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ABSTRACT 

In this paper we prove that all positive eigenvalues of the Laplacian of  an arbitrary simple graph 
have some positive lower bounds. For a fixed integer k ~> 1 we call a graph without isolated vertices 
k-minimal if its kth greatest Laplacian eigenvalue reaches this lower bound, We describe all 1-minimal 
and 2-minimal graphs and we prove that for every k ~> 3 the path Pk+l on k + 1 vertices is the unique 
k-minimal graph. 

1. INTRODUCTION 

Let G be a simple graph on n vertices and the vertex set V(G) = {Vl . . . . .  vn}. 
Next, let A(G) = [aij] be its (0, l) adjacency matrix, and D(G) = diag(dl . . . . .  dn) 

be the diagonal matrix with degrees dl . . . . .  dn of  its vertices v] . . . . .  vn. Then 
L (G) = D(G) - A (G) is called the Laplacian matrix o f  the graph G. It is symmetric,  
singular and positive semidefinite. Its eigenvalues are all real and nonnegative and 
form the Laplacian spectrum {)~1 . . . . .  )~n } o f  the graph G. We shall always assume 
that )~1 ~> )~2 >~ - ' -  ~> )~n. It is well known that )~n = 0 and the multiplicity o f  0 is 
equal to the number  of  (connected) components  o f  G. The Laplacian eigenvalue 
)~n-l(G) of  any graph G on n vertices is called by M. Fiedler the algebraic 

connectivity of  G and denoted by a(G). It is known that a(G) > 0 if  and only if  
G is a connected graph. 

For any integer n ~> l, Pn is the path on n vertices. As is well known, the 
Laplacian spectrum of  the path Pn on n vertices reads {2(1 + cos ~ )  I i = 1 . . . . .  n}, 

E-mails: torgasev@matf.bg.ac.yu (A. Torgagev), petrovic@knez.uis.kg.ac.yu (M. Petrovid). 

589 



wherefrom a(Pn) = ) .n- l (Pn)  = 2(1 - cos nr-). For any k 6 N = {1, 2 . . . .  } denote: 

A k = a ( P k + l ) = 2  1--cos 

The Laplacian spectrum of  graphs is widely investigated in the literature, and 
some related papers are quoted in the list of  references. In the sequel we quote 
some known results which we shall use later. The most important result for us was 
proved by M. Fiedler in [5]. 

Theorem 1 [5]. For every connected graph G on n >~ 2 vertices 

(1) a(G)  = )~n-1 (G) >1 An-1. 

Equality holds in (1) i f  and only i f  G is the path Pn on n vertices. 

Theorem 2 [7]. l f  a graph H on m vertices is a subgraph (not necessary induced) 
o f  a graph G, then for each i = 1 . . . . .  m we have 

).i (H) <. )~i (G). 

Further we recall the notion of  the direct sum of  two graphs G1 and G2. If  G1 
is a graph whose vertex set is V(G1) and the edge set is E(G1) and G2 is a graph 
whose vertex set is V(G2) and the edge set is E(G2), and if V(G1) n V(G2) = ~, 
then their direct sum G1 4- G2 is the graph whose vertex set is V(G1) U V(G2) and 
the edge set is E(G1) U E(G2). It is well known that the Laplacian spectrum of the 
graph G1 4- G2 is the union of  Laplacian spectra of its summands G1 and G2. The 
last property is also true for any finite direct sum of  graphs G1 4-. . .  4- Gm (m ~ 2). 

If  Em (m ~> 0) is the void graph on m vertices, then for any graph G and any 
m/> 0, the positive Laplacian eigenvalues of  G and G 4- Em are the same. Hence, 
we shall always assume that all considered graphs have no isolated vertices. 

2. MAIN RESULTS 

Proposition 1. Let G be an arbitrary graph and )~k(G) > O for some k ~ N. 

(a) I f  G is a connected graph, then 

(2) )~k(G) ~> Ak, 

with equality in (2) at least for the path P~+I. 
(b) l f  G is a disconnected graph and k >~ 2 then )~k(G) > Ak. 

Proof. (a) First assume that G is a connected graph with n vertices and )~k(G) > 0. 
Then obviously n > k. Now it is easy to see that there is at least one connected 
graph Hk+l with k + 1 vertices which is an induced subgraph of  G. By Theorem 2 
we then have that 

(3) ~k(G) )/)~k(Hk+l). 
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Since I-Ik+l is a connected graph, Theorem 1 gives 

( 4 )  ~.k(nk+l) ~ Ak. 

Inequality (2) follows immediately from (3) and (4). 
The path Pk+l obviously satisfies equality in (2) for every k 6 N. 
(b) Next assume that G is a disconnected graph on n > k vertices, and ~k(G) > 0. 

Denote its components by G1 . . . . .  Gm (m >1 2). Since the Laplacian spectrum of  G 
is the union of  the Laplacian spectra of  the graphs G1 . . . . .  Gm, we conclude that 
there is some i ~< m and j ~< k such that X~(G) = )~j(Gi). We shall distinguish two 
cases. 

1 °. Xk(G) ~> 2. Then )~(G) ) A1 = 2 > Ak because k ) 2. 
2 °. )~k(G) < 2. In this case j < k because )~I(G1) . . . . .  ,kl(Gm) ~> A1 = 2, so by 

the statement (a) ,kk (G) = ,kj (Gi) >~ Aj > Ak. [] 

By inequality (2) we can say that for every integer k the interval (0, Ak) is 
"forbidden" for the Laplace eigenvalue )~k (G) of  any graph G of  order n = I a l  > k. 

Applying Proposition 1 to the complementary graph G of  a graph G, we can 
easily prove the following upper bound for the eigenvalue )~k (G). 

Corol lary 1. I f  a graph G of  ordern > k satisfies )~k(G) < n, then 

(5) Xk(G) <~ Bn,k = n -- An-k. 

Equality holds' in (5) if, for instance, G is isomorphic to the graph obtained by 
removing the path Pn-k+l from the complete graph Kn (n >~ 2). 

Note that condition )~k(G) < n in this corollary means that complementary graph 
has at most k connected components. 
By this corollary we see that interval (Bn,k, n) is also forbidden for the Laplace 

eigenvalue )~k(G) (k < n = LG[ >~ 2). 
In particular, taking k = 1 and k = n - 1 in (5) we get 

Jr  
)~I(G) ~< n - 2 + 2cos - -  (n ~> 2), 

n 

if)~l (G) < n, and 

)~n-l(G) ~< n - 2 (n >~ 2), 

if)~n-l(G) < n, that is i f G  is not the complete graph Kn on n vertices (n/> 2). 
Next we are interested in finding all graphs G which have the property )~k(G) -= 

Ak for a fixed k 6 N. We shall call a (connected or disconnected) graph G without 
isolated vertices k-minimal if)~k (G) = Ak. So, Pk+~ is at least one k-minimal graph. 
Since Ak > 0 it follows that each k-minimal graph G has the order [GI ~> k + 1. 

By Proposition 1 (b) every k-minimal graph is connected for every k ~> 2, but it is 
not necessary true for k = 1. We shall also see that k-minimal graphs are not unique 
f o r k =  1 andk = 2. 
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Proposition 2. All  1-minimal graphs are o f  the form K2 q- . . .  + K2 = mK2 for  

some m >~ 1. 

Proof. It is easy to see that any graph of the form G = mK2 (m >/ 1) satisfies 
)~I(G) = 2, so it is 1-minimal. 

Next we prove that mK2 (m >>. 1) are the only 1-minimal graphs. I f  G is 
a connected 1-minimal graph, then IGI = 2, because otherwise Zl(G) > 2, a 
contradiction. Therefore G = K2. I f  G is a disconnected 1-minimal graph and 
G1 . . . .  , Gm are its components, then G = G1 -~. . . ~- Gm and 

~.1 (G) = max{~.l ( 6 1 )  . . . . .  )L1 (am) } = 2. 

We conclude that )~1 ( G i ) =  2 (i = 1 . . . . .  m) and therefore Ga . . . . .  Gm = K2. 

Thus, G = mK2 for some m ~> 2. [] 

Proposition 3. A graph G is 2-minimal i f  and only i f  G is a star Kl,m (m >. 2). 

Proof. As is well known, the star Kl,m o n  m + 1 vertices has the Laplacian 
spectrum {m + 1 > 1 . . . . .  1 > 0}, SO ~.2(Kl ,m) = 1 for m/> 2. 

rn--1 
Conversely, let G be a 2-minimal graph. Then it is connected by Proposition l(b), 

and [al /> 3. Let d = d(G)  be the diameter of  G. 
I f d  = 1, then G = Kn (n >~ 3) and )~2(G) = )~2(Kn) ~> Zz(K3) > A2, which is a 

contradiction. 
I f  d />  3, then G contains the path P4 as an induced subgraph and )~2(G)/> 

)~2(P4) = 2 > A2, which is again a contradiction. 
Hence, we conclude that d = 2 and the proof is complete. [] 

Next proposition gives an important property of  k-minimal graphs (k/> 3). 

Proposition 4. I f G  is a k-minimalgraph (k >>. 3), then n = [G[ = k + 1. 

Proof. On the contrary, suppose that G is a k-minimal graph (k/> 3) and n = [G[ 
k + 2. Then G is connected by Proposition l(b), and there is a connected graph H~+2 
with k + 2 vertices which is an induced subgraph of  G. Let Tk+2 be a spanning tree 
of  the graph Hk+2. 

I f  Tk+2 is the star Kl,k+l, then 

)~k(G) >1 ~.k(Hk+2) >/)~k(Kl,k+l) = 1 > 2 -- V ~  = A3 >~ Ak, 

a contradiction. 
I f  Tk+2 # Kl,k+l then there is a bridge e in Tk+2 such that Tk+2 -- e = Tp q- Tq 

where Tp and Tq are subtrees on p and q vertices respectively, and p, q ~> 2, p + q = 
k + 2. Then 

)~k( G) >~ )~k(Tk +2) >/)~k(Tp q- Tq) = min{)~p_l (Tp), )~q-l (Tq) } 

/> m i n { a p _ l ,  aq-1} >/ak-1 > ak, 
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because p - 1, q - 1 ~< k - 1. But this again gives the contradiction Zk(G) > A~. 
Therefore n = I G I ~< k + 1. But since n ) k + 1, we finally get n = I GI = k + 1. [] 

By Proposition 4 we see that k-minimal graphs for k >/3 always lie in the class of  
graphs with k + 1 vertices, so )~k(G) of  such graphs coincides with their algebraic 
connectivities. 

Theorem 2 and Proposition 4 finally give: 

Proposit ion 5. For every integer k >7 3, the path P~+I /s the unique k-minimal 
graph. 
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