Models
Linear mixed models have commonly been used for analyz-
ing longitudinal and hierarchical data (Harville, 1977; Laird
and Ware, 1982). A connection between smoothing splines
and linear mixed models has been established (Speed, 1991;
Wang, 1998; Zhang et al., 1998). We show here that the LSKM

estimator in model (1) corresponds to the best linear unbi-
ased predictor (BLUP) estimator from a linear mixed model,
and the regularization parameters (τ , ρ) and the residual
variance σ2 can be treated as variance components and es-
timated simultaneously using restricted maximum likelihood
(REML).

To see this connection, simple calculations show that β̂ and
ĥ from equations (5) and (7) can be equivalently obtained
from the equations

[
XT R−1X XT R−1

R−1X R−1 + (τK)−1

][
β

h

]
=

[
XT R−1y

R−1y

]
, (10)

where R = σ2I and τ = λ−1σ2. Equation (10) corresponds
exactly to the normal equation of the linear mixed model

y = Xβ + h + e, (11)

where β is a q × 1 vector of regression coefficients, h is an
n × 1 vector of random effects with distribution N(0, τK),
and e ∼ N(0, σ2I). A comparison of (11) with model (1) in-
dicates that they have exactly the same form except that h
is now treated as random effects. It follows that the BLUPs
of the regression coefficients β̂ and the random effects ĥ un-
der the linear mixed model (11) correspond to the LSKM
estimator given in Section 3. In fact, one can easily see that
the regression coefficient estimator β̂ in (5) is the weighted
least-squares estimator under the linear mixed model repre-
sentation (11) using the marginal covariance of y under (11)
as V = σ2I + τK, i.e., β̂ = (XT V −1X)−1XT V −1y.

The linear mixed model representation of the LSKM in
the semiparametric model (1) can also be considered as a
Bayesian Gaussian process regression (Schölkopf and Smola,
2002). Note that this Bayesian correspondence is finite-
dimensional (Wahba, 1990; Green and Silverman, 1994). It
is not strictly equivalent to a continuous Bayesian Gaussian
process (Rasmussen and Williams, 2006), because the finite-
dimensional representation of h(·) does not lead to a coher-
ent Bayesian model (Green and Silverman, 1994; Tipping,
2001; Sollich, 2002. To see the Bayesian representation, we
can treat {h(z)} as a random vector with a Gaussian process
(GP) prior, with mean 0 and covariance cov{h(z1), h(z2)}
= τK(z1, z2). Note that the positive definiteness of the ker-
nel function K(· , ·) ensures it is a proper covariance function.
Now we assume

y | (β, h(z)) ∼ N{xT β + h(z), σ2},

h(·) ∼ GP{0, τK(·, ·)}, β ∝ 1.

One can easily see that under this Bayesian model, the semi-
parametric model (1) becomes the linear mixed model rep-
resentation (11). This connection extends the connection be-
tween scalar smoothing splines and mixed models and their
Bayesian formulations (Wang, 1998; Zhang et al., 1998) to
multidimensional regression problems under the kernel ma-
chine framework.

The covariances of β̂ and ĥ(·) can be calculated in two
ways. The first approach is to treat the true h(·) as a fixed
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unknown function and the variance of yi as σ2. Using (5) and
(7), the covariances of β̂ and ĥ(·) are

covF (β̂) = σ2(XT V −1X)−1XV −1V −1X(XT V −1X)−1,

(12)

covF (ĥ) = σ2(τK)P 2(τK),

covF {ĥ(z)} = σ2
(
τKT

z

)
P 2(τKz) for arbitrary z,

(13)

where P = V −1 − V −1X(XT V −1X)−1XT V −1 and Kz =
{K(z, z1), . . . ,K(z, zn)}T for an arbitrary z. We term these
covariances as frequentist covariances.

The second approach is to use the linear mixed model rep-
resentation (11) and treat the true h(·) as a random func-
tion following the mean zero Gaussian process with covariance
τK(· , ·). The covariances of β̂ and ĥ(·) can then be calculated
as a byproduct of the covariance of the fixed and random ef-
fects of the linear mixed model (11) and are

covB(β̂) = (XT V −1X)−1, (14)

covB(ĥ) = cov(ĥ − h) = τK − (τK)P (τK), (15)

covB{ĥ(z)} = cov{ĥ(z) − h(z)}

= τK(z,z) − (τKz)P (τKz).

We term these covariances as Bayesian covariances.

4.2 Estimation of the Regularization Parameters
and the Residual Variance

We discuss in this section estimation of the regularization
parameter τ , the residual variance σ2 and the scale parameter
ρ in K(· , ·). Using the mixed model representation of LSKM,
we propose to estimate (τ , ρ, σ2) simultaneously by treating
them as variance components in the linear mixed model (11)
and estimating them using REML.

Specifically, the REML under the linear mixed model (11)
can be written as

�R(σ2, τ, ρ) = −1

2
log |V (θ)| − 1

2
log |XT V −1(θ)X|

− 1

2
(y − Xβ)T V −1(θ)(y − Xβ), (16)

where θ = (τ , ρ, σ2)T . The score equations of (τ , ρ, σ2) are

−1

2
tr(KP ) +

1

2
(y − Xβ̂)T V −1KV −1(y − Xβ̂) = 0,

−1

2
tr

{
τ
∂K

∂ρ
P

}
+

1

2
(y − Xβ̂)T V −1

×
(
τ
∂K

∂ρ

)
V −1(y − Xβ̂) = 0,

−1

2
tr(P ) +

1

2
(y − Xβ̂)T V −1V −1(y − Xβ̂) = 0, (17)

where P = V −1 − V −1X(XT V −1X)−1XT V −1. Let A de-
note the hat matrix so that XT β̂ + ĥ = Ay. Using the
identities V −1(y − Xβ) = {σ2}−1(y − XT β̂ − ĥ) and P =
{σ2}−1(I − A) (Harville, 1977), one can show using equa-

tion (17) that σ̂2 = {n− tr(A)}−1
∑n

i=1{yi − xT
i β̂ − ĥ(zi)}2.

Hence tr(A) represents the loss of degrees of freedom from

estimating β and h(·) when estimating σ2. The covariance of
θ̂ = (τ̂ , ρ̂, σ̂2) can be estimated using the information matrix

of the REML likelihood Iθlθl′ = 1
2 tr{P

∂V (θ)
∂θl

P ∂V (θ)
∂θl′

}.

4.3 Test for the Nonparametric Function
Because we are interested in the effect of a whole genetic path-
way rather than individual genes, it is of significant practical
interest to test H0 :h(z) = 0. In the PSA microarray example,
this tests for a genetic pathway effect on PSA controlling for
the effects of covariates. Assuming h(z) ∈ Hk, one can eas-
ily see from the linear mixed model representation (11) that
H0 :h(z) = 0 is equivalent to testing the variance component
τ as H0 : τ = 0 versus H1 : τ > 0. Note the null hypothesis
places τ on the boundary of the parameter space. Because
the kernel matrix K is not block diagonal, unlike the stan-
dard case considered by Self and Liang (1987), the likelihood
ratio for H0 : τ = 0 does not following a mixture χ2

0 and χ2
1.

We consider a score test in this article.
Zhang and Lin (2002) proposed a score test for H0 : τ = 0 to

compare a polynomial model with a smoothing spline. Unlike
the smoothing spline case, a general kernel function K(· , ·)
in LSKM might depend on an unknown scale parameter ρ.
However, for smoothing splines, K(· , ·) does not depend on
any unknown parameter. One can easily see from the linear
mixed model (11) that under H0 : τ = 0, the kernel matrix K
disappears, and hence the scale parameter ρ disappears and
becomes inestimable.

Davies (1987) studied the problem of a parameter disap-
pearing under H0 and proposed a score test by treating the
score statistic as a Gaussian process indexed by the nuisance
parameter and then obtaining an upper bound to approxi-
mate the p-value of the score test. This approach, however,
does not work for our setting due to the unboundedness of
the parameter space.

We here propose to test for H0 : τ = 0 using the score test by
fixing ρ and varying its value and examining sensitivity of the
score test for H0 : τ = 0 with respect to ρ. The REML version
of the score statistic of τ under H0 : τ = 0 can be written as
Qτ (β̂, σ̂2, ρ) − tr{P 0K(ρ)}, where β̂ and σ̂2 are the MLEs of
β and σ2 under the linear model yi = xiβ + ei , the model
under H0, P 0 = I − X(XT X)−1X, and

Qτ (β, σ2, ρ) =
1

2σ2 (y − Xβ)T K(ρ)(y − Xβ),

which is a quadratic function of y and follows a mixture of
chi-squares under H0.

Following Zhang and Lin (2002), for each fixed ρ, we use
the Satterthwaite method to approximate the distribution
of Qτ (·; ρ) by a scaled chi-square distribution κχ2

ν , where
the scale parameter κ and the degrees of freedom ν are
calculated by equating the mean and variance of Qτ (·; ρ)
and those of κχ2

ν . Specifically, one can show that κ = Ĩττ/2ẽ
and ν̃ = 2ẽ2/Ĩττ , where Ĩττ = Iττ − Iτσ2I−1

σ2σ2I
T
τσ2 , Iττ =

tr(P 0K(ρ))2/2, Iτσ2 = tr(P 0K(ρ)P 0)/2, and Iσ2σ2 = tr(P 2
0)/

2. ẽ = tr(P 0K)/2. Computation of the proposed score test is
quite simple, because one only needs to fit the simple linear
model yi = xT

i β + ei . We evaluate the performance of the
score test using simulations.
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5. Model Selection within the Kernel
Machine Framework

The kernel machine method requires a kernel function to be
explicitly specified. Section 2.2 provides wide choices of kernel
functions. A question of substantial interest is which kernel
function to choose. This kernel selection problem has much
broader implications. We consider two types of kernel selec-
tion problems. The first is to choose between different para-
metric and nonparametric models with different smoothness
properties. The second problem involves variable selection.

As stated in Section 2.2, a kernel function fully specifies a
function space HK where the unknown function h(·) resides.
Hence this function space determines the type of models used
to fit h(·). For example, a dth-degree polynomial kernel spec-
ifies a parametric model with dth order monomials; the ker-

nel K(s, u) =
∫ 1

0 (s− t)+(t− u)+dt specifies a cubic smoothing
spline model (Wahba, 1990); and the Gaussian kernel assumes
an infinitely smooth function. It is therefore clear that model
selection within the kernel machine framework is in fact a
special case of kernel selection.

Variable selection can also be treated as a kernel selection
problem within the kernel machine framework. For example,
let zp be a p-dimensional vector and zp′ a p′ dimensional sub-
vector of zp with p′ < p. Then two kinds of kernel functions
can be specified: one based on zp and another one based on
zp′ . The unknown function can then be fitted separately based
on each kernel. If the fitted curves are not “far away” from
each other, then the model using zp′ provides an equally good
but more parsimonious fit than that using zp. This demon-
strates that variable selection is also a special case of kernel
selection.

These discussions show that model selection is a very
interesting and important topic within the kernel machine
framework. However, little work has been done in this
area. We propose AIC and BIC as kernel selection crite-
ria within the kernel machine framework. Equations (5) and
(7) show that the estimated response ŷ can be expressed
as ŷ = Ay, where A = (I + λ−1K)−1[λ−1K + X{XT (I +
λ−1K)−1X}−1XT (I + λ−1K)−1] is the LSKM smoothing ma-
trix. Let r = trace(A) be the degree-of-freedom of the kernel
machine smoother A. We define the least squares kernel ma-
chine (KM) AIC and BIC as

KM AIC = n log(RSS) + 2r,

KM BIC = n log(RSS) + r log(n),

where RSS = (y − ŷ)T (y − ŷ). Models with smaller KM
AIC/KM BIC values are preferred.

6. Application to the Prostate Cancer Genetic
Pathway Data

We applied the proposed semiparametric model to the analy-
sis of prostate cancer genetic pathway data described in Sec-
tion 1. The data set contained 59 patients who were clinically
diagnosed with local or advanced prostate cancer. The objec-
tive of the study was to evaluate whether a genetic pathway
has an overall effect on PSA after adjusting for covariates.
We focus in this article on the cell growth pathway, which
contains five genes. The outcome was pre-surgery PSA level.
A log transformation was performed to make the normality

Table 1
Parameter estimates of the semiparametric model and the
score test for the genetic pathway effect for the PSA data
using the LSKM via the linear mixed model representation

Covariate Estimate SE p-value

Intercept −1.7722 1.1915 0.1425
Age 0.0177 0.0114 0.1259
Gleason 0.4461 0.1055 0.0001
τ 2.8182 3.7720 ·
ρ 6.3635 13.5708 ·
σ2 0.3712 0.0816 0.001

ρ S ν p-value

Score test for the genetic pathway effect H0 :h(z) = 0

3 31.010 14.924 0.0085
5 28.750 11.223 0.0028
10 26.598 8.295 0.0010
30 23.264 5.970 0.0007

assumption plausible. Two covariates included age and Glea-
son score, a well-established histological grading system for
prostate cancer.

The semiparametric model (1) provides a convenient frame-
work to evaluate the effect of the cell growth pathway on
PSA by allowing for complicated interactions among the genes
within the pathway. Specifically, we consider the model

log(PSA) = β0 + β1age + β2gleason + h(gene1, . . . , gene5) + e,

(18)

where h(·) is a nonparametric function and e ∼ N(0, σ2). We
fit this model using the LSKM method via the linear mixed
model representation (11) and using the Gaussian kernel in
estimating h(·). Under the linear mixed model representa-
tion, we estimated (β0, β1, β2) and h(·) using BLUPs, and
estimated the smoothing parameter τ , the kernel parameter
ρ and the residual variance σ2 simultaneously using REML.
The results are presented in Table 1, indicating Gleason score
was highly significant, while age was not.

We tested for the cell growth pathway effect on PSA,
H0 :h(z) = 0 versus H1 :h(z) ∈ HK using the score test de-
scribed in Section 4.3. Table 1 gives the score test statistics
and p-values for a range of ρ values. The p-values are not
sensitive to the choice of ρ and range from 0.0007 to 0.0085,
suggesting a strong cell growth pathway effect on PSA.

Even though the five genes are believed to function together
biologically, it is of interest to investigate whether there are a
small number of relatively important genes in the cell growth
pathway that most affect PSA. We investigated this problem
using the proposed variable selection method. An all-possible-
subset selection procedure of genes was performed using the
Gaussian kernel. The kernel machine AIC and BIC proposed
in Section 5 were used as the model selection criteria. The
result shows that the model with the lowest AIC and BIC
values is the one containing genes FGF2 and IGFBP1. The
detailed results are given in Web Table 1 in the Supplemen-
tary Materials. These two genes can be studied further in
laboratory settings to explore their detailed relationship with
PSA.
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7. Simulation Studies
7.1 Simulation Study for the Parameter Estimates
We conducted a simulation study to evaluate the performance
of the proposed LSKM estimation method for the semipara-
metric model (1) by fitting the linear mixed model (11). We
considered the following model

yi = xi + h(zi1, . . . , zip) + ei, (19)

where ei ∼ N(0, 1). To allow for xi and (zi1, . . . , zip) to be
correlated, xi was generated as xi = 3cos(zi1) + 2ui with
ui being independent of zi1 and following N(0, 1), zij (j =
1, . . . , p) were generated from Uniform(0, 1). The nonpara-
metric function h(·) was allowed to have a complex form with
nonlinear functions of the z’s and interactions among the z’s.
In our simulations, we first fit the model using the same set of
z’s as that in the true model. In practice, without advanced
knowledge, the true set of z’s is often unknown and the set of
z’s that is used might be larger than the true set and contains
some noisy z’s that are irrelevant to the outcome y. To mimic
such a scenario, in the second set of simulations, we added
some noisy z’s in the set of z’s and fit (19).

We considered four configurations by varying n (the sample
size) and p (the number of covariates z’s). For each setting,
only the Gaussian kernel is used and 300 simulations were
run.

Setting 1: n = 60, p = 5, true h(z) = 10cos(z1) − 15z2
2 +

10exp(−z3)z4 − 8sin(z5)cos(z3) + 20z1z5. Fit the model with
the five true z’s. This setting mimics the PSA data.

Setting 2: n = 100, p = 8, h(·) is the same as setting 1. Fit
the model (19) by including 3 additional irrelevant z6, z7, z8

besides the true z1, . . . , z5.
Setting 3: n = 200, p = 10, true h(z1, . . . , z10) = 10cos(z1) −

15z2
2 +10exp(−z3)z4 − 8sin(z5)cos(z3) + 20z1z5 +

9z6sin(z7) − 8cos(z6)z7 + 20z8sin(z9)sin(z10) − 15z3
8 −

10z8z9 − exp(z10)cos(z10). Fit the model assuming these 10
true z’s are used.

Table 2
Simulation results of estimated regression coefficients β and the nonparametric function h(·) in model

y = xβ + h(z) + e based on 300 runs. True β = 1 and true σ2 = 1

Model parameter estimates Reg of h on ĥ

Setting True # z Used # z n β σ2 ρ Intercept Slope R2

1 5 5 60 1.00 0.96 5.34a (estimated) −0.04 1.00 0.99
100 1.01 0.96 7.24 (estimated) −0.01 1.00 0.99
100 1.00 0.92 1.00 (fixed) −0.01 1.00 0.99
100 1.00 1.01 100.00 (fixed) −0.02 1.00 0.99

2 5 8 100 1.05 0.89 6.74 (estimated) 0.16 1.00 0.98
100 1.06 0.30 1.00 (fixed) 0.36 0.98 0.97
100 1.12 2.15 100.00 (fixed) 0.23 1.01 0.96

3 10 10 200 0.98 0.93 12.83 (estimated) −0.07 1.00 0.99
200 0.92 0.30 1.00 (fixed) −0.18 0.99 0.98
200 0.98 1.15 100.00 (fixed) −0.04 1.00 0.99

4 10 15 300 1.01 0.82 14.02 (estimated) 0.03 1.00 0.99
300 1.01 0.75 10.00 (fixed) 0.02 1.00 0.99
300 1.01 1.17 100.00 (fixed) 0.02 1.00 0.99

aAverage of the estimated ρ̂ from 300 simulations.

Setting 4: n = 300, p = 15, h(·) is the same as that in setting
3. Fit the model with additional 5 irrelevant noisy predictors
z11, . . . , z15 besides the true z1, . . . , z10.

The point estimate results are presented in Table 2. Be-
cause it is difficult to graphically display the fitted value of
h(·) as a function of z, we summarized the goodness of fit of
h(·) in the following way. For each simulation data set, we re-
gressed the true h on the fitted ĥ, both evaluated at the design
points. We then empirically summarized the goodness of fit of
ĥ(·) by reporting the average intercepts, slopes, and R2’s ob-
tained from these regressions over the 300 simulations. If the
intercept from this regression is close to zero and the slope is
close to one and R2 is close to one, it would provide empirical
evidence that the estimated multi-dimensional function h(·)
is close to the true manifold.

The results in Table 2 show that, when the true set of
z’s was included in fitting h(·) and all the model parameters
{β, h(·), τ , ρ, σ2} were estimated simultaneously, the LSKM
method via the mixed model framework performed well in
estimating β, h(·) and σ2. However, if the scale parameter
ρ in the Gaussian kernel was fixed, which is often done in
traditional machine learning, the model estimators could be
subject to considerable bias, especially for the estimate of σ2.
When ρ was fixed at values close to the estimated one, the
bias was small. Because in practice, ρ is unknown, our results
suggest it is useful to estimate the scale parameter ρ using
the data. When extra irrelevant covariates z’s besides the true
set of z’s were used in fitting h(·), the proposed method still
performed well if all model parameters were estimated.

Table 3 compares the estimated standard errors of β̂ using
the frequentist method (12) and the Bayesian method (14)
with the empirical ones. The results show that both the fre-
quentist and the Bayesian standard error estimates were close
to their empirical counterparts. Table 3 also compares the es-
timated standard errors of ĥ (including intercept) using the
frequentist method (13) and the Bayesian method (15) with
the empirical standard errors. For the ease of presentation, for
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Table 3
Simulation study results of standard error estimates of β̂ and ĥ(·) in model y = xβ +

h(z) + e based on 300 simulations

True Used Empirical Bayesian Frequentist

Setting # z # z n SE SE SE ρ

SEs of β̂

1 5 5 60 0.088 0.088 0.083 5.34 (estimated)
100 0.054 0.057 0.055 7.24 (estimated)
100 0.062 0.066 0.058 1.00 (fixed)
100 0.055 0.056 0.055 100.00 (fixed)

2 5 8 100 0.066 0.065 0.058 6.74 (estimated)
100 0.070 0.078 0.034 1.00 (fixed)
100 0.082 0.081 0.078 100.00 (fixed)

3 10 10 200 0.044 0.047 0.042 12.83 (estimated)
200 0.050 0.077 0.024 1.00 (fixed)
200 0.041 0.047 0.045 100.00 (fixed)

4 10 15 300 0.039 0.042 0.033 14.02 (estimated)
300 0.039 0.044 0.032 10.00 (fixed)
300 0.037 0.041 0.039 100.00 (fixed)

SEs of ĥ

1 5 5 60 0.635 0.662 0.601 5.34 (estimated)
100 0.482 0.515 0.464 7.24 (estimated)
100 0.614 0.664 0.576 1.00 (fixed)
100 0.458 0.470 0.456 100.00 (fixed)

2 5 8 100 0.662 0.683 0.604 6.74 (estimated)
100 0.933 0.540 0.449 1.00 (fixed)
100 0.741 0.731 0.645 100.00 (fixed)

3 10 10 200 0.606 0.667 0.583 12.83 (estimated)
200 0.954 0.541 0.450 1.00 (fixed)
200 0.559 0.630 0.596 100.00 (fixed)

4 10 15 300 0.712 0.721 0.636 14.02 (estimated)
300 0.737 0.717 0.634 10.00 (fixed)
300 0.632 0.732 0.684 100.00 (fixed)

each setting, we averaged the SE estimates across all the grid
points and presented these averages. The results show that
when the scale parameter ρ was estimated, both the frequen-
tist and the Bayesian standard error estimates were close to
their empirical counterparts. When the scale parameter was
fixed, the Bayesian and frequentist SEs were still close but
could be quite different from the empirical SEs. These results
further indicate that it is useful to estimate the scale param-
eter ρ in practice.

7.2 The Simulation Study for the Score Test
We next conducted a simulation study to evaluate the per-
formance of the proposed variance component score test for
H0 :h(·) = 0 versus H1 : h(·) ∈ Hk. The true model is the same
as (19), where x and z’s were generated in the same way
as that in Section 6.1 and h(z) = ah1(z), h1(z) = 2 cos(z1) −
3z2

2 + 2e−z3z4 − 1.6 sin(z5)cos(z3) + 4z1z5 and a = 0, 0.2, 0.4,
0.6, 0.8, 1. We studied the size of the test by generating data
under a = 0, and studied the power by increasing a. The ker-
nel parameter ρ was fixed at a wide range of values: 0.5, 1, 5,
10, 25, 50, 100, 200. The sample size was 60, mimicking the
PSA data example. For the size calculations, the number of
simulations was 2000, whereas for the power calculations, the
number of runs was 1000.

Table 4 reports the empirical size (a = 0) and power (a >
0) of the variance component score test for H0. The results

Table 4
Simulation results for the score test for H0: h(z) = 0

Size Power
Scale
ρ α = 0 α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

0.5 0.050 0.158 0.487 0.865 0.989 1.000
1 0.047 0.137 0.509 0.869 0.991 1.000
5 0.050 0.127 0.482 0.865 0.987 1.000
25 0.051 0.139 0.484 0.886 0.990 1.000
50 0.046 0.138 0.508 0.863 0.990 1.000
100 0.048 0.134 0.497 0.867 0.988 1.000
200 0.054 0.148 0.494 0.874 0.991 1.000

show that the size of the test was very close to the nominal
value 0.05 and was not sensitive to the choice of the scale
parameter ρ. As a increased, the power quickly approached
1. The power was not much affected by the value of ρ if a
moderate ρ was specified, but was more affected if a large
value of ρ was specified

7.3 The Simulation Study for Kernel Selection
A simulation study was also conducted to assess the perfor-
mance of kernel selection using the kernel machine AIC and
BIC criteria. The true model we considered is
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y = x + 10 cos(z1) + 3z2
2 + exp(z3/3)z4

+8cos(z5) + z5z2z1 + e,

where e ∼ N(0, 1), x was generated as x = 3 cos(z1) + 2u with
u being independent of z1. All u and zj (j = 1, . . . , 5) were gen-
erated from N(0, 1). The sample size was 50, and the number
of runs was 300. Three types of kernel functions were used in
the simulation: the Gaussian kernel K(u, v) = exp(−‖u −
v‖2/ρ), the second-degree polynomial kernel K(u, v) =
(uT v + 1)2, and the first-degree polynomial kernel that corre-
sponds to ridge regression K(u, v) = uT v. For each simulated
data set, the AIC and the BIC were calculated based on the
model with three different kernels.

The mean AIC and BIC across 300 simulations for the
Gaussian kernel are 190.79 (51.31) and 284.21 (50.21), re-
spectively (the numbers within parenthesis are standard
deviations), those for the second-degree polynomial kernel are
269.07 (10.00) and 308.91 (9.58), respectively, and those for
the ridge regression are 363.67 (2.63) and 371.61 (2.51), re-
spectively. The AIC and BIC values from each simulated data
set are plotted in Figures 1 and 2. These results show that the
kernel machine AIC and BIC of the model with Gaussian ker-
nel are the smallest, whereas those of ridge regression are the
largest. Hence the Gaussian kernel is preferred to both the
second-degree polynomial kernel and the ridge regression ker-
nel, which is desired in light of the complicated functional
forms of the x’s.

8. Discussion
In this article, we have developed the LSKM method for
semiparametric regression with Gaussian outcomes, where
we model the covariate effects parametrically and the ge-
netic pathway effect parametrically or nonparametrically.
The kernel machine method does not require an explicit
analytical specification of the smoothness conditions on
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Figure 1. Simulation result of model selection using
KMAIC .
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Figure 2. Simulation result of model selection using
KMBIC .

the nonparametric function and unifies the model building
procedure in both one- and multiple-dimensional settings.
Therefore, it is a more general and flexible method for multi-
dimensional smoothing.

A key contribution of this article is that we have established
a close connection between kernel machine methods and linear
mixed models and all the model parameters can be estimated
within the unified linear mixed model framework. This mixed
model connection greatly facilitates the estimation and infer-
ence for multidimensional nonparametric regressions and can
be easily implemented using familiar statistical software such
as SAS PROC MIXED or Splus NLME.

We proposed a score test for the genetic pathway effect.
This can be easily implemented using existing software. Al-
though it requires fixing the scale parameter ρ, our results
show that the test is not sensitive to the choice of ρ and has
good performance. Alternatively, a Bayesian approach, such
as the one proposed by Chen and Dunson (2003), might be
used. This method has the advantage that there is no need to
fix the scale parameter by proper prior specifications. How-
ever, its theoretical properties are unknown. It is of further
research interest to study the performance of this Bayesian
method and to develop better frequentist methods of testing
τ in the kernel machine setting.

Kernel selection within the kernel machine framework is an
important and complicated problem. It includes model selec-
tion and variable selection as special cases. In this article we
propose to use kernel machine AIC/BIC as kernel selection
criteria. Our simulation results show AIC/BIC performs well.
Further research is still needed to examine their theoretical
properties in detail before they can be adopted as a universal
criteria.

We have considered in this article a single nonparametric
function of multi-dimensional covariates. One could generate
the proposed semiparametric model to incorporate multiple
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multi-dimensional nonparametric functions. For example, if
one is interested in modeling multiple genetic pathway effects,
one could consider an semiparametric additive model

y = XT β + h1(z1) + · · · + hm(zm) + e,

where zj(j = 1, . . ., m) denotes a pj × 1 vector of genes in
the jth pathway and hj (·) denotes the nonparametric function
associated with the jth genetic pathway.

Machine learning is an emerging area of research in statis-
tics. The field has experienced a rapid development in the
past decade mainly by computer scientists dealing with multi-
dimensional data. It has shown increasing promises and wide
applications in biomedical research, especially in bioinformat-
ics. These techniques however are somewhat disconnected
with well-established biostatistical methods. Our effort of
establishing a close connection between LSKMs and linear
mixed models is an attempt to build a bridge between ker-
nel machines that are familiar to computer scientists but less
familiar to biostatisticians. This connection opens a door for
adopting other well-established statistical techniques used in
mixed models, such as Bayesian approaches, to handle multi-
dimensional data via the machine learning framework. It also
opens a new research direction for model/variable selection
methods within the kernel machine framework. Such an in-
terface is still in its infancy and has a lot of room for further
developments.

9. Supplementary Materials
The kernel machine AIC and BIC estimates of models con-
taining all the subsets of genes in the cell growth pathway for
the analysis of the prostate cancer data are given in Web
Table 1 at the Biometrics website http://www.tibs.org/

biometrics.
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