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Abstract

Mediating heterogeneous data sources heavily relies on explicit domain knowledge expressed, for
example, as ontologies and mapping rules. We discuss the use of logic representations for mapping
schema elements onto concepts expressed in a simplified ontology for cultural assets. Starting with
a logic representation of the ontology, criteria for a rule-based schema matching are exemplified.
Special requirements are the handling of uncertain information and the processing of hierarchical
XML structures representing instances.
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1. Introduction

Integrating data from heterogeneous sources on the Web is an important topic of interest
within the database community. Current approaches try to overcome limitations of the first
structural oriented mediator generation by explicit modeling and usage of domain knowl-
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edge in form of semantic meta data, i.e., a vocabulary, a taxonomy, a concept hierarchy,
or even an ontology. However, a special requirement from data integration is still to define
a mapping from the ontology layer to the source data, i.e., to specify how a data source
supports a certain concept from the ontology both in a structural as well as in a semantic
way. This correspondence information is necessary for query rewriting and decomposition
and has to be provided as part of the registration of a source.

There are several possible ways for specifying schema correspondences. In the global-
as-view approach (GAV) the global mediator schema is defined as view on the local
schemas. In contrast, the local-as-view approach (LAV) starts with the global schema and
defines the local schemas as views on it. Here, local sources are modeled always as a subset
of the global schema as well as the class extensions. GAV results in simpler query process-
ing because the query rewriting step requires only a view resolution—as long as no global
integrity constraints have to be taken into account. Otherwise, query processing becomes
more complex as shown [d].

On the other side, the LAV principle simplifies adding or removing sources because
only correspondences between the global schema and the particular local schema have to
be considered. A detailed discussion of issues on LAV vs. GAV is given for examfdlg in
In [2] the authors propose a GLAV approach—a combination of both approaches allowing
a more flexible mapping definition.

In any case, specifying the mapping by hand is an expensive and error-prone process,
especially for complex schemas and/or ontologies. Schema matching appri®chet
reduce the effort by comparing schemas of different sources and identify matchings based
on structural correspondences and—to a certain degree—by exploiting information about
the actual data.

In the paper, we argue that these approaches can be improved by using declarative rules
which are used during matching, even if correspondences are “hidden” due to different
names of classes and attributes and can deal with sub-class hierarchies which are often used
for modeling ontologies. This leads to extensible matchers allowing to add user-specified
rules which could be even derived from already existing correspondences. In this way,
domain-specific rules for matching certain elements by exploiting background knowledge
or for combining different matchers in a specific manner can be easily added without mod-
ifying or bloating the matching tool.

We present the logic-based foundations of this approach, discuss several schema match-
ing rules and their composition for defining matches between the ontology level represent-
ing the global mediator schema as well as the source schemas. Finally, we discuss the ap-
plication of this approach for specifying mappings for our ontology-based mediator system
YacoB. The approach presented here as well as the accompanying tool support are cur-
rently still under development. Therefore, we focus in this paper on the presentation of the
basic ideas leaving details, such as considering instance level information, for future work.

2. Related work

Schema matching is an important subtask of data integration. The core of schema
matching is the operatdiatchwhich takes two schemas as input and produces a mapping
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between the elements of these schemas based on semantic correspondences. Implementing
this operator requires an internal representation to which imported schemas are translated
and which allows a generic solution. This can be further supported by using dictionaries,
thesauri and other kind of domain knowledge useful for identifying correspondences.

In most cases, schema matching cannot be done fully automatically—often some kind
of user intervention or decision is required in order to accept, modify or reject matchings
found by the system. Nevertheless, several approaches and tools were developed for sup-
porting schema matching in a semi-automatic way which combine techniques from schema
translation, graph transformation, machine learning and knowledge representation. A good
survey of these approaches is giveri3h Here, we briefly summarize this work and dis-
cuss it with regard to a rule-based approach.

In [3] the authors classify schema matching approaches into three classes:

¢ individual matchergompute a mapping using only a single match criterion,

o hybrid matchersupport multiple criteria by using a fixed combination of individual
matching techniquejgl],

e composite matcheiombine the results of individual matchers depending on schema
characteristics, application domain or even results of previous steps, e.g., by applying
technigues from machine learnifig.

Individual matchers as building blocks for hybrid and composite matchers can be further
classified into:

e Schema vs. instance lev8ichema-level matchers consider only schema information
such as structures (data types, classes, attributes) as well as properties of schema ele-
ments like name, type etc. In contrast, instance-level matchers consider data contents,
too. This allows a more detailed characterization of data, especially in cases with in-
complete or unknown schema information.

e Element vs. structure matchinglement matchers consider matching between atomic
schema elements such as attributes whereas structure-level matchers can deal with
combinations of elements, e.g., by comparing sets of attributes of two classes.

e Language vs. constrainttkanguage-based matchers use textual information and lin-
guistic technigues for matching. Examples are equality or similarity of element names
as well as a thesauri-based identification of synonyms and hypernyms. A second
approach is to consider constraints defined as part of the schema, e.g., data types,
cardinalities of relationships or key characteristics.

e Matching cardinality Another kind of characterization is the cardinality of matches.

For example, an 1:1 match means that an attribute for one schema is mapped to another
attribute of the second schema. An Inapping means that a single attribute is mapped

to a set of other attributes, e.g., by computing a value from the other values or the
extension of one class is computed by combining the instances from several other
classes of the second schema.

o Auxiliary information Often external information can be used to support the identifi-
cation of matches. This can be provided in the form of user input, results from previous
steps or by using thesauri, dictionaries, ontologies etc.
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In [3] several available systems are presented and compared based on the support of the
classification criteria described above. Other example systems are, e.g., Rprmo
ToMAS [7]. However, only two of the seven systems considerefB]nare rule-based

and one of them requires to implement the rules in Java. Thus, extending or adapting the
matcher requires often a high coding effort which could be reduced by providing a set
of built-in predicates representing individual matchers. Based on these predicates the user
could define composite matchers in the form of rules which could be used for deriving the
mapping information, too.

3. Problem statement

In this paper, we consider schema matching in the context of semantic integration
systems. Here, the matching has to be performed mostly between the global “semantic”
schema (the domain knowledge model or the ontology) and the local source schemas.
Therefore, matching between schema elements often cannot be expressed based on sim-
ple name or structural matching. Instead, domain knowledge in the form of constraints,
relationships, thesauri etc. has to be taken into account. In order to provide a better un-
derstanding of the specialities as well as the potential of (extensible) schema matching in
ontology-based mediators we first introduce the integration model of our mediator system
YAcoOB [8] and present the mapping specifications necessary for registering new sources.

YAcoB is a mediator system developed for the integration and querying of Web
databases on cultural assets that were lost or stolen during World War Il, such as
www.lostart.de In order to capture semantically rich information, a two-level model is
used for integration:

o the meta or concept level describing the semantics of the data and their relationships
as well as
o the actual data or instance level representing the data provided by the sources.

The model layer for representing concepts is based on RDF Schema. The Resource De-
scription Framework (RDF) developed by the W3C describes a simple graph-based model
consisting of nodes, which model resources (e.g., Web documents) and literals, and edges
representing properties of resources. RDF Schema (RDFS) extends this model by in-
troducing primitives like classes and class relationships which are useful for specifying
vocabularies or ontologies. RDFS is similar to traditional (object-oriented) database mod-
els, but contains some special features, e.g., properties are defined independently from
classes and are restricted in their association with classes only by specifying domain and
range constraints.

In our integration model we treat classes as so-called concepts and add a second kind of
class: categories. The difference between these two kinds of classes is as follows: a con-
cept is a class for which extensions (data objects) are provided by the sources. In contrast,
categories are abstract classes without extensions representing abstract property values.
They are used to capture terms represented in different sources by different values. Fur-
thermore, RDFS properties correspond to concept properties in our model. Relationships
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Fig. 1. An example ontology.

between concepts are also modeled as properties where the domain and range are restricted
by concepts.

Fig. 1 shows an example of a concept schema modeled using these elements. This
schema defines a hierarchy of concepts representing different kinds of cultural assets. In
this example only few properties are shown. An example of the usage of categories is the
property “portrays”. The domain of this property is the category “motif” for which addi-
tional sub-categories exist. Even if these categories are represented by different property
values in the source systems, at the global level we can always refer to the globally defined
terms. Another example is given for relational properties: the property “paintedBy” relates
paintings and painters.

At the instance level data is represented in XML both inside the mediator (i.e., for
transformation and query processing) as well as during exchange between the mediator and
the sources. For the sources, we assume they are able to export data (query results) in XML
structured according to a (nearly) arbitrary DTD and can answer simple XPath queries. In
case of necessary transformation for XPath to the source’s query interface wrappers are
required. Because we allow arbitrary DTDs for data exchange the transformation into the
global schema (defined by the concept schema) is performed by the mediator.

We can now define a concept schema by sets of facts and rules as shown in the following
example:

concept (Cul tural Asset).

concept (Fi neArts).

sub- concept (Cul tural Asset, FineArts).
property(Cul tural Asset, Nane).
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<results>
<pai nti ngs>
<title>Mary with the child</title>
<per son>Cossaert, Jan</person>
<mat eri al >Ei chenhol z</ materi al >
<url>http://ww. | ostart.del/recherche/ ei nzel obj ekt . php3?
I ang=engl i shé&ei nzel _i d=7049</ url| >
<i mage_url >
http://ww.| ostart.de/recherche/bild. php3?i d=7836
</imge_url >
</ pai nti ngs>

</resul ts>

Fig. 2. Sample data from a source.

sub- concept (x, z) :- sub-concept(x, y), sub-concept(y, 2z).
property(x, p) :- sub-concept(y, x), property(y, p).

In a similar way, we could represent data in a logic-based form. However, because in
this paper we focus on schema level matching, we do not consider this here. Although
inside the mediator schemas and data are represented as RDF and XML data, this can
always directly be converted into an equivalent logical representation. An example of an
XML data representation returned by a source query is showigir2.

Besides features for specifying schemas and representing data a mediator system re-
quires a specification mechanism for mappings or correspondences. One approach for
correspondence specification is the definition of views expressed in a query language.
Another approach which we have chosen is to represent correspondences in the form of
properties associated with elements of the concept schema. In this way, a mapping describ-
ing how a source provides data for a certain concept is defined by annotating concepts and
properties of the concept schema.

In our model, we distinguish between the following kinds of mappings:

e Concept mappings specify how the given global coneej® supported by a given
source. A concept mapping comprises the following information:
— The source name for identifying the source from where the instances are to be re-
trieved.
— The name of the local XML element used for representing instances in the source.
— An optional filter predicate for further restricting the instance set, e.g., to address
only instances satisfying a certain condition.

¢ — (src, pathto-elem filter).

o A property mapping defines the correspondence between the prgpeftst concept
and an XML element or attribute of the source data. This can be represented by giving
the source name and a path expression to the XML element:

p — (src, pathrto-elem.
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<yacob: Concept Mappi ng rdf: about ="Lostart_Pai nti ng">

<yacob: sour ceNane>| ost art. de</ yacob: sour ceNane>

<yacob: | ocal El ement >/ resul t s/ pai nti ngs</yacob: | ocal El enment >
</ yacob: Concept Mappi ng>

<rdf: Description rdf:about="painting">
<yacob: provi dedBy rdf:about="Lostart_Pai nting">
</rdf: Description>

<yacob: PropertyMappi ng rdf: about ="Lostart_nane">

<yacob: sour ceNane>| ost art . de</ yacob: sour ceName>

<yacob: pat hToEl enent >/ resul t s/ pai nti ngs/titl e</yacob: pat hToEl enent >
</ yacob: Propert yMappi ng>

Fig. 3. Sample mapping specification.

e Join mappings are required if a property represents inter-source relationships (e.g.,
paintedByin Fig. 1), i.e. where the related concepts are supported by different sources.
In this case, a traversal of this relationship has to be translated into a join operation be-
tween the concept extensions. However, this kind of mapping affects only the concept
level without referring to the actual source schemas. It is used for query rewriting only
and has not be considered during schema matching. Therefore, we do not consider it
here.

o Value mappings are used for defining how a category term is mapped to a literal value
in a source. For this purpose, the source name and the literal are required only:

v > (src, literal).

Based on these mappings correspondences are specified for each source separately in a
GLAV style: concept, property and value mappings are LAV, whereas join mappings are

in fact global views which means a GAV approach. In this way, source mapping specifi-
cations are independently from each other and a matching is necessary only between each
individual source and the global ontology.

Identifying matchings and defining mappings of these kinds are the main task of schema
mapping in the ¥XcoB system. To each concept supported by a given source, appropri-
ate concept mappings and the accompanying property and value mappings are assigned.
However, due to the existence of specialization relationships between concepts not every
concept has to be annotated. Instead, only concepts which represent a leaf in the hierarchy
with respect to a given source have to be considered. An example of a mapping spec-
ification is given inFig. 3 wherepr ovi dedBy associates the mapping to the concept
pai nti ng andsour ceNarme corresponds tercandl ocal El enent to path-to-elem
in ¢ — (src, pathto-elem filter).

The mapping specifications are used both for result transformation as well as query
translation. Query results are transformed by applying source-specific XSLT rules which
can be automatically derived using the following rules:

(1) For a concept mapping to— (src, lelem, the following XSLT template is gener-
ated:
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<xsl :tenpl at e mat ch="lelent >
<c> <xsl:apply-tenplates /> </c>
</ xsl:tenpl ate>

(2) For a property mapping — (src, leleml/lelem2, a corresponding XSLT template of
the following form is derived:

<xsl :tenpl at e mat ch="lelem?' >
<p>
<xsl : val ue- of sel ect="lelem2 />
</ p>
</ xsl:tenpl ate>

(3) For a property with a domain consisting of the hierarchy of categokigso, . .., k;,
with associated value mappings — (src,vali) ...v, — (src,val,), the following
XSLT template for the property mapping is created:

<xsl :tenpl ate mat ch="elem1 >
<p> <xsl:choose>

<xsl :when test="elem2/elem3= "vq’' ">
<xsl : text >kj</ xsl : t ext >

</ xsl : when>

<xsl : when test="elem2/elem3 v,’ ">
<xsl : t ext >kp</ xsl : t ext >

</ xsl : when>

</ xsl : choose> </ p>
</ xsl:tenpl ate>

Please note that we do not need an XSLT template for join mappings because such proper-
ties are handled during query rewriting.

Query translation is performed by deriving an expression in an extended query algebra
which provides additional operators for dealing with concept level operations (e.g., set
operators, path traversal including transitive closure, etc.) as well as an operator obtaining
the extension of a given concept. In the next step, intersource relationships are substituted
by join operations using the join mappings. Then, the query is processed by first evaluating
the concept-level operators. Here, several heuristics are applied taking constraints from the
ontology level (specialization relationships) into account. Finally, the remaining subqueries
are translated into source queries on the basis of the concept and property mappings. For
further details on query rewriting and processing we ref¢8}o

In the following sections we will discuss how the process of matching and mapping
derivation can be supported by existing schema matching approaches and how these ap-
proaches can be improved towards an extensible approach.

4. Rule-based schema matching

Considering existing schema matching approaches (cf. Se@jtior have a wide vari-
ety on different matching criteria at hand leading to quite different schema matchers (i.e.,
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schema-based, instance-based, language-hasgdilthough there are already proposals
for combining these schema matchers and building so-called hybrid matchers, such com-
binations are typically static and rather inflexible.

Here, employing logical mechanisms promises significant benefits in particular con-
cerning flexibility in combining different schema matchers and expressing a large spectrum
of matching criteria within one framework. In the following we therefore discuss which
kinds of properties and criteria we want to express and present the logical concepts form-
ing a rule-based general framework for schema matching.

Such a logical framework offers several advantages like:

e extensible matchers;

e proper means to deal with semantically rich schemas (ontologies);

e (semi-)automated derivation/refinement of matching rules based on already mapped
sources (e.g., identifying synonyms, constraints, etc.)

In the following subsections we introduce rule-based concepts for schema matching step
by step. First we briefly discuss how uncertainty can be represented in logical languages.
Then, we show how in general rules for elementary matchers, the property matchers, look
like. Thereafter, we investigate the combination of property matchers in order to obtain
rule sets for concept matching. Finally, we discuss the evaluation of matching rules stating
on which basic principles the evaluation can be realized.

4.1. Representing uncertainty

First of all we need to represent uncertainty because even elementary schema matching
algorithms (for individual matchers) often do not produce crisp result§q9pt. There is
in general an inherent uncertainty due to the assumptions the schema matching algorithm
relies on, due to missing semantic information, or due to the algorithm itself (e.g., for
algorithms based on statistic analysis techniques).

There are several approaches to incorporate uncertainty into logical languages. Most of
these approaches represent uncertainty as probabilitie§16,f1] For our purposes a
probabilistic extension of Datalog as introducedit] (for which an algebraic semantics
was given in12]) seems to be most appropriate. In fact, for this particular approach there
is some first work on its usage for schema matchirgj.

Adding probabilities (or uncertainty values) to a logical language can mainly be done
on two levels:

e On the object level we can decorate facts with an information on their certainty or
uncertainty. In this way we are able to express that a fact is not necessarily true or
false, but that there is, e.g., a certain probability for this fact to hold.

e On the rule level we can decorate rules with an information on their certainty or un-
certainty. Not only facts can be uncertain but also rules.

In the context of schema matching we usually have uncertain facts, e.g. expressing that an
object class in one source corresponds to an object class in another source with some uncer-
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tainty. But uncertain rules might occur as well. We can think of producing a set of matching
rules for a concrete application. These rules can then be used for matching concrete in-
stances which is in particular useful and necessary if the databases (or sets of documents)
are modified. Here, the schema matching is usually done once producing a set of matching
rules for the data related to the schemas matched. Due to the fact that for schema match-
ing there is only a restricted amount of (semantic) information available the result will in
general not be perfect, i.e. there will always be some uncertainty about the exact matching
on the instance level.

Using probabilities as representation for uncertainty has the advantage that the rules for
computation with probabilities are well understood and easy to implement. Although the
discussion about which model for representing uncertainty is most adequate is beyond the
scope of this paper, we have to point out that other models could be used as well. Looking at
data mining algorithms which might be used to produce some input for a schema matching
algorithm we have to face the fact that some algorithms yield probabilities while others
yield possibilities, support and confidence values, or other representations for uncertainty
as result. At that level we obviously might run into another integration problem if we have
to deal with heterogeneous representations of uncertainty.

For the purposes of this paper we do not need to care about the concrete representa-
tion model for uncertainty. For simplicity, we use probabilities having in mind that other
representation models for uncertainty might need other rules for computation. For imple-
menting a rule based schema matching within a concrete application scenario we then have
to decide about the representation model.

4.2. Rules for property matching

As a starting point (in a bottom-up view of the matching process) we need matching
rules which allow to match with respect to specific properties. These rules may use built-
in predicates implementing such specific atomic matchers. For instance, simple matching
criteria like matching strings (on schema level identifiers for classes, attributes, etc.) based
on common prefixes could be provided as built-in predicate. Looking at this example of a
prefix matcher, there is a built-in predicateef i x_mat ch having (at least) three argu-
ments: two arguments for the strings/identifiers to be matched and one argument (called
conf here) for a value expressing how good the match is:

mat ch(pl, p2, conf) :- prefix_match(pl.nane, p2.nane, conf).

This rule simply expresses that two structured objects (e.g., XML documents) match
as well as a prefix match on their names. In the same style it is possible to use other
property matchers, for instance a matcher using the edit distance (e.g., as built-in predicate
edi st ance):

mat ch(pl, p2, conf) :- edistance(pl. nane, p2.nane, dist),
conf = 1.0 - dist /
max(l en(pl. nane), |en(p2.nane)).
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For our example from Sectidh(cf. Figs. 1 and Pwe could try to match, e.g., the name
of the conceppai nt i ng with the name of the XML elememtai nt i ngs which would
result in a rather high value faronf in themat ch predicate. If we try to matchur ni -
ture withi mage_ur| this will produce a very small confidence value for this match.
Furthermore, property matchers can be combined by checking several different features,
e.g., the edit distance and substring containment, and derive and matching similarity (here,
simply the average):

mat ch(pl, p2, conf) :- edistance(pl.nane, p2.nane, dist),
confl = 1.0 - dist /
max(|l en(pl. nane), |en(p2.nane)),
substring(pl. name, p2.nane, |en),
conf2 = len/
m n(l en(pl. nane), |en(p2.nane)),
conf = (confl + conf2) / 2.

Of course, there is no problem to also have crisp criteria for matchers like equality (e.qg.,
assuming that the argumeswnf may have values in the range from 0.0 to 1.0):

mat ch(pl, p2, 1.0) :- equal (pl.nane, p2.nane).
mat ch(pl, p2, 0.0) :- not-equal (pl.nane, p2.nane).

4.3. Rules for concept matching (combining property matchers)

In the previous section we introduced rules based on property matchers. Of course,
property matchers used in isolation are in general not able to yield an adequate result.
The result of a single property match needs to be considered within the context of the
properties compared. For that, other classes and their properties in the direct neighborhood
need to be compared. As a general principle we can state that the larger the portion of the
neighborhood is which can be matched as well, the more adequate the match is.

For going into details we consider the ontology giverFig. 1and the XML fragment
depicted inFig. 2

Property matchers can be employed for finding candidates representing the same se-
mantic information in the ontology and in the XML document. Trying to match names of
object classes or properties in the ontology with tag names in the XML document will show
that for instancgai nt i ng (concept in the ontology) angai nt i ngs (tag in the XML
document) are candidates to represent the same concept in the real world. Without any
additional information this does not really help. In other examples we might find several
conflicting pairs of such candidates. On the other hand, property matchers can often not
detect the right candidates, for instance it is not probable that a simple property matcher
finds out thatper son andarti st represent the same semantic concept. In this case,
thesauri or dictionaries are helpful which can be incorporated by an appropriate rule:

/* thesauri */
synonyn(’ person’, 'artist’).
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mat ch(cl, c2, conf) :- edistance(cl.nanme, c2.nane, dist),
confl1 = 1.0 - dist /
max(l en(cl. nane), |en(c2.nane)),
mat ch_children(cl, c2, conf2),
conf = f(confl, conf2).

match_children(cl, c2, cavg) :-
cavg = avg(conf, (child(cl, ccl),
child(c2, cc2),
best _match(ccl, cc2, conf)).

best _match(cl, c2, crmax) :- cmax = max(conf,
match(cl, c2, conf)).

Fig. 4. Rules for matching hierarchical structures (simplified version).

mat ch(pl, p2, conf) :- synonym(pl.nane, s),
equal (s, p2.nane), ...

Obviously, we should try to use several different property matchers and combine their
results. In particular, using the graph (or tree) structures of the ontology and of the XML
document allows a semantics driven procedure to find adequate global matches. For this,
XML documents are taken as trees where a tag represents a node in the tree (the node is
labeled by that tag). Child nodes can directly be accessed from a node by using their tags.

Now, having a concept in the ontology and a node (tag) in the XML document as can-
didates for representing the same semantic information, we can compare their properties
or sub-concepts and child nodes, respectively, to see whether they can be matched as well.
This can and has to be done recursively along the graph or tree structure. Because these
comparisons for finding matches in sub-structures are usually not equally important for
assessing the quality of a possible match, we can add weights. For instance, weights can
be used to express that matches of direct sub-structures (properties and child nodes) con-
tribute more to the certainty of a specific match than matches of sub-structures with a larger
distance to the considered concept and/or XML node.

In a bottom-up evaluation we first have to find matching candidates for the leaves of a
XML document tree (or of the concept graph). For this we can employ property matchers.
Then, we can combine their results for those leaves being child nodes of some inner node.
For that, we have to provide combination rules. The step of combining results of sub-trees
has to be repeated until we reach the root of the documentrigel depicts logical rules
which provide the principal structure for that (whdrestands for a function computing a
weighted confidence).

Due to the fact that there are often several possible matches for a concept or node, we
have to eliminate unlikely matches. One possible solution is to simply choose the best
match. For combining theonf values for all children we have to specify a corresponding
function. Here, we decided to simply use the average. Clearly, applying such aggregation
functions we go beyond the expressiveness of first order logic. As we explain in Sédtion
this does not raise severe problems because a safe evaluation can be achieved.

Of course, these logical rules only represent a very simplified matching model. There
are several aspects requiring more complicated matching rules here:
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e Themat ch_chi | dr en rule does not really provide a reasonable result. This is due
to the fact that this rule as it is compares each child of c1 with each child of c2,
determines a best match for this pair of children and then computes the average over
all pairs.

For a realistic usage we have to find for thehildren of c1 and then children of

c2 a (partial) mapping which tells us for which children of c1 there are corresponding
children of c2. For these pairs of corresponding children we can then compute the best
match before we combine all these values to one value for the match between c1 and
c2.

In our example (cfFigs. 1 and 2we may want to matclpai nti ng (a concept in

the ontology) withpai nti ngs (an element in the XML documenpai nti ng has

three properties:

— nane (inherited fromcul t ural asset),

— arti st (inherited fromf i ne arts), and

— pai nted by.

In the XML structurepai nt i ngs has five properties (i.e. sub-elements):

—title

person

mat eri al
—url
— i mage_url
Here, themat ch_chi | dr en rule would investigate all 15 combinations (different
pairs consisting of one property pfai nti ng and one property opai nti ngs),
find the best match confidence for each of the 15 pairs, and compute the average value
out of the 15 match confidence values. Comparing two concepts or elements with a
large number of properties having no counterpart (which should result in match values
equal or close to 0), the average value will be very low.

Ideally, properties or sub-concepts with no counterpart in a match should not contribute
to the final confidence value (or at most in a very limited way). In our example, for the
three properties gbai nt i ng there should be at most three propertiepaf nt -

i ngs as counterparts. It is clear, that at least two propertigsadfnt i ngs cannot
really provide to the confidence for the matchpafi nt i ng andpai nti ngs.

e Another problem arising in the example is that sub-concepts or properties, which
should be compared for coming out with a reasonable result, are not always on the
same level. For instance, for matchipgi nt i ng in the ontology withpai nt i ngs
in the XML structure the name of the painter is only an indirect properpadfnt i ng
(via the relationship propertgai nt edBy to the conceppai nt er) whereas the
name of the painter is directly given by the direct sub-elerpemtson for pai nt -

i ngs.
Therefore, a more sophisticated matching model should take different “distances” for
possibly matching sub-concepts or sub-properties into account.

e Here, we treat all children of a node in the same way using the predefined predicate
chi | d. Having different kinds of child nodes we could use different predicates to
distinguish them. For instance, for ontologies we may want to distinguish between
properties of a concept and sub-concepts of that concept.
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Instead of the predicatehi | d we could introduce a set-valued function for returning the
set of all child nodes. Set-valued or more general multi-valued functions (returning sets,
bags, or lists of values or objects) could in addition be used for expressing aggregation in
a much more simpler way.

4.4. Evaluation of matching rules

As a basis for our logical framework we could use first-order logic. The syntax we
used here for examples of rules has been adopted from DdtkddgObviously, basic
(positive) Datalog is not sufficient. In the previous sections we pointed out a number of
further concepts like negation, complex objects (i.e., objects with sub-objects, set-valued
attributes, etc.), aggregation, etc. There is a whole bunch of work on extending Datalog by
such concepts. For instance, LIJ15] adds sets and negation to Datalog. For reasoning
about complex (structured) objects a number of rule-based approaches are available (e.g.,
[16-18).

Such extensions allow us to investigate the child nodes of a node (i.e., tags en-
closed within another tag) in such a logical framework by accessing the features (proper-
ties/attributes) of an object. All nodes (e.g., corresponding to elements in XML documents)
are considered to be objects, the child relationship is expressed by properties of the objects,
where the corresponding tags from the XML document provide to the names of the prop-
erties.

As basic evaluation concept we employ stratification. Stratification is a common
bottom-up evaluation mechanism originally developed for capturing negation in deduc-
tive languages (see for instance[i®]). The basic concept of stratification has then been
applied as an evaluation technique for quite a number of other additional concepts added to
a deductive language. The deductive language StatelLog which allows explicit references to
past states in the evaluation procf&3] is a nice example for a sophisticated employment
of stratification.

For evaluating matching rules in our setting we particularly need to get a grasp of aggre-
gation operations. For expressing different matching strategies we need for instance to be
able to say that we are only interested in the best match (i.e., the match with the maximum
matching confidence). To find the maximum we first have to compute all possible matches
with their matching confidence before we can continue with the best match. Obviously, a
stratified evaluation of the corresponding rules can solve this in a natural way (a detailed
discussion on aggregation in deductive languages can be foliad])n

4.5. Process of rule-based matching

The integration of a new source requires to import the local source schema and to apply
the matching rules. Because in most cases an automatic matching is difficult we have to
deal with several possible candidate matches. From this candidate set the schema integrator
can choose an appropriate match and derive the corresponding mapping specification. After
the mappings for all relevant elements from the local schema are specified and imported
into the mediator the source can be queried and accessed from the global level.
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procedur e find-matches (concept concepte, confidenceconf, candidatesse)
evaluatebest - mat ch (c, e, nconf)
if nconf> conf then
cset:= csetU (c, nconf)
foreach ¢’ € subconceptg) do
find-matchesd’, e, nconf, cse)
od
else
/* no better matching possible—stop the evaluation */
fi
end

algorithm schema-match (schemaconcept hierarchy’)
c:=root(C)
foreach schema elemente s do
cset=¢

find-matchesd, ¢, 0, cse)
clist := sorggns (€s€)
outputclist
od
end

Fig. 5. Algorithm for rule-based schema matching.

In order to apply the matching rules it is necessary to represent the local schema in
the same model as the concept schema. For our case of XML sources this is achieved
by treating the elements of the XML DTD as concepts and attributes or sub-elements as
properties. If no DTD is available, it can be inferred from the actual XML data.

The next step is to process the matching rules. Here, a first possible approach is a strict
logic-based bottom-up evaluation. Starting with the evaluation of property matching rules
this approach combines these matchers using the concept matching rules in order to deter-
mine the best match. Depending on the strategy only the best match (i.e., with the highest
confidence value) or a set of candidate matches (i.e., with a confidence value greater than
a given threshold) are returned. However, this approach requires to check the match of
each combination of source and global properties and therefore requires a high effort. In
addition, specialization relationships between concepts are not exploited.

An alternative approach is to evaluate the matching rules along the specialization hi-
erarchy of the concept schema. This combines the bottom-up evaluation of rules with a
graph-based top-down approach. The algorithm as showigirb works as follows.

For each concept representing a source schema element we start with the root con-
cept(s) of the ontologyC. Using the concept matching rules we check by bottom-up
evaluation if there exists a match, i.e.dbnf > 0. By proceeding downwards, i.e. fol-
lowing the specialization relationships, and applying the matching rules again, we check
if the match is improved, i.e., if the new confidence vateenf > conf. In this case, we
can proceed recursively at the next level etc. If the confidence value decreases we can stop
the evaluation for the remaining sub-tree. This could arise, if for a sub-concept some ad-
ditional properties are defined for which no corresponding properties exist in the source
schema concept. In this way, we can guarantee that we found a match for the most specific
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concept in the hierarchy without considering each concept of the schema. After the hierar-
chy traversal has been finished we collect a set of candidate matsdieshis set can be
ordered by the confidence valugi$t) and presented to the user.

The final step is to derive the mapping information as introduced in Se8tim
quired for transforming global queries as well as result data. Basically, these mappings
are implicitly given by the predicates and variable substitutions used for evaluating the
matching rules. This means for example, if a match was chosen between the XML element
pai nti ngs (containing the sub-elemerds ti st _nane andti t| e) and the concept
pai nti ng (with propertiesar ti st andti t | e) due to the following rule evaluation

match(c, xm, conf)
edi stance("pai nting", "paintings", 1)
mat ch_chil dren(c, xm, conf2)
equal ("title", "title")
prefix_match("artist", "artist_nanme", conf3)

we can directly derive the following mappings for a sousce

painting— (src, paintings true)
artist— (src, paintinggartist name

title — (src, paintingg/title)

One way to derive these mappings for a complete matching step is to use the evaluation
trace of the rule engine. If we are able to determine which predicates and rules were used
we can derive the mapping specification.

Another approach is to explicitly encode the mapping generation as part of the match-
ing rules. This can be simply done by introducing an additional variable representing the
mapping string which is completed in each property and concept matching rule as sketched
in the following example:

mat ch(cl, c2, conf, mapping) : -
edi stance(cl. name, c2.nane, dist),
concat ( mappi ng, "cle (src,c2nametrue)"),

mat ch_chi l dren(cl, c2, conf2, mapping),
mat ch(pl, p2, cnane, conf, mapping) :-

edi stance(pl. nane, p2.nane, dist),
concat (mappi ng, " pl (src,cnamgp2name”),

In this way, after the matching of a concept-level rule the whole mapping specification
is available.
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5. Conclusions

An important task of integrating data from heterogeneous sources is the problem of
schema matching in order to be able to derive mapping information required for query
rewriting and translation as well as result data transformation. Though several approaches
were proposed aiming to support a (semi-)automatic matching, there is still a need for
extensible solutions allowing to add application-specific or domain-specific matching cri-
teria. In this paper, we have discussed a logic-based framework using rules for schema
matching and offering a high degree of flexibility in combining different matchers in a
domain-specific way. We have further shown that such a logical representation is particu-
larly useful in scenarios where the global schema is represented in the form of an ontology
supporting the modeling of different kinds of relationships and in this way hiding semantic
correspondences. In the first step, we have only addressed the problem of schema-level
matching but we are aware of the need to consider instance-level information, too.
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