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Abstract

We describe an implementation of the computable (or constructive) real numbers as a pure Java
library. To the user, the library interface appears very similar to that of some other numeric types
provided by the standard Java library. The primary goal of the implementation is simplicity, so that
the implementation could be easily understood, and to allow simple informal correctness arguments.
We hope to demonstrate that even such a basic implementation of constructive real arithmetic can be
useful in a number of contexts, including in a desk calculator utility distributed with the package. A
secondary goal was to demonstrate that some second-order functions on the reals, such as restricted
inverse and derivative operations, can be implemented with sufficient performance to be useful.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The computable or recursive (cf. [12]) real numbers make it possible to implement
computation on the real numbers which is exact in the sense that:

(1) Computations produce a representation of the exact result.
(2) Representations of real numbers generated in this way can be used to produce approx-

imations guaranteed to be accurate to any error tolerance.
Effectively, the representation of a real number x is a program or function for approxi-

mating that number to a tolerance. The tolerance is specified on the final answer. The imple-
mentation guarantees that any rounding errors in intermediate computations are sufficiently
bounded to preserve the guaranteed accuracy of the final result.

The computable or recursive reals correspond to one interpretation of the constructive
reals [4], and we use all three terms interchangeably.

For the programmer, constructive real arithmetic is easier to use than floating point
arithmetic, since it largely removes the need for error analysis.
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2. Our model

We represent a real number x as a computable function fx mapping an integer preci-
sion specification n to a scaled integer approximation fx(n) such that |fx(n) − x/2n| < 1.
Informally, fx(n) produces an approximation to x, which is accurate to within an error of
strictly < 2n. The approximation is scaled, so that it can be represented as a (potentially
very large) integer.

Basic arithmetic operations by themselves perform no numeric evaluation; they simply
return an object representing the function. This function can then be invoked when we
desire a numerical approximation to the generated result, e.g. to print it.

The equality test on computable reals is undecidable. We instead provide a compar-
ison operation which may erroneously identify two values as equal if they are within a
specified tolerance, as well as one that produces correct answers for unequal numbers, but
diverges when they are equal. Like output operations, these force immediate evaluation of
approximations, as do some transcendental functions that require prescaling.

Using our representation, addition can be implemented simply as

fx+y(n) = round(fx(n − 2) + fy(n − 2))/4)

Informally, in order to get k bits of precision in the result, we evaluate each argument
to k + 2 bits. This is necessary since each argument approximation may then contribute
an error of strictly less than 1/4 in the scaled integer final result, while rounding may
contribute an error of up to 1/2. The division by 4 is necessary to adjust for the implicit
scaling.

Unfortunately, in many other cases we cannot determine the precision required for argu-
ment evaluation a priori; it must instead be based on an approximation of the arguments
themselves. In the case of multiplication, the larger one argument, the more precision we
need in the other in order to guarantee a specified error bound on the result. A reciprocal
computation requires less precision in the argument if the argument is large.

This approach leads to a relatively straightforward implementation. The algorithms are
fairly simple, and they rely only on large integer (“bignum”) arithmetic. There is no need
for an underlying interval or rational arithmetic package, either of which can itself become
complex.

Since we must sometimes approximate an argument in order to determine the real evalu-
ation precision, the same argument may be evaluated more than once. In the case of deeply
nested expressions, some subexpressions may be reevaluated many times.

3. Other approaches

Existing implementations of the constructive reals differ in several dimensions. Many
implementations, like ours, explicitly build up a data structure representing the function
corresponding to a real number (cf. [3,7,20,10,16,8,9]. Building the representation explic-
itly may consume substantial amounts of space. Although the functions representing reals
are normally treated completely extensionally, their internal representation essentially con-
sists of the expression which was used to generate the number. However, this approach
makes it far easier to implement the constructive reals purely as a library, which can be
used inside arbitrary programs without special precautions.
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The function may be represented either as a function in the programming language [6],
as a class with an “apply” operator (our present approach), or as a lazily evaluated data
structure [7,20]. Approximations may be rational numbers [3], prefixes of redundant dec-
imal expansions [7], prefixes of continued-fraction expansions [10,20], or scaled integers
as in [6,8,9] or our current approach. Experience to date suggests that the scaled integer
approach leads to the best performance in this category of applications.

Other implementations [1,2,15,14,17] instead use reexecution of the original program
with increased precision, and hence the function representing a particular real number
remains implicit. These implementations initially execute the program with a fixed, some-
what arbitrary precision, and maintain explicit error bounds on results. So long as error
bounds are sufficient to resolve conditionals, avoid singularities for built-in functions, and
satisfy constraints on output statements, execution proceeds normally. When precision is
insufficient, execution is restarted with a higher precision.

Reexecution-based approaches require a mechanism such as the “multi-value cache”
in [17] or the “decision histories” in [15] to ensure that repeated reexecutions appear to
follow the same control path through the program. It is also necessary to hide any side-
effects from the repeated executions. Explicit storage of functions avoids these issues at
the cost of space consumption.

Implementations that explicitly store functions representing real numbers may deter-
mine calculation precision in one of too different ways:

(1) They may use a top-down error propagation approach, in which every evaluation of
a subexpression guarantees a requested error bound. The error bound is a parameter
to the evaluation. This approach appears to be the simplest. Its primary disadvantage
is that a given subexpression is often reevaluated a large number of times during a
single computation.

(2) It is also possible to use a bottom-up error propagation approach in which the cal-
culation precision, not the tolerance in the result, is the parameter to the evaluation.
This is essentially the same approach as used with reexecution. Implementations
are based on variable precision interval arithmetic, and are thus arguably a bit more
complex. Unlike the top-down approach, calculation precisions can be increased in
geometric progression; hence the cost of reevaluations tends to be far less.

Approaches based on bottom-up error propagation appear to typically outperform the
top-down approach, especially for deeply nested computations. However, this approach
may suffer from the fact that all computations are often carried out to the same precision.
For example, if we are evaluating 10−1000π + 1 to 1000 digits, the top-down approach
would notice that there is no need for any substantial evaluation of π , where the bottom-up
approach would normally evaluate it to about 1000 digits.

For another more detailed discussion of comparable arithmetic packages, see [11].

4. Implementation strategy

The details of our implementation are affected both by the implementation language,
and by our desire for simplicity with acceptable performance rather than optimal perfor-
mance.

The Java language does not support dynamically constructed “functions” (usually called
“closures”) per se. However, Java objects and inheritance can be used to get essentially the
same effect.
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A constructive real number is a member of a subclass of CR, the class of constructive
real numbers. Each such number provides an approximate method, corresponding to the
approximation function in our original model. This is the only essential element of the
representation.

As a concession to performance, each constructive real number representation also in-
cludes it’s best known approximation, if any, as in [6]. This is represented as the smallest
precision argument ever passed to the approximate method, together with the result it
yielded.2 All references to argument approximations call the get_appr method instead of
calling approximate directly. The difference is that get_appr both consults and updates the
cache. As a result, a constructive real is never reevaluated with a less demanding precision
request than for a prior evaluation.

To give the flavor of the representation, we present the complete implementation of
addition. The class CR contains an add method implemented as follows:

public CR add(CR x) {
return new add_CR(this, x);

}

Addition simply returns a new object, logically a function, representing the sum of two
constructive reals. The new object is a member of the add_CR class, which is a subclass
of CR. Hence every add_CR can be used as a CR.

An element of the add_CR class contains (in addition to the members of CR), two
fields corresponding to the two arguments, and an approximate method which computes
approximations exactly as we described above. Its entire implementation is:

class add_CR extends CR {
CR op1;
CR op2;
add_CR(CR x, CR y) {

op1 = x;
op2 = y;

}
protected BigInteger approximate(int p) {

return scale(op1.get_appr(p-2).add(op2.get_appr(p-2)),
-2);

}
}

Here scale(. . . , −2) shifts its first argument right by two bits, rounding the result. It
corresponds to the rounded division by 4 above. Functions such a get_appr and scale are
inherited from CR.

We have compromised and used 32-bit machine integers to represent requested preci-
sion. This simplifies matters appreciably but can result in precision overflow. We check

2 Unlike some of our earlier implementations [6], we do not include an eagerly evaluated fixed precision interval
approximation. This would have improved performance at the cost of complexity.
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for those explicitly and raise a suitable exception if this should occur. These checks are
confined to a few methods, one of which is get_appr.

The algorithms for other operations are also very similar to those in [6]. We use Newton
iteration based on the previous approximation for the sqrt implementation, but reciprocal
computations are performed directly, i.e. without reference to previous approximations.
Transcendental functions use Taylor series, with suitable prescaling.

Unlike [17], we do not directly provide limit operations. We do however allow the
library user to define new constructive real operations or constants by defining new sub-
classes of CR with appropriate approximate methods. Thus arbitrary constructive real
numbers can be computed. Unlike more straightforward uses of the library, this does
require understanding of the representation.

5. Higher order functions

A number of higher order functions (or functionals) on the constructive reals are com-
putable (cf. [13,18]). In many cases, computation of such higher order functions is imprac-
tical [13]. We chose to implement three for which practical implementations do exist. In
all cases we currently restrict ourselves to unary functions from the constructive reals to
the constructive reals:
• Function composition.
• The inverse of a monotone (and well-defined, hence continuous) function on a closed

interval. The arguments to this operation are the function to be inverted, and the two
constructive real endpoints of the interval.

• The monotone derivative of a function on an open interval. We assume that the deriva-
tive is continuous and monotone in an open interval bounded by two specified construc-
tive real endpoints.
The implementation of the first is trivial. We briefly outline the algorithms used for the

last two.

5.1. Inverses

The inverse operation on a function f produces an object representing a function f −1

from constructive reals to constructive reals. Evaluation of a resulting inverse function at
a particular real number produces a constructive real number r . The iterative evaluation
algorithm we discuss here is contained in the approximate method of r .

In order to make the inverse operation practically useful, we have to address several
aspects of performance:

(1) The number of evaluations of f . This is determined by the rate of convergence of
the iterative algorithm.

(2) The precision to which f is evaluated, since that affects the cost of the evaluations.
(3) The precision to which the argument of f −1 is evaluated, since that affects the cost

of nested evaluations involving inverse functions.
To keep the number of function evaluations small in typical (well-behaved) cases, but

still guarantee convergence, we use a hybrid of binary search and linear interpolation
(regula falsi, cf. [19]). At every point in an approximate computation of f −1(x), we
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have a (usually) rational interval [l, h]3 such that, assuming a monotone increasing f ,
f (l) < x < f (h), and thus l < f −1(x) < h.
Each iteration shrinks the interval [l, h] as follows:
• We normally carry out an interpolation step. We compute a guess of the inverse by

linear interpolation. If the guess is in the outer quarters of the interval, we adjust it by
doubling its distance to the endpoint. This usually ensures that the actual inverse value
is then in the smaller interval, thus avoiding the normal failure of regula falsi to shrink
the interval under consideration. We then evaluate the function at our guess, and replace
the appropriate endpoint with the guess, as if we were performing a binary search.

It may happen that during the evaluation step the comparison between the function
value at the guess and x is indeterminate (i.e. the two are equal to within our evaluation
precision), making it impossible to determine which endpoint should be replaced. We
resolve this issue by alternately increasing the precision to which x and f (. . .) are
evaluated, and perturbing the guess slightly, in case the two happen to be exactly equal.
Repeatedly performing these operations must eventually lead to an unequal comparison.

• If interpolation repeatedly fails to shrink the interval substantially, we set the guess
to the midpoint, and perform a traditional binary search step instead of using linear
interpolation. This ensures linear convergence in the worst case.
Under normal circumstances, this converges quickly once the interval is small enough

that the derivative is close to constant. An initial interpolation step ensures that one of
the interval endpoints will be very close to f −1(x), though it may not reduce the size
of the interval by much. In the next step, our guess will be very close to the endpoint, and
the resulting adjustment will reduce the interval size to roughly twice the error in the first
interpolation step.

Usually convergence is quadratic and hence the number of function evaluations is log-
arithmic. We ensure that in almost all cases our guesses, the arguments of the evaluations,
are freshly constructed from rationals. Hence function evaluations do not force evaluation
of nontrivial arguments. We take care that the argument to the inverse function is evaluated
only to slightly more precision than is absolutely necessary.

If a particular inverse function value has been approximated once, we use that approx-
imation to obtain a small starting interval for later approximations to higher accuracy. If
we need the answer to high precision, and no prior approximation is available, we first
force evaluation to a much lower precision. This effectively ensures that only the last few
iterations (typically four) are carried out to full precision.

5.2. Derivatives

Since we only compute monotone derivatives, the algorithm is straightforward. We
compute finite approximations to the derivative from the left and right. Since these bound
the derivative, we simply need to iteratively compute the difference approximations over
smaller intervals to guarantee a sufficiently small error.

The initial interval width is chosen based on out experience with past evaluations. This
allows us to minimize the number of iterations. The difference approximations themselves
are computed using constructive real arithmetic; hence the choice of evaluation precision
is essentially automatic.

3 L and h are of the from 2kn unless they are set to the corresponding endpoint of f s domain, in which case
they may not be rational.
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6. The implementation

Our implementation has been available on the web, with occasional improvements,
since 1999, though it has not been well advertised.4 The implementation consists of both a
Java library, and a calculator with a graphical user interface.

Most uses of which we are aware involve the calculator. The canonical use appears to
be to check the accuracy of fixed precision floating point implementations, though it also
seems fine as a general desk calculator replacement.

6.1. The library

The library contains two components. As we saw before, the elements of the class CR
are constructive real numbers, and the class provides various methods, e.g. add and sin
to operate on them. It inherits from the standard java.lang.Number class, and hence con-
structive reals can be used where a java.lang.Number is required. The interface suffers
slightly from Java’s inability to overload arithmetic operators.

The elements of the class UnaryCRFunction are unary functions over the constructive
reals. It provides constants corresponding to various unary functions, mostly corresponding
to methods of CR. It also provides the above-mentioned methods to compute the inverse of
a function, to compute the derivate of a function (restricted as above) and to compose unary
functions, yielding another UnaryCRFunction. UnaryCRFunction function objects pro-
vide an execute method5 to evaluate the function at a particular constructive real point. New
unary functions can be constructed explicitly by introducing a subclass of UnaryCRFunc-
tion with an explicit definition of the execute method. This is analogous to the introduction
of new CR values by adding a subclass with an explicit approximate method.

6.2. The calculator

The calculator provides a fairly conventional desk calculator user interface, with the
addition of a scroll bar to allow display of additional digits of the result.6 Movement of the
scroll bar translates into reevaluation requests in the real numbers currently displayed.

The calculator is a Java applet, and hence can either be run directly from the web page,
or downloaded and installed locally. The download size for the calculator .class files with
supporting libraries is about 53 KB.

Unlike a conventional calculator, certain calculator operations, e.g. division by zero,
potentially fail to terminate. This is addressed in several ways:

(1) The calculator keeps track of values that are known to be integers. Dividing by a
known integer zero elicits an immediate error message.

(2) If an operation appears likely to diverge, e.g. a division by a number very close to
zero, the user is warned and asked whether to continue.

4 It was originally available through SGIs web site. It has now been rehosted at http://www.hpl.hp.com/per-
sonal/Hans_Boehm/crcalc.

5 The name was chosen for consistency with some other Java interfaces which also represent functions as
objects with an execute method.

6 There is also a less natural mechanism to allow direct entry of the precision, e.g. when more than 1000 digits
of the result are required.
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(3) All constructive real operations are run in a thread distinct from the one supporting
user interaction. The user interface provides a “stop” button to abort a very long
running or infinite computation.

Since the leading decimal digits of an arbitrary real number are not computable (e.g.
because it may be undecidable whether a number is slightly smaller than, or greater than
one), it may happen that the leading digits change as we scroll through a number. We
minimize the probability of this by always evaluating a number to 15 more digits than we
display. Given that errors are always strictly less than one digit in the last place, this implies
that such behavior is only possible if the exact representation of the number contains at least
fifteen consecutive “9” digits.7

The calculator uses the generic inverse function operation to compute inverse trigonomet-
ric functions. The calculator code is also simplified by the ability to treat functions on con-
structive reals as objects. All unary (or binary) operators can be handled in a mostly uniform
manner, and the logic associated with degree vs. radian displays can be easily isolated.

7. Performance

For reasonably small precisions (at most a few hundred digits) and moderately simple
calculations, calculator evaluation is typically fast enough on a modern machine that the
reevaluation time is not noticeable, and the scrollbar gives the desired visual effect of
scrolling through an infinite number.

Based on some quick experiments using the calculator interface on some of the exam-
ples in [5], the calculator is typically somewhere between a factor of 5 and two orders of
magnitude slower than iRRAM [17], when run from Internet Explorer with its built-in Java
Virtual Machine. Given our general preference for simple algorithms over asymptotically
fast ones, and the fact that these examples require 10,000 digits of precision, this is not
surprising. We would expect relatively better performance for somewhat lower precisions,
and worse performance for more deeply nested computations.

The use of the generic inverse operation clearly slows down the calculator somewhat,
but not enough to be a serious problem in this application. On a 733 MHz Pentium III run-
ning the Internet Explorer JVM, a sin(0.5) computation to the (atypically large) precision
of 5000 decimal digits takes about 4 s, while asin(0.5) takes about 20 s.

Had we been willing to sacrifice simplicity for performance, we expect that the most
important performance improvements would be

(1) Bottom-up error propagation, with evaluation based on variable-precision interval
arithmetic, in order to improve performance on deeply nested expressions.

(2) Asymptotically better algorithms for multiplication,8 reciprocals, and various tran-
scendental functions. This could greatly improve performance of high precision eval-
uations.

(3) Special treatment of some “obviously rational” values.9

7 The error must be within 10−15 of the value of the last displayed digit, since we computed 15 more digits. If
it were slightly greater than the displayed number, we would have violated the error bound by initially displaying
the smaller digit. Thus it must be slightly less than the displayed value, implying the sequence of “9”s.

8 A Java Virtual Machine could provide this as part of the java.math.BigInteger implementation. We suspect
few do.

9 Based on experience with earlier implementations, we do not believe that all numbers computed using only
rational operations should be represented as rationals. But sometimes this is a large improvement.
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