
ELSEVIER Theoretical Computer Science 164 (1996) 107-122

Theoretical
Computer Science

Reliable computations on faulty EREW PRAM

Krzysztof Diks a,b,*, Andrzej Pelt b~l

a Instytut Informatyki, Vniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland
b D$artement d’lnformatique. Vniversitt du Quebec ri Hull, Hull, Quebec J8X 3X7, Canada

Received July 1994; revised June 1995
Communicated by M. Crochemore

Abstract

We consider the problem of efficient and reliable computing on EREW PRAM whose pro-
cessors are subject to random independent stop-failures with constant probability p < 1. An
algorithm for such a fault-prone machine is called safe if it solves a problem of size n with
probability exceeding 1 - d/n, for some constant d independent of n. Our main contribution
is a safe algorithm for the well-known list ranking problem, working in time O(logn) on an
O(n log n)-processor EREW PRAM. We also show an optimal safe algorithm for computing pre-
fix sums, which works in time O(log n) on an O(n/ log n)-processor EREW PRAM. The methods
presented in this paper can be applied to a wide class of EREW PRAM algorithms making them
safe and simultaneously preserving their complexity.

1. Introduction

Important computation speed-ups permitted by massively parallel systems yield grow-

ing interest in efficient parallel algorithms. However, as the number of inexpensive

general-purpose processors is increased to cope with problems of growing. size, the

number of potentially faulty processors grows accordingly. Parallel algorithms designed

for fundamental computational problems in recent years (cf. [3,5,7,9]) tend to use

available processors very efficiently, leaving few of them idle at each step of execu-

tion. Such algorithms allow very restricted redundancy and consequently are usually

fault sensitive: failures of even few processors can cause incorrect algorithm execution.

This yields the need for parallel algorithms combining speed with reliability: the algo-

rithm should be efficient and at the same time work correctly if a reasonable number

of processors fail.

* Correspondence address: Institute of Infotmatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland.
Email: diks@mimuw.edu.pl.
Research supported in part by NSERC International Fellowship and grant KBN.
’ Research supported in part by NSERC grant OGP 0008136.

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
XSDZ 0304-3975(95)00186-7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82525556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

108 K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

Recently, many authors have constructed fast and reliable parallel algorithms for im-

portant computaional problems, or even designed efficient and robust simulation tech-

niques to transform any algorithm working in a fault-free environment into a reliable

one working in a fault-prone system [8, 10, 11,14,15]. In all those papers the CRCW

PRAM model of computation was adopted, while algorithms were supposed to work

correctly even if only one processor remained fault-free. In [10, 111 a probabilistic fault

model was used while efficiency criteria were expected execution time and expected

work of proposed algorithms. It should be noted that algorithm complexities obtained

in the above papers cannot be achieved with restricted concurrency, e.g. in the CREW

PRAM or EREW PRAM models: concurrent write plays an essential role in providing

necessary redundancy without increasing time.

In this paper reliable computations on a faulty EREW PRAM are studied for the

first time. We assume that processors are subject to random independent stop-failures

with constant probability p < 1. We seek algorithms which solve correctly a problem

of size n with probability exceeding 1 - d/n for some constant d independent of n.
Such algorithms are called safe. We consider two fundamental problems in parallel

computations (cf. [5,7]): list ranking (for a list given in array S[l.. n] where S[i] is

the number of the predecessor of i in the list, compute the distance of each i from

the beginning of the list) and prejix sums (for a sequence of numbers (al,. . . , a,)

compute the sequence (bi,. . . , b,), where bi = al + . . . + ai). Our main contribution is

a safe algorithm for the list ranking problem working in time O(log n) on an O(n log n)-
processor EREW PRAM. We simulate the well-known pointer jumping algorithm using

expander graphs to schedule processors’ allocation. (Our solution was inspired by the

paper [2] of Assaf and Upfal where expanders are used to construct fault-tolerant sorting

networks.) Then we apply this algorithm to get a safe solution to the prefix sums

problem in time O(logn) on an O(n/logn)-processor EREW PRAM. The methods

presented in the paper can be applied to many other EREW PRAM algorithms (e.g.

for expression evaluation, sorting, matrix multiplication) making them safe without

increasing their running time and with the number of processors increased at most by

logarithmic factor.

The paper is organized as follows. Section 2 contains precise model description

and preliminary notions and facts used in the paper. In Section 3 we present a safe

algorithm for the list ranking problem and in Section 4 we use it to solve the prefix

sums problem in the presence of processor failures. Section 5 contains conclusions.

2. Model description and preliminaries

We work in the PRAM (Parallel Random Access Machine) model introduced by

Fortune and Wyllie [4] and universally accepted as a model of synchronous parallel

computations (cf. [3,5,7,9]). In a PRAM, many processors each of which is a RAM,

execute the same program in a synchronous way. Every processor has a positive in-

teger identifier which can be used as a parameter of the program; hence, the actions

K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 109

of different processors in program execution may differ, depending on their identifiers.

Processors communicate through a shared memory from which they read data and to

which they write results of local computations. In a unit of time a processor can access

(read or write from/to) one memory cell. In this paper we use the most restrictive “Ex-

clusive Read Exclusive Write” (EREW) variant of PRAM. In EREW PRAM different

processors cannot attempt accessing the same memory cell at the same time.

We assume that processors may fail at each step of algorithm execution. Failures

are independent, occur with probability p < 1 for each processor, and are of fail-stop

type (cf. [8, 10, 11, 13-151): a failed processor stops working and never restarts again.

We assume that the action of writing to shared memory is atomic with respect to

faults, i.e. a processor does not fail in the process of writing. Such fail-stop processor

behavior with atomic computation steps is a realistic approximation of faults occurring

in practice (cf. [13]). A PRAM in which processors are subject to random failures is

called unreliable, a PRAM with all fault-free processors is called ideal.

Let A be an algorithm solving problem P of size n on a k-processor ideal EREW

PRAM. The algorithm A is called safe if it solves P on a k-processor unreliable EREW

PRAM M’ with probability R(A,n) > 1 - d/n, where d is a constant independent of

n. The probability R(A,n) is called reliability of A (for size n).

In this paper all logarithms are taken with base 2. For an event E, ,!? denotes its

complement, while for a set X, 1x1 denotes its size.

In our probabilistic considerations we use the following versions of Chemoff bound

(cf. [61).

Lemma 1. Let S be the number of successes in a series of m Bernoulli trials with
success probability q. Then

(a) Pr(S>r)d2-‘, for r36qm;

(b) Pr(S < (1 - &)mq) d e&‘q/2, for each 0 < E < 1.

A bipartite graph G = (A,B,E) is called an (a, j?,m,d)-expander if IAl = IBI = m,
the degree of each node of G is d and, for every set of nodes X c A such that IX I < am,

we have Ir(X)l>/BlXl, h w ere T(X) is the set of all neighbors of nodes from X. The

following theorem was proved in [2] as a consequence of the construction given in

WI.

Theorem 1. For all 0 < CI < 1 and p > 0 such that c$ < 1, there is an explicit
construction of an (a, p, m, d)-expander with d d 8/?(1 - c()/(1 - a/?).

Corollary 1. For every 0 < 1 < i there exist constants a,1 satisfying 2(i + CC) <

CX$ < 1 and such that an (a, /3, m,d)-expander with d 6 S/3(1 - a)/(1 - @) can be
explicitly constructed.

Proof. Take a positive a < $ - ,l and p = 2 + 1/2a. Then

2(~+a)<2(~+cc)=rX~<2(~+~-3~)<1. 0

110 K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

3. List ranking

The problem of list ranking is one of the fundamental problems appearing in the
construction of efficient parallel algorithms (cf. [5,7]). Consider a list L consisting of
n nodes labeled by integers 1,. . . , n. Their order in the list is given in an array S such

that S[i] contains a pointer to the predecessor of i in the list, for all i<n, except the
first element of the list, where S[first] = 0. The problem of list ranking consists in
computing the distance of each node of the list from its beginning, i.e. computing an
array R of integers, such that R[Jirst] = 0 and R[i] = R[S[i]] + 1, for i # $rst. This
problem can be solved optimally in time O(logn) on an O(n/ log n)-processor ideal
EREW PRAM (cf. [l]),

In this section we present a safe algorithm for list ranking, working in time O(logn)
on an O(n logn)-processor unreliable EREW PRAM, for any probability p < 1 of
processor failure. We will simulate the well-known pointer jumping algorithm. This
algorithm is suboptimal: it works in time O(logn) on an n-processor ideal EREW
PRAM (cf. [7]). We first recall the pointer jumping method in a version suitable for

easy simulation.
The input is the array S[l.. n] and the output is the array R[1.. n], as defined above.

We give the algorithm for processor pi, i = 1,. . . , n. Two auxiliary arrays Q[1.. n] and
T[l.. n] will be used. Pointer jumping will be performed in Q, while T[i] contains a
time stamp indicating the last update concerning node i. Array T is not necessary for
list ranking executed on an ideal PRAM but it will be used in the construction of a
safe algorithm working in the presence of faults. For nodes i,j, dist(i,j) denotes the
distance in the list between nodes i and j.

Algorithm I (* List Ranking Using Pointer Jumping *)
(*stage 1: initialization *)

if S[i] # 0 then

else

R[i] := 1; Q[i] := S[i]; T[i] := 1

R[i] := 0; Q[i] := i; T[i] := n

fi;
(*stage 2: pointer jumping *)

for step := 1 to rlognl do
(* invariants:
invl - T[i] E {step,n};
inv2 - T[i] = n + Q[i] =$rst;

inv3 - Q[i] preceds i in the list and dist(i,Q[i]) = R[i];

inv4 - Q[i] #$rst + dist(i,Q[i]) = 2sfep-‘. *)

rl := R[i]; q1 := Q[i]; tl := T[i];
if tl = step then

rz := Nqll; q2 := Qiqll; tz := Uqll;
R[i] := r1 + r2; Q[i] := q2;

KDiks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 111

if t2 = n then T[i] := n else T[i] := step + 1

fi

od

end (* of the algorithm *).

It is easy to see that invl, inv2, inv3 and inv4 are indeed invariants of the for loop

in stage 2. This implies

Lemma 2. Algorithm I solves correctly the list ranking problem in time O(logn) on
an n-processor ideal EREW PRAM.

We now describe Algorithm II (Reliable List Ranking) which is a safe simulation

of Algorithm I, working on unreliable EREW PRAM. First suppose that processor

failure probability p is less than &. We will show later how this assumption can be

dropped. Let 1 = 6p, c = 2/i, and m = [c lognl. Algorithm II uses nm processors

pi.j, i = 1 ,...,n, j = 0 ,..., m - 1. Let Pi = {pi,j : Odj<m - 1). Processors from

Pi collectively simulate actions of processor pi in Algorithm I. The choice of m will

guarantee that many processors in each Pi remain fault-free during the entire algorithm

execution, with high probability. Thus, in the CRCW PRAM model it would suffice

that every processor from Pi simply execute all actions of processor pi in Algorithm

I; however, in the EREW PRAM model simultaneous access to the same memory cell

by many processors is forbidden, hence this simplistic idea does not work. Similarly,

it would be easy to simulate Algorithm I on the EREW PRAM with a logarithmic

slowdown; our algorithm, however, works on nm processors in time O(logn).

Algorithm II has the same input and output as Algorithm I. It uses two-dimensional

arrays RR, QQ and TT (with n rows corresponding to nodes of the list and m columns

numbered 0 , . . . , m - 1) which play the same role as their one-dimesional counterparts

R, Q and T in Algorithm I. The main idea of our simulation is that after executing

corresponding steps in both algorithms, many terms of the ith row of RR (resp. QQ

and TT) be equal R[i] (resp. Q[i] and T[i]), even though some processors fail during

the execution of Algorithm II.

Algorithm II works in three stages: initialization, pointer jumping and result report-
ing. The first two stages correspond exactly to the respective stages of Algorithm I.

In stage 3 results of computations are transfered from array RR to the output array

R.
We give the algorithm for processor pi,i, 1 <i bn, 0 <j <m - 1, from the set Pi.

Stage I - initialization

Arrays RR, QQ and TT are initialized so that elements of their ith rows are copies

of R[i],Q[i] and T[i], respectively, after intialization in Algorithm I. The ith row in

each array is initialized by processors from Pi in m steps. Every processor initializes

each element of the row. In order to avoid access conflicts, this is done in a round-

robin fashion. The following procedure is a formal description of this stage for pro-

cessor pi, j.

112 K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

procedure initialize(i,j);

(* preprocessing *)

for k:=O to m- 1 do

if j = k then q := S[i];

if q = 0 then (* i =Jirst *)

t:=n;r:=O

else

t := 1; Y := 1

fi;
(* proper initialization *)

for k:=O tom- 1 do

RR[i, (j + k)mod m] := r;

QQ[i, (j + k)mod m] := q;

TT[i,(j + k)modm] := t

od

end (* of the procedure *).

It is easy to see that if at least one processor in each set Pi remains fault-free after

execution of the above procedure then, for all 1 d i <It and 0 <j <m - 1, RR[i, j] =

R[i], QQ[i, j] = Q[i] and TT[i,j] = T[i] after initializations in Algorithms I and II.

Stage 2 - pointer jumping

This is a simulation of Stage 2 of Algorithm I. In every execution of its for loop,

processor pi reads at most two triples of data: (~l,ql, tl) from R[i], Q[i] and T[i],

respectively, and (r~,q2, t2) from R[ql], Q[ql] and T[ql], respectively. If necessary,

processor pi writes new data (71 + r2,q2, t) in R[i], Q[i] and T[i], respectively.

In Algorithm II, every processor pi,j E Pi acts similarly but instead of reading one

triple of data from rows i of RR, QQ and TT and one triple of data from rows q1

of these arrays, it reads a constant number of triples from rows i and 41, and accepts

those with the largest time stamp t (most recently updated). If accepted triples have

the same time stamps as corresponding triples in Algorithm I, processor pi,j performs

the same computations as pi in Algorithm I and writes their results in RR[i, j], QQ[i,j]

and TT[i,j]. The choice of triples read by pi,j is given by a fixed (a,p,m,d)-expander

G = (A,B,E) (where A = (~0, . . . , x,,_l},B = (~0,. . .,y,,+l}), such that CI and /? satisfy

assumptions of Corollary 1. Let El, . . . , Ed be a partition of all links from E into d

perfect matchings. For all 06 j<m - 1,1 dk<d, let a(j, k) be such that (Xj,y,(j,k)) E

Ek. Without loss of generality assume a(j, 1) = j for every j = 0,. . . , m - 1. If

processor pi,j has to read triples of data from sth rows of arrays RR, QQ and TT,

it reads consecutive terms a(j, 1), . . . , a(j, d) of these rows and keeps the triple with

highest time stamp t. Since indices a(j, 1), . . . , a(j,d) are given by matchings, access

conflicts are avoided. The following procedure formalizes the action of getting data by

processor pi,j from rows s of the respective arrays:

K.Diks, A. PelcITheoretical Computer Science 164 (1996) 107-122 113

procedure get_data(i, j; s; r, q, t);

t := 0;

for k := 1 to d do

if TT[s, a(j, k)] > t then

r := RR[s,a(j,k)];

q := QQb, 4.Lk)l;
t := TT[s,a(j,k)]

fi

end (* of the procedure *).

The simulation of pi’s behavior by processor pi,j is performed by the following

procedure:

procedure rank(i,j);

for step := 1 to [log n1 do

(* invariant INV: for all l<ubn,Odv<m - 1,

TT[u, u] >step + TT[u, u] = T[u],RR[u, u] = R[u], QQ[u, o] = Q[u],

where values of T, R, Q are taken just before execution number step

of the for loop in stage 2 of Algorithm I. *)

get_data(i, j; i; rl , 41, tl);

if tl = step then

gct_data(i,j;ql;r2,q2,t2);
if t2 astep then

QQ[i,j] := q2; RR[i,j] := rl + r2;

if t2 = n then TT[i,j] := n else TT[i,j] := step + 1

fi

fi

od

end (* of the procedure *).

The following example shows the execution of a particular iteration of the loop in

procedure rank(i, j).

Example. Suppose that the length n of the list is 1024, m = 30, the vertex degree

d of the expander G is 5, and the function a is such that ~(10, 1) = 10, a(10,2) =

15, u(10,3) = 7, a(10,4) = 25, u(10,5) = 18. Consider node 100 on the list with

distance from the head larger than 32 and assume that processor plo~,lo does not fail

during the first five iterations of the procedure rank. Suppose that before the fifth

iteration

114 K.Diks, A. PelcITheoretical Computer Science I64 (1996) 107-122

TT[lOO, lo] = 5, TT[lOO, 151 = 3, TT[lOO, 71 = 5,

TT[lOO, 251 = 5, TT[lOO, 181 = 1;

QQ[lOO, lo] = 500, QQ[lOO, 151 = 70, QQ[lOO, 71 = 500,

QQ[lOO, 251 = 500, QQ[lOO, 181 = 200;

RR[lOO, lo] = 16, RR[lOO, 151 = 8, RR[lOO, 71 = 16, RR[lOO, 251 = 16,

ZM[lOO, 181 = 1;

TT[500, lo] = 2, TT[500, 151 = 5, TT[500,7] = 1, TT[500, 251 = 5,

TT[500, 181 = 5;

QQ[500, lo] = 30, QQ[500, 151 = 40, QQ[500,7] = 600,

QQ[500, 251 = 40, QQ[500, 181 = 40;

RR[500, lo] = 4, RR[500, 151 = 16, RR[500,7] = 2, RR[500, 251 = 16,

RR[500, 181 = 16.

(Up to date data are bold faced.) During the fifth iteration processor pl00,10 reads five

triples from columns 10, 15, 7, 25, 18 in rows with index 100 of arrays QQ, RR, TT
and stores the triple with the largest TT, i.e. (91 = 500,rl = 16, tl = 5). Since tl = 5,

processor plo~,l~ reads the next five triples from columns 10, 15, 7, 25, 18 in rows

with index 500 of arrays QQ, RR, TT and again it accepts the one with the largest

TT, i.e. q2 = 40, r2 = l6,t2 = 5. Finally, it sets QQ[lOO, lo] = 4O,RR[lOO,lO] =

32, TT[lOO, lo] = 6.

Stage 3 - result reporting
Correct results from array RR, those for which the corresponding value TT is n, are

copied into the output array R. Stage 3 is executed in a round-robin fashion, similarly

as Stage 1, using the following procedure:

procedure finalLresult(i,j);

for k:=O tom- 1 do

if TT[i,(j + k)modm] = n then

r := RR[i, (j + k)mod m];

for k := 0 to m - 1 do

if j = k then

R[i] := r

end (* of the procedure *).

Now the entire algorithm for processor pi,j can be formulated as follows:

Algorithm II (* Reliable List Ranking *)

initialize(i,j);

rank(i,j);

final-result(i, j)

end (* of the algorithm *).

K. Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 115

Procedure initialize works in time O(m), procedure rank works in time O(logn) and

procedure finalLresult works in time O(m). Hence, Algorithm II works in time O(logn).

It uses nm E O(n log n) processors.

We now prove that Algorithm II is a safe solution of the list ranking problem.

Lemma 3. Let E be the event that every set Pi, for ibn, contains at least (1 -

,?)m processors which remain fault-free during the execution of Algorithm II. Then

Pr(E)> 1 - l/n, for sz@iciently large n.

Proof. Lemma 1 implies

1
Pr(E) < n2+prn < n2-6pc log ’ = -. cl

n

In all further considerations in this section we assume that E holds. Thus, after

initializations in Algorithms I and II we have

TT[i,j] = T[i], RR[i,j] = R[i], QQ[i,j] = Q[i]

for all 1 <i<n and O<j<m - 1.

We now prove that INV is indeed an invariant of the for loop in procedure rank.

For s = 1,. . . , [logn] + 1 let TT’[u,v] (RRs[u,v],QQ[u,v]) be values of TT[u,v]

(RR[u,v],QQ[u,v]) before the sth execution of the for loop in the procedure rank (if

s = [log nl + 1, we consider the value after the last execution of the loop). TS[u],RS[u]

and Q[u] are defined similarly, with respect to the for loop in Algorithm I.

Lemma 4. Foreverys= l,...,[lognl+l anduEl lbu<n,Odvdm-1 thefollowing

holds:

TTS[u,v] >s =+ TT’[u, v] = T”[u], RRS[u, v] = RS[u], Q@[u, v] = @[u]. (*)

Proof. Induction on s:

Since event E holds, (*) is satisfied for s = 1 (after initialization). Assume that

it is satisfied for some s; we will prove that it is satisfied for s + 1 (after the sth

execution of the loop). Fix a pair (u, u). During the sth execution of the loop values

of QQ[u,v],RR[u,v] and TT[u,v] can be changed only by processor p,,+ and they are

changed in this order: the time stamp is changed last. If pa,+ fails before executing the

assignment for Z’T[u,v] in the sth execution of the loop then either TT’[u, u] ,<s and

TT’+‘[u,v] < s+ 1 or TT’[u,v] = TTSf’[u,v] = n. In the first case, (*) holds for sf 1

because the assumption is not satisfied; in the second case no values are changed in

both algorithms:

QQ”+’ [u, 01 = QQ%, 01 = C?[ul = eS+’ lul,

RR”+‘[u, u] = RRS[u, v] = RS[u] = RS+‘[u],

hence (*) holds as well. Thus, we may assume that pU,+ remains fault-free during the

entire sth execution of the loop.

116 K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

First, p u,v gets the triple (ri,ql, tl). Consider three cases:

1. ti < s: In this case the data got by pu,” are not up to date. In particular, TT’[u, v] <

s. Thus, p,,+ does not change the value of TT[u, v] in this execution of the loop and

consequently (*) remains true for s + 1.

2. tl = s: It follows from the description of Algorithm II that TTS[u,v] <s. Since

ti = s, pu+ gets the second triple (r2,q2, t2) and behaves differently depending on the

value of t2:

(a) tz < s. The values read by pu,” are not up to date. Processor pu,V does not change

values of TT[u, v],RR[u, v] and QQ[u, v] and (*) remains true for s + 1.

(b) t2 2s. In view of (*) for s and of the description of Algorithm II, pu,+ modi-

fies the triple (QQ[u, v], RR[u, v], TT[u, v]) in the same way as pu modifies the triple

(Q[u],R[u], T[u]). Hence (*) remains true for s + 1.

3. tl > s: In view of (*) for s and of the description of Algorithm II we get tl = n

and either TT’[u, v] < s or TT’[u, v] = n. Processor p,,+ does not change the value of

TT[u,v]. If TT’[u,v] < s then TTS+‘[u,v] < s + 1 and hence values of QQ[u,v] and

RR[u, v] remain unchanged. If TTS[u, v] = n then TTs+‘[u,v] = n = T’+‘[u] and

Qe”+%, VI = QQTu, VI = QYul = Qsfl [ul,

RR’+l [u, v] = RR’[u, v] = RS[u] = R’+‘[u].

Hence, also in this case, (*) holds for s + 1. 0

Lemma 5. There are no conjCcts of access to the shared memory in the execution

of Algorithm II.

Proof. It is easy to see that access conflicts do not arise in Stages 1 and 3. In Stage 2

processors from Pi read data from the uth rows of arrays RR, QQ, TT in a given step

of Algorithm II iff processor pi reads data from R[u], Q[u], T[u] in the corresponding

step of Algorithm I. Since Algorithm I does not yield access conflicts, it follows that

processors from distinct sets Pi,Pj do not read simultaneously data from the same

row of arrays RR, QQ, TT. Hence, conflicts could only arise among processors from

the same set Pi. However, column numbers of memory cells from which processors

from Pi read in a given step, are determined by matchings in the expander G, thus

precluding any conflicts of access to the shared memory. 0

The following is the key lemma of our proof. It implies that in every row of arrays

RR, QQ and TT a fixed fraction of entries remain up to date during the entire execution

of Algorithm II. In the proof of this lemma expander properties are used.

Lemma 6. For every 1 <s < [lognl + 1 and every 1 <i <n,

[{j : O<j<m - l,TTS[i,j]>s}l~(l - GI-L)m. (**I

Proof. Induction on s.

K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 117

In every set Pi at least (1 - i)m processors remain fault-free after initialization. Thus,

l{j : Odj<m - l,TT’[i,j]>l}[= m

for all i in. Suppose that (**) holds before sth execution of the for loop in Stage

2 of Algorithm II. We show that this condition remains true after the sth execu-

tion.

Consider the set Pi. At most ilm processors from this set fail during algorithm

execution. Every fault-free processor reads data from d distinct cells of ith rows of

arrays RR, QQ and TT. By the inductive assumption at least (1 - CI - A)m entries of

the ith row of TT are 3s. Suppose that at least am/2 processors read all d triples of

data with time stamp (the entry in TT) smaller than s. Let X be the set of [am/21

such processors. Since G is an (c~,P,m,d)-expander, it follows that processors from X

read values from at least PlXl distinct positions of the ith row of TT. Hence, at least

PlXl entries of the ith row of TT are < s. However,

which yields a contradiction.

Let Y be the set of fault-free processors which read an up to date triple (~1, ql, tl)
(i.e. such that ti 2s) during sth execution of the loop. The above contradiction implies

that 1 YI >(1 - 1 - a/2)m. Every processor in Y simulates actions of processor pi in

Algorithm I. In particular, if ti = s, it reads d triples (rz,q2, t2) and keeps the triple

with the largest time stamp t2. Using the same argument as before we can show that

all processors from Y, except less than am/2, obtain an up to date triple. Hence, at

least (1 - 1- a)m processors from Pi get both up to date triples in the sth execution of

the loop and consequently perform correct computations and write results in respective

arrays. In particular, (**) holds for s + 1, which proves the lemma by induction. q

Lemmas 24 imply

Lemma 7. Algorithm II is a safe algorithm for list ranking on an unreliable EREW

PRAM, for processor failure probability p < A.

It remains to generalize the above result for arbitrary p < 1. Let k be the minimum

integer for which pk < &. Replace every processor z in Algorithm II by a set n

of k processors which sequentially repeat every action of Z. The probabilty that all

processors in n fail during algorithm execution is smaller than & and our previous

analysis can be applied. This yields the main result of this section.

Theorem 2. Safe list ranking of an n-element list can be done in time O(logn) on
an O(n log n)-processor unreliable ERE W PRAM.

Unfortunately, we are not able to apply our techniques to the optimal list ranking

algorithm for ideal EREW PRAM (working in time O(logn) on O(n/ logn) processors,

118 K.Diks, A. PelcITheoretical Computer Science 164 (1996) 107-122

cf. [l, 71) and obtain in this way a safe algorithm running in logarithmic time on O(n)

processors of unreliable EREW PRAM. In the pointer jumping method each processor

is responsible for updating a portion of data fixed in advance, i.e. processor pi updates

only R[i], Q[i] and T[i]. This allows to set time stamps T[i,j] in such a way that every

processor reading a triple R[i,j], Q[i,j], T[i,j] can easily detect whether information is

up to date. However, in the optimal list ranking algorithm data corresponding to every

node of the list can be updated many times and by different processors, in stages of the

algorithm execution which are not fixed in advance. This is the main reason why we

are not able to build a mechanism allowing processors of unreliable EREW PRAM to

detect whether obtained data are correct. On the other hand, actions performed on old

versions of data could cause memory conflicts and incorrect termination of algorithm

execution.

4. Prefix sums

In this section we apply our safe list ranking algorithm to get a safe algorithm

computing prefix sums of an n-element sequence in time O(logn) on an O(n/logn)-

processor unreliable EREW PRAM. Thus, as opposed to the list ranking algorithm

from the previous section, our algorithm to compute prefix sums is optimal, i.e. the

product (time x number of processors) is of the same order of magnitude O(n) as the

time of the best sequential algorithm.

The Prefix Sums Problem can be formulated as follows: given an array of numbers

A[l..n] compute the array R[l..n], where R[i] = A[11 +. . . +A[i], for all i<n.

First note that the above problem can be easily solved by a straightforward appli-

cation of a list ranking algorithm to the list S[i] = i - 1, for all i = 1,. . . , n. The

only modification needed (call it modification (*)) is in the initialization stage: for all

1 <i <n, R[i] should be initialized as A[i] (instead of 1, or 0 for the first element).

Thus, using Theorem 2, we immediately get a safe algorithm computing prefix sums

in time O(logn) on an O(n logn)-processor unreliable EREW PRAM. The aim of

this section is to show how applying list ranking to sequences of length O(n/ log’ n)

can reduce the number of processors required for the original problem by a factor

@(log2 n).

For simplicity of further presentation we assume that n is such that log II is an integer

dividing n. Consider the following auxiliary problem: Let k = n/log II. Given an array

A[l.. n], compute the array B[l..k], such that B[i] = ~$$~i)rosn+i A[j]. Notice that,

for all 1 <i<k and 1 <rn< logn,

i-l

R[(i - 1)logn + m] = CB[/‘] + &[(i - l)logn +i].
j=l j=l

We now present the algorithm REDUCTION which safely computes the array B in

time O(logn) on a k-processor unreliable EREW PRAM. We describe the algorithm

informally leaving easy details to the reader. Divide the array A into k segments Ai =

K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 119

A[(i - 1)logn + l..ilogn], for i = l,... , k. Let po, . , pk-_l be the processors of

the PRAM. During the algorithm execution every segment Ai is visited by clogn

distinct processors p&.1, pimodk, p(j+i)modk,. . . , with the constant c chosen so as to

guarantee that every Ai be visited by at least logn processors remaining fault-free

until the end. For every i < k consider a partial sum si and index lusti such that si =

CF$ A[(i - 1) logn + j]. The role of a processor visiting the segment Ai is adding

A[(i - 1) log n + hti + l] to si (if lusti < log n) and then incrementing lasti by 1. Since

at least logn fault-free processors visit Ai, S, should be equal B[i] upon completion of

the algorithm.

There is one difficulty, however. It is possible that after modifying si, but before

modifying fasti, a processor visiting Ai fails. Then the next fault-free processor visiting

Ai would add again the element A[(i - 1) log n + lasti + l] to si (with unchanged last,),

thus producing a possibly incorrect result. In order to avoid this situation we keep two

pairs (sp, lusty) and (sj, lust;). The pair (sf, lust”) is correct if

CA[(i - 1)logn +f = sf.
j=l

We ensure the invariant that, among pairs (~7, lusty), (s!, lust,!), the one with larger lusty
is correct. A processor visiting Ai takes the pair ($,lustf) such that last: > lusttee

and makes two assignments:

1--E ‘i := sf + A[(i - 1) logn + lust; + 11;

lust,l-c := lust:’ + 1.

If the processor fails right after the first assignment, the inequality Zust~ > lust,‘-”

remains true and the next fault-free processor visiting ai uses the correct pair (sf,Zustf)
for further computations, thus guaranteeing their correctness. If, on the other hand, the

processor survives both assignments, we have

lust&? = lustf + 1 > lust;

and the pair (sj-‘, lust,!-‘) is indeed correct, which ensures the invariant.

Lemma 8. Algorithm REDUCTION works in time O(log n) on a k-processor ERE W
PRAM and it is safe for a sufJiciently large constant c.

Proof. The first part of the lemma is obvious. On the other hand, if every segment

Ai is visited by at least logn processors which remain fault-free during the algorithm

execution then the output array B is correctly computed.

Let Ei be the event that among c logn processors visiting Ai, at least log n are

fault-free. Lemma l(b) with 4 = 1 - p and E = (cq - l)/cq, implies

pr(~i))e-(C4-*+(llcq))(logn-1)/* ~e(-cql%fo/8 < L
n2

120 K. Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

for sufficiently large c and n. Thus,

Pr bJ!?i <“- < -,
(>

1 1

i=l logFln2 n

which implies that the algorithm is safe. 0

We now show how to reduce the problem of computing prefix sums of array A to
that of computing prefix sums of array B. Suppose the latter problem is solved and let
the prefix sums of B be contained in array B’[l..k] such that B’[i] = x:.=, B[j], for
1 <i G k. Observe that

R[(i-l)logn+m]=B’[i-l]+FA[(i-l)logn+j].
j=l

It follows that given the array B’ we can safely compute the array R[I . . n] (contain-
ing prefix sums of sequence A[l.. n]) using the same ideas as those in the algorithm
REDUCTION. We will call this new algorithm REDUCTION’.

We finally describe the main algorithm of this section, Its input is a sequence of num-
bers given in array A[I.. n]. Its output is the array R[l.. n] such that R[j] = EL=1 A[m].
For simplicity we assume that log2 n is an integer dividing n. Modifications in the gen-
eral case are easy.

Algorithm Prefix-Sums
1.

2.

3.

4.

5.

Compute array BI [1.. n/ log n] such that B1 [i] = Ei!$! I flog “+I A[j], using algo-
rithm REDUCTION.
Compute array B2[1.. n/ log2 n] such that B2[i] = xj!$!,, ,ogn+l B1 [j], using al-
gorithm REDUCTION.
Compute array Rz[l.. n/ log2 n] containing prefix sums of array B2 (i.e. such that

R2[il = _& Bz[il), using algorithm Reliable List Ranking with modification

(*).
Compute array Rl[l.. n/ logn] containing prefix sums of array B1 (i.e. such that
RI [i] = & Bl[j]), using algorithm REDUCTION’ and using array R2 from
step 3.
Compute array R[l..n] containing prefix sums of array A (i.e. such that R[i] =

x;._, A[j]), using algorithm REDUCTION’ and using array RI from step 4.

end (* of the algorithm *).

Theorem 9. Algorithm Prefix-Sums is a safe algorithm to compute prejix sums of
an n-element sequence in time O(logn) on an O(n,l logn)-processor unreliable EREW
PRAM.

Proof. Each of the steps takes time O(logn). Steps 1 and 5 require O(n/ logn) pro-
cessors, steps 2 and 4 require O(n/ log2 n) and step 3 requires O(n/ logn) processors

K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122 121

(Reliable List Ranking is applied to a list of length O(n/ log’ n)). Thus, Algorithm

Prefix-Sums works in time O(logn) on an O(n/logn)-processor unreliable EREW

PRAM. Since all algorithms: Reliable List Ranking, REDUCTION, REDUCTION’ are

safe, Prefix-Sums is safe as well. 0

5. Conclusion

We presented reliable and efficient algorithms to solve two important computational

problems on an unreliable EREW PRAM. This is the first time that this restricted

computation model is more deeply studied from the point of view of fault tolerance.

The main contribution of this paper is a simulation technique applied to the pointer

jumping algorithm for list ranking, which permits to transform it into a safe algorithm

in the presence of random processor failures. The actions of every processor in the

original algorithm are simulated by O(logn) processors, thus multiplying the number

of required processors by a logarithmic factor. The techniques introduced in this paper

can be applied to some other algorithms, e.g. binary tree contraction (cf. [7]) if leaves of

the tree are given in order left to right, thus yielding a safe algorithm for this problem,

working in time O(logn) on an unreliable O(n/ logn)-processor EREW PRAM. First

the size of the problem can be reduced to O(n/ log2 n), similarly as we did for the

prefix sums problem, and then tree contraction can be simulated on the smaller tree

associating O(logn) processors with every node.

We do not have, however, a general method to transform algorithms working on

ideal EREW PRAM into safe algorithms working in the presence of random faults, with

constant slowdown and increase of the number of processors at most by logarithmic

factor. Such general methods were presented in [lo] for CRCW PRAM and obtaining

their counterparts for EREW PRAM remains the main open problem naturally suggested

by our work. In particular, it remains open if safe list ranking can be done in time

O(logn) on an O(n)-processor unreliable EREW PRAM. If our techniques could be

applied to the optimal list ranking algorithm for ideal EREW PRAM (working in time

O(logn) on O(n/ logn) processors, cf. [l]) the answer to the above problem would be

positive.

References

[1] R. Anderson and G. Miller, Deterministic parallel list ranking, in: VLSI Algorithms and Architectures,
Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science, Vol. 319 (Springer,

Berlin, 1988) 81-90.

[2] S. Assaf and E. Upfal, Fault-tolerant sorting networks, SIAM J. Discrete Math. 4 (1991) 472-480.

[3] D. Eppstein and Z. Galil, Parallel techniques for combinatorial computations, Ann. Comput. Sci. Rev.
3 (1988) 233-283.

[4] S. Fortune and J. Wyllie, Parallelism in random access machines, Proc. 10th ACM Symp. on Theory
of Computing (1978) 114-118.

[5] A.M. Gibbons and W. Rytter, EfJicient Parallel Algorithms (Cambridge Univ. Press, Cambridge,

1988).

122 K.Diks, A. Pelcl Theoretical Computer Science 164 (1996) 107-122

[6] T. Hagerup and C. Rub, A guided tour of Chernoff bounds, Znf: Proc. Lett. 33 (1989190) 305-308.

[7] J. JaJa, An Introduction to Parallel Algorithms (Addison-Wesley, Reading, MA, 1992).

[8] P.C. Kanellakis and A.A. Shvartsman, Efficient parallel algorithms can be made robust, Distributed

Comput. 5 (1992) 201-217.

[9] R.M. Karp and V. Ramachandran, Parallel algorithms for shared memory machines, in: J. van Leeuven,

ed., Handbook of Theoretical Computer Science, Vol A: Algorithms and Complexity (Elsevier,

Amsterdam, 1990) 869-942.

[lo] Z.M. Kedem, K.V. Palem, A. Raghunathan and P. Spin&is, Combining tentative and definite executions

for very fast dependable parallel computing, in: Proc. 23rd ACM Symp. on Theory of Computing
(1991) 381-390.

[1 l] Z.M. Kedem, K.V. Palem, P. Spirakis, Efficient robust parallel computations, in: Proc. 22nd ACM
Symp. on Theory of Computing (1990) 138-148.

[12] A. Lubotzky, R. Philips and P. Samak, Explicit expanders and the Ramanujan conjectures, in: Proc.
18th Ann. Symp. on Theory of Computing (1986) 240-246.

[13] R.D. Schlichting and F.B. Schneider, Fail-stop processors: an approach to designing fault-tolerant

computing systems, ACM Trans. Comput. Systems 1 (1983) 222-238.

[14] A.A. Shvartsman, Achieving optimal CRCW PRAM fault-tolerance, Inform. Process. Lett. 39 (1991)
59-66.

[15] A.A. Shvartsman, An efficient write-all algorithm for fail-stop PRAM without initialized memory,

Inform. Process. Lett. 44 (1992) 223-23 1.

