
N O R T H - ~

AMALGAMATING KNOWLEDGE BASES, III:
ALGORITHMS, DATA STRUCTURES,
AND QUERY PROCESSING

SIBEL ADALI AND V. S. SUBRAHMANIAN

D Integrating knowledge from multiple sources is an important aspect of
automated reasoning systems. In the first part of this series of papers, we
presented a uniform declarative framework, based on annotated logics, for
amalgamating multiple knowledge bases when these knowledge bases
(possibly) contain inconsistencies, uncertainties, and nonmonotonic modes
of negation. We showed that annotated logics may be used, with some
modifications, to mediate between different knowledge bases. The multiple
knowledge bases are amalgamated by embedding the individual knowledge
bases into a lattice. In this paper, we briefly describe an SLD-resolution-
based proof procedure that is sound and complete w.r.t, our declarative
semantics. We will then develop an OLDT-resolution-based query process-
ing procedure, ~LTI_OLDT, that satisfies two important properties: (1)
efficient reuse of previous computations is achieved by maintaining a table
- -we describe the structure of this table, and show that table operations
can be efficiently executed, and (2) approximate, interruptable query answer-
ing is achieved, i.e., it is possible to obtain an "intermediate, approximate"
answer from the QPP by interrupting it at any point in time during its
execution. The design of the ~Ur.TI_OLDT procedure will include the
development of run-time algorithms to incrementally and efficiently up-
date the table. <1

*This work was supported by the Army Research Office under Grant DAAL-03-92-G-0225, by the
Air Force Office of Scientific Research under Grant F49620-93-1-0065, and by ARPA Order A716
administered by Rome Labs under Contract F30602-93-C-0241.

Address correspondence to V. S. Subrahmanian, Department of Computer Science, Institute for
Advanced Computer Studies and Institute for Systems Research, University of Maryland, College Park,
MD 20742.

Received September 1994; accepted September 1995.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1996
655 Avenue of the Americas, New York, NY 10010

0743-1066/96/$15.00
SSDI 0743-1066(95)00148-4

46 S. ADALI AND V. S. SUBRAHMANIAN

1. INTRODUCTION

Complex reasoning tasks in the real world utilize information from a multiplicity of
sources. These sources may represent data and/or knowledge about different
aspects of a problem in a number of ways. Wiederhold and his colleagues [38, 39]
have proposed the concept of a mediator---a device that will express how such an
integration is to be achieved.

This is the third in a series of papers developing the theory and practice of
integrated databases. In Part I of this series of papers, we developed a language for
expressing mediators, and reasoning with them. In particular, we showed that an
extension of the "generalized annotated program" (GAP) paradigm of Kifer and
Subrahmanian [18] may be used to express mediators. We defined the concept of
the "amalgam" of "local" databases DB 1 , DB n with a mediatory database, M,
and proved a number of results linking the semantics of the local databases with
the semantics of the amalgam. In Part II, we developed methods to distribute the
mediator across a network of processors in such a way that the distributed
semantics coincided with the nondistributed semantics--yet the former led to
greater computational efficiency than the latter.

The primary aim of this paper is the development of query processing procedures
(Qpps, for short) that possess various desirable properties. We will first develop a
resolution-based QPP and show it to be sound and complete. However, it is well
known that resolution proof procedures are notoriously inefficient, often solving
previously solved goals over and over again. OLmT-resolution, due to Tamaki and
Sato [33], is a technique which caches previously derived solutions in a table. The
theory and implementation of OLDT have been studied extensively by several
researchers, including Seki [29, 28] and Warren and his colleagues [9, 10]. Further-
more, it is known that OI.DT and magic set computations [5, 6, 27] are essentially
equivalent, although they differ in many (relatively minor) details. We will use the
OLDT technique as our starting point, and extend it as follows:

(1) Multiple Databases: As different databases may provide different answers to
the same query, OLDT-resolution needs to be modified to handle a multiplic-
ity of (possibly mutually incompatible) answers to the same query.

(2) Uncertainty and Time: Previous formulations of OLDT-resolution did not
handle time and uncertainty. We will show how temporal and uncertain
answers can be smoothly incorporated into the OLDT paradigm.

(3) Approximate, Interruptable Query Answering: In some situations, the user may
wish to interrupt the execution of the query processing procedure and ask
for a "tentative answer." This kind of feature becomes doubly important
when databases contain uncertain and temporal information. When process-
ing a query Q such as: "Is the object O at location L an enemy aircraft?," it
is desirable that uncertainty estimates of the truth of this query be revised
upwards in a monotonic fashion as the QPP spends more and more time
performing inferences. Thus, if the user interrupts the QPP's execution at
time t and asks: "What can you tell me about query Q?," the KB should be
able to respond with an answer of the form: "I'm not done yet, but at this
point I can tell you that Q is true with certainty 87% or more."

(4) Table Management: Relatively little work has been done on the development
of data structures for managing OLDT-tables (cf. Warren [9, 10]). When a
single database with neither uncertainty nor time is considered, the struc-

AMALGAMATING KNOWLEDGE BASES, III 47

ture of the OLDT-table can be relatively simple. However, when multiple
database operations, uncertainty estimates (that are constantly being re-
vised), and temporal reasoning are being performed simultaneously, the
management of the OLDT-table becomes a significant issue. We will develop
data structures and algorithms to efficiently manage the OLDT-table.

Our query processing procedure, called MULTI_OLDT, incorporates all of the
above features and is described in detail in this paper. In particular, we prove that
MULTI_OLDT is a sound and complete query processing procedure. Restricted
termination results are also established.

The paper is organized as follows. In Section 3, we provide two examples
motivating our work. These examples will be used throughout the paper to
illustrate various definitions, data structures, and algorithms. Section 4 contains a
brief description of a resolution-style proof procedure, including soundness and
completeness results. The MULTI_OLDT procedure is described in detail in Sec-
tion 5- - in particular, this section contains details on the organization of the
OLDT-table. We compare our results with relevant work by other researchers in
Section 6.

2. PRELIMINARIES

In this section, we give a quick overview of GAPS and the amalgamation theory
developed in the first of this series of papers [31].

2.1. Overview o f GAPs (Generalized Annotated Programs)

The GAP framework syntax proposed in [18] is an extension of the logic program-
ming. It has been proposed as a framework within which inconsistencies, temporal
information, and probabilistic logic can be handled in a uniform way. The GAP
framework assumes that we have a set 3 - o f truth values that forms a complete
lattice under an ordering ~ . For instance, (J,, ~) may be any one of the following:

(1) Fuzzy Values: We can take 3-= [0, 1]--the set of real numbers between 0
and 1 (inclusive) and ~ to be the usual _< ordering on reals.

(2) Time: We can take 3 - t o be the set TIME----2 R+ where R + is the set of
nonnegative real numbers, 2 R+ is the power-set of the reals, and ~ is the
inclusion ordering. The reader may note that interval time can therefore be
represented. So can sets of time points like the set {1, 3, 7} which refers to
the time points 1, 3, and 7; furthermore, {1, 7} ~ {1, 3, 7} since {1, 7} __C_ {1, 3, 7}.

(3) Fuzzy Values + Time: We can take 3-= [0,1] x TIME and take ~ to be the
ordering: [Ul, T 1] ~ [u2,T 2] iff u I _<u 2 and T 1 _ T 2. Here, ul, u 2 are real
numbers in the [0,1] interval and 7'1, T 2 are sets of real numbers.

(4) Four-Valued Logic: Four-valued logic [8, 17] uses the truth values FOUR =
{ _1_, t, f, -I- } ordered as follows: _L ~ x and x ~ 7- for all x e FOUR (cf. Figure
1). In particular, t and f are not comparable relative to this ordering.
References [7, 8, 17] show how this FOUR-valued logic may be used to
reason about databases containing inconsistencies.

This is only a small sample of what O-could be. Using the elements of 55, as well
as variables ranging over 3-(called annotation variables), and function symbols of
arity n >_ 1 on 3" (called annotation functions), annotation terms are defined as

4 8 S. A D A L I A N D V. S. S U B R A H M A N I A N

follows: (1) any member of 3 - i s an annotation term, (2) any annotation variable is
an annotation term, and (3) if f is an n-ary annotation function symbol 1 and
t I t , are annotation terms, then f (t l , . . . , t n) is an annotation term. For instance,
if J = [0,1] and + , * are annotation function symbols interpreted as "plus" and
"times," respectively, and V is an annotation variable, then (V + 1) .0 .5 is an
annotation term. Strictly speaking, we should write this in prefix notation as:
• (+ (V , 1),0.5), but we will often abuse notation when the meaning is clear from
the context.

If A is an atom (in the usual sense of logic) and /x is an annotation, then A :/z
is an annotated atom. For example, when considering ~-= [0,1], the atom
broken(c1): 0.75 may be used to say: " there is at least a 75% degree of certainty
that component c 1 is broken." If J = [0, 1] x TIME, then annotations are pairs, and
an annotated atom for at_robot(3,5):[0.4,{1,3,7}] says that at each of the time
points 1, 3, 7, there is at least a 40% certainty that the robot is at xy-coordinates
(3, 5).

An annotated clause is a statement of the form

A 0 :/x 0 <'--A 1 :/Zl & . . . & A , :/x n

where: (1) each A i ; /zi ,0 _< i < n is an annotated atom, and (2) for all 1 < j _< n, /~
is either a member of 3 - o r is an annotation variable, i.e., /z: contains no
annotation functions. In other words, annotation functions can occur in the heads
of clauses, but not in the clause bodies. The above annotated clause (when the
annotations are ground) may be read as: "A 0 has truth value at least /z 0 if A 1 has
truth value at least /zl and .. . A n has truth value at least /zn.,,

Kifer and Subrahmanian developed a formal model theory, proof theory, and
fixpoint theory for GAPs that accurately captures the above-mentioned notion of
"firability." In brief, an interpretation I assigns to each ground atom an element of
~.. Intuitively, if 3 -= [0, 1], then the assignment of 0.7 to atom A means that,
according to interpretation I, A is true with certainty 70% or more. Interpretation
Isatisfies a ground annotated atom A: ~ iff/~ ~< I(A). The notion of satisfaction of
formulas containing other connectives, such as &, v , ~ , and quantifiers V, 3 is
the usual one [30]. In particular, I satisfies the ground annotated clause A 0 :/z 0
(Al:~l&...&hh:[~ n) iff either I t c : (A l : lZ l&. . .&An: l z n) or I ~ A 0 : t ~ 0. The
symbol " ~ " is read "satisfies." I satisfies a nonground clause iff I satisfies each
and every ground instance of the clause (with annotation variables instantiated to
members of 3 -and logical variables instantiated to logical terms).

Z 2. Overview o f Amalgamation Theory

Suppose we have a collection of "local" databases DB 1 DB n over a complete
lattice, ~,, of truth values. In this section, we recall from [31] how the theory of
GAPs may be successfully applied to define a new lattice of true values that forms
the basis of a "mediatory" or "supervisory database." To do so, we first define the
DNAFIE lattice; this is the power set, 2 0 n,~}. The integer i refers to database
DBi, while m refers to the mediator. Note, in particular, that 2 0 n,=}
is a complete lattice under the set inclusion ordering. Now, the new truth value

~As done by Kifer and Subrahmanian [18], we will assume that all annotation function symbols can
be interpreted in only one fixed way.

AMALGAMATING KNOWLEDGE BASES, III 49

lattice for the mediatory database is DNAME)<J,, where the ordering ~ ' on this
lattice is given as follows: [O l , / Z 1] ~ 'D2 , / . ~ 2] i f f O 1 _ D 2 and /.q ~ /x 2 (4 is the
ordering for the lattice ~..)

We assume that we have a set of variables (called DNAME variables) ranging over
2 o I. If A: /~ is an atom over lattice ~,, V is a DNAME-variable, and
D _ { 1 n,m}, then A: [D, /x] and A:[V,/z] are called amalgamated atoms.
Intuitively, if J " = [0, 1], the amalgamated atom at_robot(3 , 4) : [{1, 2, 3}, 0.8] says
that, according to the (joint) information of databases 1, 2, and 3, the degree of
certainty that the robot is at location (3, 4) is 80% or more.

An amalgamated clause is a statement of the form

A 0 : [O 0 , t 0] ~ - A , : [O 1 , ~ I] & . . . & A n : [O n,~n]

where A 0 : [D o,/z o] A n :[D n,/z n] are amalgamated atoms. An amalgamated
database is a collection of clauses of this form.

Mediatory Database. Suppose D B 1 D B n are GAPs. A mediatory database 2 M
is a set of amalgamated clauses such that every ground instance of a clause in M is
of the form

A0: [{m},/z] ~ A I : [D 1 , / z l l & . . . & A n : [D n,/zn]

where, for all 1 < i < n, D i c_ {1 n, m}.
Intuitively, ground instances of clauses in the mediator say: " I f the databases in

set D i, 1 < i < n, (jointly) imply that the truth value of A i is at least /z/, then the
mediator will conclude that the truth value of A 0 is at least /x." This mode of
expressing mediatory information is very r ich-- in [31], it is shown that it is possible
to express prioritized knowledge about predicates, prioritized knowledge about
objects, as well as methods to achieve a consensus in this framework.

We now define the concept of an amalgam of local databases D B 1 D B n via
a mediator M. First, each clause C in D B i of the form

A 0 :/z 0 ~ A 1 : / z l & . . . & A n :/z n

is replaced by the amalgamated clause, A T (C) :

A0: [{/},/z0] ~ A I : [{i}, gl] & " ' & A n : [{i},/zn]"

We use A T (D B i) to denote the set { A T (C) I C ~ D B i } . T h e amalgam of
D B 1 DB~ via a mediator M is the amalgamated knowledge base (M U
U '/= 1AT(DBi)) . T h e model theory for amalgamated knowledge bases is (slightly)
different from that of individual GAPs because it must account for a new type of
variable, viz. the DN~E variables. An A-interpretation, J, for an amalgamated
database is a mapping from the set of ground atoms of our base language to the set
of functions from {1 n,m} to ~ . Thus, for each A e B L, J (A) is a mapping
from {1 n,m} to ~.. In other words, if J (A X i) = l z , then according to the
interpretation J, D B i says the truth value of A is at least ~. Given a subset, D, of
{1 n,m}, we use J (A X D) to denote U i~ o (J (A) X i) . A n A-interpretation, J
satisfies the ground amalgamated atom A: [D ,~] iff I ~ J (A X D) . Here, u
denotes "least upper bound (lub)." The concepts of A-model and A-consequence
are defined in the usual way. All of the other symbols are interpreted in the same

2 When the databases being integrated are geographically dispersed across a network, it is common
to distribute the mediator so that bottlenecks (e.g., clue to network problems) do not have a devastating
effect. In tiffs paper, we will not study issues relating to implementing distributed mediators (although
we are doing so in a separate, concurrent effort).

50 S. ADALI AND V. S. SUBRAHMANIAN

way as for ordinary J--valued interpretations, with the caveat that for quantification,
nNgr~E variables are instantiated to subsets of {1 n, m} and other annotation
variables are instantiated to members of J . Note that we will always use the word
A-interpretation to denote an interpretation of an amalgamated rB, and use the
expression "interpretat ion" of "3r--interpretation '' to refer to an interpretation of a
GAP.

3. MOTIVATION

In this section, we will present two motivating examples- - the first is a set of
deductive databases expressed using FOUR-valued logic describing a static robotic
domain (i.e., one where the world remains constant). The second example extends
this to reason about a dynamically changing world, and thus incorporates both
uncertainty and time. These examples will be used throughout the paper to
illustrate various intuitions as they arise in the paper.

We will assume that the reader is familiar with generalized annotated programs
(GAPs) as defined in [18].

3.1. Robot Example
Consider two mobile robots, r l and r2, that are operating in a common workspace.
Each of these two robots have access to three databases; one of these databases
represents information about the locations of objects in the workspace (cf. Fig-
ure 2), the second represents information about the weight of these objects, while
the third represents information about the temperature of the objects. The last two
databases also contain information about what kinds of loads the individual robots
can lift. Each of these three databases is expressed over the lattice FOUR shown in
Figure 1, and examples of clauses in each database are given below

a t (r l , l , 3) : t ~

at(r2,2,4) : t

at(a,l,1) :t

at(b,2,2) : t ~

at(c,3,5) : t
at(d,4,2) : t ~

right(El,E2) : t ~at(E1,X1,Y1) :t&at(E2, X 2 , Y 1) : t & X 1 > X 2 .

left(el, E2) : t ,-- at(E1, X1,Y1) :t&at(E2, X 2 ,Y 1) : t & X 1 < X 2 .

above(El,E2) : t ~at(E1,X1,Y1) :t&at(E2, X1,Y2) : t&Y1 > Y2.

below(El, E2) : t ,-- at(E1, X1, Y1) : t& a t (E2, X1, Y2) : t& Y 2 > Y1.

at(E1,X,Y) :f ,--at(E2, X,Y) : t&E 1 ~ E 2 .

This database specifies where the objects are located (including the robots), and
also specifies relations such as "entity E1 is to the right of entity E2 if " and
"entity E1 is to the left of E2 if ". There is also a rule saying that two things

AMALGAMATING KNOWLEDGE BASES, III 51

T

• ~ ~ • FIGURE 1. The truth value lattice FOUR.

i

cannot be at the same place. We assume that relations like > , < , and = are
evaluated in the standard way. Intuitively, the first rule above says: " I f the entity
E1 is at location (X1, Y1) and entity E2 is at location (X2, Y1) and X1 > X2, then
E1 is to the right of E2."

weight(a,36) : t ~

weight(b, 19) : t ~

weight(c,48) : t ~

weight(d,27) : t ~

can_lifi(rl,X) : t ~ weight(X,W) : t & W < 50.

can_lifi (r l , X) : f~- weight(X, W) : t & W > 50.

can_lift(r2, X) : t ~ weight(X, W) : t& W < 30.

can_lift(r2, X) : f ~ weight(X, W) : t & W > 30.

temp(a, 92) : t ~

temp(b, 61) : t ~-

temp(c, 55) : t ~

temp(d, 112) : t ~

can_lifl(rl, X) : t ~ temp(X, T) : t & T < 60.

can_lift(rl, X) : f ~ temp(X, T) : t& T >_ 60.

can_lift(r2, X) : t ~- temp(X, T) : t& T < 120.

can_lift(r2, X) : f ~ temp(X , T) : t&T> 120.

Using DB 2 alone, we may conclude that r l can lift any a, b, c, d, while using DB 3
alone, we may conclude that r l can lift only c. Similarly, DB 2 alone tells us that r2
can lift b and d, while using DB 3 alone, we may conclude that r2 can lift all of a,
b, c, and d. Clearly, this leads to an inconsistency. In addition to resolving such
conflicts, we may wish to coordinate what should be done by the two robots r l and
r2. A mediatory database is a database that specifies how to resolve such conflicts
and how to achieve the desired coordination. For instance, it may be the case that
r l moves easily in the vertical direction, while r2 moves easily in the horizontal

52 s. A D A L I AND V. S. SUBRAHMANIAN

rl A k

I F

a

C

|

b d
.,_, _-_,

(5,5)

LEGEND:

• object

i robot FIGURE 2. The location of ob-
jects in the workspace.

(0,0)

direction. If an object is above or below rl , and the mediator determines that r l
can lift that object, then the mediator may decide to command r l to lift that
object. Similarly, if an object is to the left or right of r2, and the mediator
determines that r2 can lift that object, then the mediator may decide to command
r2 to lift that object. If the object is not exactly above or below r l or to the right,
left of r2, then the mediator will first command r l to lift the object. If no
command is issued to r l to lift an object, then r2 will be commanded to lift that
object. These are formalized using the following "mediatory" knowledge base.

can_lift(rl, X) : [{m}, V) ~ can_lift(rl, X) : [{2, 3}, V].

can_lift(r2, X) : [{m},V 1 Iq 1/2] ~can_lift(r2, X) : [{2},V1] &

can_lift(r2, X) : [{3}, V2].

command_lift(X, r l) : [{m}, V] ~ can_lift(rl, X) : [{m}, V] &

above(X, rl) : [{1} ,t].

command_lift(X, r l) : [{m}, V] ~ can_lift(rl, X) : [{m}, V] &

below(X, r l) : [(1},t].

command_lift(X, r2) : [{m}, V] ~ can_lift(r2, X) : [{m}, V] &

left(X, r2) : [{1} ,t].

command_lift(X, r2) : [{m}, V] ~- can_lift(r2, X) : [{m}, V] &

right(X, r2) : [{1},t].

command_lift(X, r l) : [{m}, V] ~ can_lift(rl, X) : [{m}, V].

command_lift(X, r2) : [{m} ,t] ~ can_lift(r2, X) : [{2,3} ,t] &

command_lift (X, r 1) : [{ m}, f].

The first two rules in the above mediatory knowledge base are very interesting. As
far as robot r l is concerned, the mediator is willing to accept the truth value
provided by any of the databases--in other words, the mediator is indecisive, and
acts as if both what DB 2 says is correct and what DB 3 says is correct (even though
they may contradict each other). This may be an appropriate strategy when robot

AMALGAMATING KNOWLEDGE BASES, III 53

r l is a very inexpensive robot, and the task of lifting the objects is critical. The
second rule says that the mediator only concludes that r2 can lift an object if both
databases DB 2 and DB 3 say it can (consensus).

The amalgam of local database DB x, DB 2, DB 3 with the mediatory database M
is found as defined in [31]. To do this, .&-term annotation in all the clauses in
database DB i are set to {i}, and these modified clauses are added to the amalgam.
For example, the clause

can_li f t(rl , X) : [{3}, t] ,-- t emp(X, T) : [{3}, t] & T < 60

is added to the amalgam by modifying the clause

can_li f t(rl , X) : t ~ temp(X, T) : t& T < 60

in database DB 3. Similarly, for the clause

t (E 1 , X , Y) : f ~ a t (E 2 , X , Y) : t&E1 v~E2

in database DB 1, the following clause is added to the amalgam:

at(E1, X , Y) : [{1},f] ~ at(EZ, X , Y) : [{1},t] & E l v~E2.

4. A RESOLUTION-BASED QUERY PROCESSING PROCEDURE

In this section, we will develop a framework for processing queries to amalgamated
databases. This procedure is a resolution-based procedure, and hence inherits
many of the disadvantages of existing resolution-based strategies. It is similar to
work by Lu et al. [23] who have independently developed a framework for query
processing in GAPs. As stated by Leach and Lu [21], the work of [23] applies to not
just the Horn-clause fragment of annotated logic (which is the case in our work),
but to the full-blown logic. However, [23] does not deal with annotation variables
and annotation functions--our results apply to those cases as well.

The work described here is intended as a stepping stone for the development of
a more sophisticated procedure, called MULTI_OLDT, that will be described in
Section 5.

We will now define the concept of the up-set of an annotation, or a set of
annotations. Intuitively, given a set Q of annotations, the up-set of Q is simply the
set of all elements in the truth value lattice that are larger than some element
in Q.

Definition 4.1. Suppose (~/'; <) is a partially ordered set and Q E ~ . Then
Q = {y ~q~K3x ~ Q)x <y}.

To better understand the intended meaning of up-sets, observe that whenever
an A-interpretation I satisfies an atom A: [D,/x], we have I (A) (D) ~ tz by the
definition of satisfaction; hence, we also have that I (A) (D) ~ ~ I~.

A set expansion function is a mapping J'---> 2 ~ from truth values to sets of truth
values. Hence, f (~) = ~ /x is a set annotation function. A set-expanded atom is an
expression of the form A : [D,/x~] where /z, denotes a set of truth values. Hence,
atoms p:[{1}, ~/z], p:[{1}, N t], p : [{1}, {t, -r }] are all set expanded atoms. In the
sequel, we will often use the notation /z s to denote a set of truth values (annota-
tions).

54 S. ADALI AND V. S. S U B R A H M A N I A N

Using the concept of set expanded atoms, we now define the concept of a regular
representation of a clause. Later in this section, we will define a resolution-based
strategy that uses regular representations of amalgamated clauses instead of the
amalgamated clauses themselves. The advantage is that the expensive reductant
rule of inference introduced by Kifer and Lozinskii [17] and later studied by Kifer
and Subrahmanian [18] can be eliminated by using regular representations.

Definition 4.2. Given a clause C of the form

A0: [D O ,/z0] ~"-A1 : [O,, /zl] & . . . & A , : [D n,/zn]

the regular representation of C, denoted by C*, is the expression

A0:[D0, ~ /z0] ~ -AI : [D , , ~ /Zl]&.. .&An:[Dn, 1~ /z,].

In other words, the regular representation is obtained by replacing the annotation
terms by their up-sets.

Example 4.1. (Robot Example Revisited) Consider the following rule from DB 2 of
the Static Robot example.

can_lift (r l , X) : t ~- weight(X, W) : t&W < 50.

The amalgamated form of this, as defined in [31], is

can_lift(r l , X) : [{2}, t] ~ weight(X, W): [{ 2}, t] & W < 50.

The regular representation of this is

can_lift(rl, X) : [{2}, •t] ~ weight(X,W): [{2}, ~t] &W< 50,

and since ~ t = {t, -I- }, the above clause becomes

can_lift(rl, X) : [{2}, {t, Y }] *--weight(X, W): [{2}, {t, Y }] &W< 50.

(We assume that the constraint W < 50 is a predefined evaluable relation.) []

Definition 4.3. (S-Satisfaction) An A-interpretation I S-satisfies an expanded atom
A:[D, /z s] where D~{1 n,m} and /zs~29" iff I~AA:[D , Iz] for some

/zE/z s-

The notion of an S-logical consequence is similar to that in classical logic--only
now, S-satisfaction is considered instead of ordinary satisfaction.

Definition 4.4. A set-annotated amalgamated atom A :[D1, f,,(/~1)] is said to be an
S-consequence of another set annotated amalgamated atom B :[D2,f~:(/x2)]
(denoted by B : [D 2, f~(/~2)] ~SA : [D1, f~,(/~1)]), iff any A-interpretation I that
S-satisfies B :[D2, f,2(/-~2)] also S-satisfies A :[D 1, f~(~l)]-

Example 4.2. Let the truth value lattice be FOUR, and let I be an A-interpretation
such that I(AX1) = ± and I(AX2) = t. II a ~ o , j (A X d) = t. Hence, I S-satisfies
A:[{1,2},{t,f, T}] since t~{t , f , T}. []

Just as we defined the notion of "regular representation" of clauses, we also
need to define the notion of "regular representation" of queries.

AMALGAMATING KNOWLEDGE BASES, III 55

Definition 4.5. A query Q is a statement of the form

,-z,: [D,, [Dm,
where all of the free variables of the query are assumed to be universally
quantified. 3 A set-expanded query is a query of the form

~ A I : [D I , t x s l & . . . & A n : [D m , t X s ~]

where each A i :[D i,/xs,] is a set-expanded atom. Given a query, the regular
representation of the query Q, denoted Q*, is the expression

A 1 : [D 1 , 3 - - ~ / z l] v - - . v A , : [D m , J - ~ /Zm] ~ •

Thus, Q* is a special kind of set-expanded query.

The following result follows immediately from the definitions, and is given
without proof.

Proposition 4.1. Suppose I is an A-interpretation.

1. I satisfies a ground clause C iff l S-satisfies C*.
2. I satisfies a ground query Q iff l S-satisfies Q*. []

We now come to the central concept in this section, viz. that o f an S-resolvent.

Definition 4.6. (S-Resolution) Let C* be the regular representation of a clause C,
given by

A0: [O 0, ~ /z0] <---Aa : [O~, IF / z a] & . . . & A , : [O, , ~ /z,],

and let W* be the following set annotated query:

where /Xq,, 1 < j _<m, are in set expansion form. Suppose B k and A 0 are
unifiable via mgu 0, and suppose D o C_Dq. Then the S-resolvent of W* and C*
is the expression

(AI : [D1,..9'-- ~ /zl] V "" VAn:[Dn, ,9 r - n Pro] V

B,: [Dq, qj v . . . v B , _ , , v

, , , , . v... v

B,-[Dq,,,,q. o
In case ~q, 0 n (~ ~00) -- ~, is ground and ~s evaluated to O, then we simplify
the above S-resolvent by removing the atom (Bi:[Dq, ~q, n (ff ~0)])0.

All the atoms (A t : [D , , ~ - - ~ ~11)0 (A . : [D . I ~ - - ' ~ ~. l)0 , (Bi :[Dq, ~q,
n (n ~0)])0 in the S-resolvent of W* and C* will be referred to as the ch~klr~
of the set annotated atom B i : [Dq,, ~q.]. Conversely, B i : [Dq,, ~q,] is the parent
of all the atoms in the S-resolvent. The atom (A 0 : [Do, ~0])0 will be referred
to as the twin of B~:[Dq: ~q,]. These expressions will be used when MUr,TI_
OLDT-resolution is introduced.

3A query can be thought of as a headless Horn-clause, i.e. V(*- Q). The negation of the above query
is the statement (3 X A 1 : [D 1, ~ l] & .-- &A n :[Din,/'~,n])-

56 S, ADALI AND V. S. SUBRAHMANIAN

Two important points that distinguish S-resolution for amalgamated knowledge
bases from GAPs are the following:

• First, it is possible that no atom may be "eliminated" during an S-resolution
step. This occurs if/-*s above is not equal to 0 .

• Second, S-resolvents are inherently asymmetric due to the use of the inequal-
ity O o c_ Oq.

Dealing with variables in annotations and _@-terms requires extra attention. We
will examine annotation variables more closely in the following sections. In this
section, we only note that whenever the atoms Bi:[Di,/~s,] in the query contain
annotation variables, then the set /~,, cannot be compared with the empty set;
hence, this atom cannot be removed from the query. Similarly, whenever the

.@-terms contain variables, the condition D O c_ Dq, cannot be checked. It is possible
to introduce constraints to the program specifying the possible values for D o and
Dq,, to circumvent this problem and expand the theory to deal with these con-
straints. However, in this paper, we will concentrate on the annotation variables,
and assume that all of the ~- te rms are ground.

Before proceeding to study soundness and completeness issues pertaining to
S-resolution, we present an example.

Example 4.3. Consider the truth value lattice FOUR. Let C be the clause

p (a) : [{1), 1-1

and let Q be the query *- p (X) : [{1, 2}, t]. T h e regular representation, Q*, of the
above query is

p (X) : [{ 1 , 2 } , { f , ± }] ~ .

0 = {X = a} is the mgu of p(a) and p(X) , and hence C* and Q* can be S-resolved,
yielding

(p (X) : [{1,2},{f, ±} n {-I-}] ~) { / = a }

as the S-resolvent. This is reduced to the empty clause because {f, ± } n { T } =
O. []

Definition 4. 7. An S-deduction from a query Q0 and an amalgamated knowledge
base is a sequence: (Q'~,CS,Oo) (Q, ,C, ,On> such that Q*+I is an S-
resolvent of Q* and C* via mgu Oi, (0 < i < n). Q~ is the regular representation
of Q0 and C~ is the regular representation of some clause C, (0 _< i _< n) in the
knowledge base.

An S-deduction is called an S-refutation if it is finite and the last query is the
empty clause.

Theorem 4.1. (Soundness of S-Resolution) Suppose I S-satisfies a clause C * -
A 0 :[D 0, ~ /z 0] *--A 1 :[D 1,] /za]&, . .&A . :[D,, ~ /z,] and a set-annotated query
Q~ - B1 : [Dql ~,q,l] v ... V B,, : [Dq, , ~q,] ~ . Then, I S-satisfies the S-resolvent of
C* and Q~. "[3

The following definition from [31] is needed for proving the Completeness
results for amalgamated knowledge bases. Given an amalgamated knowledge base

AMALGAMATING KNOWLEDGE BASES, III 57

Q, it is possible to associate with Q an operator AQ that maps A-interpretations to
A-interpretations.

Definition 4.8 [31]. Suppose Q is an amalgamated knowledge base. We may
associate with Q an operator, AQ, that maps A-interpretations to A-interpreta-
tions as follows:

A*Q(I)(A)(D) = LJ{I~IA:[D, l x] ~ B 1 : [D1, /x l]&. . .&B n : [Dn,/x n] is a ground
instance of a clause in Q, and for all 1 < i < n, ix i < I(Bi)(Di)}.

A Q (I) (A) (D) = UD,~_DPiQ(I)(A)(D'), for all D_c{1 n,s}.

Subrahmanian [31] proved that AQ is monotonic. Hence, AQ has a least fixpoint
which is identical to AQ 1' r/ for some ordinal r/. Unlike ordinary logic programs,
even if 7; is to, it is possible that (AQ ~' to)(A)(i) =/z, but there is no integer j < to
such that (AQ 1' j)(A)(i) =/z. This may occur because /z is the lub of an infinite
sequence, /z 0'/x 1 where /~ = (AQ ? k)(A)(i).

An amalgamated knowledge base is said to possess the fixpoint reachability
property iff, whenever (AQ T TI)(A)(i)=/~, there is an integer j < to such that
(AQ 1' j)(A)(i) =/z. The fixpoint reachability property is critical for completeness
because, otherwise, we need to take recourse to infinitary proofs. It is well known
[18] that, even in the case of GAPs, the fixpoint reachability property is critically
necessary for obtaining completeness results. The proof of the following result is
contained in the Appendix.

Theorem 4.2. (Completeness of S-Resolution) Suppose P ~ Q, where P is an amalga-
mated knowledge base that possess the fixpoint reachability properly. Then there is an
S-refutation of (~ Q)* from P. []

The above completeness theorem specifies the existence of refutations of
queries that are consequences of P. In this paper, we do not deal with computation
rules [22]. The use of different fair computation rules in implementing a search
strategy for resolution has been studied by many authors such as Vieille [35]. Our
MULTI_OLDT procedure described in the rest of the paper may work with any of
these computation rules.

5. MULTI_OLDT RESOLUTION

The previous section describes a sound and complete proof procedure for amalga-
mated knowledge bases. The completeness result for S-resolution asserts the
existence of a refutation for (~ Q)* whenever Q is a logical consequence of a
program P possessing the fixpoint reachability property.

Consider a query of the form ~ can_lift(r1, a) :V in the robot example. An
S-resolution may terminate by setting V = ± , which is a correct refutation--how-
ever, in this query, we are really interested in finding the maximal truth value /~
such that can_lift(rl, a) : /z is true. The completeness of the S-resolution proce-
dure described in the preceding section does not guarantee that this refutation will
be found; it only guarantees that some substitution which causes can_lift(r1, a) : V
to be true will be found.

Furthermore, the robot may have a hard deadline within which to perform its
action(s). Thus, it should have the ability to interrupt the query processing module
and request the "best" answer obtained thus far.

58 S. ADALI AND V. S. SUBRAHMANIAN

How these two goals are achieved efficiently is the subject of this section of the
paper. As a preview, we give a small example.

Example 5.1. Consider the databases DB1, DB 2, and DB 3 in the static robot
example, and suppose we ask the query

can_lifl(rX, b) : [{1 ,2 ,3} ,V] .

The query Q says: "What is the maximal truth value V such that
can_lift(r1, b): [{1, 2, 3}, V] can be concluded?" Q* is: can_li f i(rl , b) :[{1, 2, 3 } , J -
li V] ,--. Let us see what happens.

1. Resolving this query with the (regular representation of the) first rule in DB 2
yields, as resolvent, Q~' - :

can_ l i f t (r l , b) : [{ 1 , 2 , 3 } , (J - li V) n lit] v

w eig h t (b ,W) : [{ 2 } , 3 - lit] v W > 50 <---.

2. Resolving this query with the (regular representation of the) second fact in
DB 2 yields

c a n _ l e f t (r l , b) : [{ 1 , 2 , 3 } , (3 - - li V) N lit] V

w e i g h t (b , 1 9) : [{ E } , (J - lit) n lit] v 19 >_ 5 0 ~ .

As (J - - l i t)N lit = O, the atom weight(b, 19) : [(3-- li t) n lit] can be elimi-
nated from the resolvent, and the evaluable atom 19 >_ 50 may also be s o
eliminated, thus leaving us with the resolvent

can_ l i f i (r l , b) : [{ 1 , 2 , 3 } , (3 - - li V) n lit] ~- .

Note that at this stage, we are in a position to conclude that V must be at least t
for the following reasons:

• All atoms in the body of the first rule in DB 2 have been resolved away (i.e.,
the subgoals generated by atoms in the body of this rule have been achieved),
and

• V = t represents the maximal lattice value such that

(J - l i V) n lit = O .

Hence, we may conclude that V's truth value is at least t (w.r.t. the lattice
ordering).

3. After concluding that V's truth value is at least t, we continue resolving the
query from 2 above. We resolve it with the second clause in DB 3 to get

can_ l i f t (r l , b) : [{ 1 , 2 , 3 } , (~ - - l i V) n l i t n lif] V

t e m p (b , T) : [{3},~5 r - lit] v T < 6 0 ~ .

4. Resolving the above query with the second fact in DB 3 gives

ca n _ l i f t (r l , b) : [{1,2,3},(~5 r - 11 V) n l i t n lif] v

t e m p (b , 6 1) : [{ 3 } , (J a ' - l i t) n lit] v 6 1 < 6 0 ~

As explained in 2, second and third atoms in the query can be eliminated,
leaving us with the query

can_l i f t (r l , b) : [{ 1 , 2 , 3 } , (3 - - li V) n lit n lit] , -

AMALGAMATING KNOWLEDGE BASES, IIl 59

To evaluate this query to the empty clause, we must find the maximal truth
value of V that satisfies the following equation - (5 r - 1} V) n t} t n ~ f = Q.
This is equivalent to - (3 - - 1} V) n { T } = O, and we conclude that V = T is
the solution to this equation that maximizes the value of V. []

As we can see from the example above, finding the maximum truth value of an
annotation variable that enables us to eliminate a query atom results in a
maximization problem with some constraints. Each resolution with the atom
introduces new restrictions on the set of truth values its annotation variable can
legitimately have. Notice that these restrictions can be part of another maximiza-
tion problem. As an example, suppose we have the following clause in the (regular
representation of) DBI:

can_lift(X, b) : [{ 1}, 1} I/1] ~-can_lift(X, b): [{2}, I} V1].
In other words, DB 1 contains the information that DB 2 is a more reliable source
of information as far as the object b is concerned. When we resolve this clause
with the original query in the above example, we get the following query:

can_l i f t (r l ,b): [{1,2,3},(~Y-- ~ V) n n Vl]

Vcan_ l i f t (X ,b) : [{2},3-- 1} I/1] *--

Here, V1 is going to be maximized as well, and we want to know how the current
maximum value of V is affected by the changes in the value of V1. We are now
going to formalize this idea.

5.1. Maximization Problems

5.1.1. Declarative Maximization. We would like to consider the situation wl~ere
an end-user asks an amalgamated knowledge base P query Q of the form
, - A : [D , V] where D is ground and V is an annotation variable.

If A is an atom (not necessarily ground), then an answer to Q is a
(substitution, truth value) pair (tr,/~) such that (V)Atr :[D,/z] is an A-logical
consequence of P. A maximal answer to query Q is an answer (substitution, truth
value) pair (tr , /z) such that there is n o / z ' where /z < /z ' such that (V)Atr :[D, p/]
is an A-logical consequence of P.

Note that the above notions of maximal answers are defined completely declara-
tive, and do not depend on any specific query processing procedure. Furthermore,
note that in the second case listed above, multiple maximal answers may exist,
depending on the substitution involved in the (substitution, truth value) pair.
However, for any given substitution tr, at most one (substitution, truth value) pair
of the form (tr, p.) may exist. A good part of the rest of this paper will be devoted
to computing maximal answers, and we will develop techniques to do so in the rest
of this section. Theorem 5.4 later in our paper shows that our procedure is sound
and complete w.r.t, computation of maximal answers. The first step in this proce-
dure is to interleave certain maximization problems during an S-resolution compu-
tation. This is the subject of Section 5.1.2 below.

Before proceeding to the interleaving of maximization problems and S-resolu-
tion, we observe that computing maximal answers is often much harder than just
computing S-refutations. The reason for this is that many different S-refutations

60 S. ADALI AND V. S. SUBRAHMANIAN

may be needed in order to compute the maximal answer to a query. In this paper,
we try to develop procedures that are as efficient as possible to compute maximal
answers, while recognizing that the problem of maximal answer computation is
itself intrinsically very complex.

5.1.2. Maximization Problems in Query Processing. In this section, we will de-
scribe certain maximization problems that can be solved during the construction of
S-deductions. These maximization problems will eventually help us in computing
maximal answers as described in Section 5.1.1.

Definition 5.1. (Maximization Problem) Let ~- be a complete lattice of truth values,
V 1 V, be annotation terms, and fobj: 3-~ ~ J " A maximization problem MP
is given as follows:

maximize fob j(V1 Vn)

subject to T1f~11f11(V1)I~12... f~l,fl,(Vn) = O

Tmamfm,(Vl)a,n2...l~m.fmn(Vn) = Q

where T~ ___~,, f/j is a map from .g-to 2 ~, and l-li, ~ { n , to, - } for all 1 _< i < m,

1 _<j < n. Intuitively, the expressions on the left of the equalities above are
unions/ intersect ions/differences of terms denoting subsets of J .

A mapping M: {V 1 V,} - -+J i s said to be a maximal solution of MP iff: (1)
the assignment of M(V~) to variable V~ (1 _< i < n) satisfies the constraints, and
(2) for all other mappings M' that satisfy the constraints, the inequality
fob](M(Vl) M(V,)) .~fobj(M'(V1) M'(V,)) holds w.r.t, the given lattice
ordering.

Example 5.2. Consider the truth value lattice FOUR, and suppose we wish to solve
the maximization problem

maximize V 1 I I V 2

subject to { _L ,f} U (~ V1) n (~ V2) = O.

Then V 1 = V 2 = T , V 1 = T , V 2 = t, and V 2 = T are all maximal solutions to the
above problem. However, the solution V 1 = _L, V 2 = t does not maximize V 1 tA V2;
hence, it is not a maximal solution. []

When dealing with lattices, it is possible to have more than one maximal
solution to a maximization problem. For example, the problem: maximize V
subject to {V} n {T} = O has two maximal solutions: V = t and V= f. It turns out
that the maximization problems that arise as a result of successive S-resolutions
have a special form. We will show that maximization problems generated during
the course always have a unique solution.

As an example, consider the query Q* =A: [D , J - - ~ V 1] , - . As has been
illustrated in Example 5.1, when processing this query by performing successive
S-resolutions, the atom A (when it occurs in successive resolvents in an S-deduc-
tion) will always have an annotation of the form

(~- ~Vl) n (~ V~) n-- . n (~ V.)

AMALGAMATING KNOWLEDGE BASES, III 61

where n > 1. W h e n a t t empt ing to evaluate the "cur ren t bes t" known truth value
for A, we need to maximize the value of V~ subject to the constra int

(: - - I tV,) n (l~ V2) n .-- n (i t V.) = 0 .

This is because 1/1 occurs in the query Q*, and we wish to obta in maximal possible
values of V 1. T h e o r e m 5.1 be low shows that there is a unique maximal solut ion to
this p rob lem, and it is ob ta ined by sett ing 1/1 = V 2 tA ..-tA V,. Pr ior to proving
T h e o r e m 5.1, we need to prove an e l emen ta ry result.

L e m m a 5.1. I f V l = Vz l l . . . t2 Vn, then It V l = (n V2) n .. . n (It V.) .

PROOF.

• Since V/_~ V 1 (2 < i < n), V 1 E (It V/). Hence , for all V 1 < V' , V ' ~ (It V/) and
(it vp_c((i t v 0 n - - . n (it v.)).

• Let V~ = (It V2) n --. n (It V,). For all V' ~ V~, we have that V/_< V' (2 _< i < n).
Since VI = V z tA . . . tA V, , it must be the case that I/1 < V' . Hence , V ~ It V1
a n d ((i t V 2) n - . . A (~ V ,) ~ ~V~. []

Theorem 5.1. F o r any ma x im i za t i o n p r o b l e m M P given as fo l lows:

maximize V1

subjectto (3-- ~ v1) n (it v2) n . .. n (it vn) = f,~

where all the V i, 1 < i < n are anno ta t ion terms, the m a x i m a l solut ion is: V 1 = V z
I I . . . l l V n .

PROOF. The t h e o r e m will be p roved by induct ion on the number , n, of annota t ion
variables.

Basis . T h e p r o b l e m M P 1 is given as follows:

maximize V 1

subject to (3 - - It V 1) = Q.

Then the maximal solut ion to MP1 is V1 = ± •

• u { } = 1 ; the re fore V 1 = _L is the solution given in the theorem.

• Since I tV 1 = ~ , (3 - - I t V 1) = O , and hence V 1=_1_ is a solution to the
constra int given in M P 1.

• The re is no solut ion VI' such that _L < V;. Since that implies _1_ ~ (5 r - It V~'),
V~' does not satisfy the constraint .

Induc t i ve Step. For all i < n, let the solution to the p rob l em MPi,

maximize V 1

subject to (~9-- ~ V 1) n -.. n (It V/) = 0

be given as 1/'1 = V 2 LI ... LI V~. Let the p rob l em M P n be

maximize V 1

subjectto (3 - - ItV1) n - . . o (i t ~) = O .

62 S. ADALI AND V. S. SUBRAHMANIAN

Then the solution to MP,, is V~ = V2 u ... u V n.

• Let a = V 2 u ... U V~_ 1 and /3 = a U V/. By the inductive hypothesis, a is a
solution to M P i_ ~. By Lemma 5.1, it is true that

~ c~ = (l~ Vz) n "" n (~ V/_I)

(l~ a) n (i t V~) = (it F:) n "" n (i t V~_I) n (l I V~).

By Lemma 5.1, i t (a U V/) =(i t ~) n (it V/)= ~ /3. Then

(Y - - i t /3) n (i t V2) n - - - n (i~ V~) = ®

and /3 is a solution to M P i.

• /3 is the only solution, since for all V' ~ / 3 , it is true that /3 ~ ~ V' and
/3 ~ (J - it V'). By the argument above, we know that

/3 = (it V2)n ... n (i t K)

/ 3 ~ ((it v2) n .-. n (~' v,,))

/3~ [(J - ~ v ') n ((~ v2) n ... n (it V,))] . ® .

Hence, V' does not satisfy the constraints for MPi, and cannot be a solution.
[]

Example 5.3.

maximize
subject to

Consider the maximization problem

V
(J - V) N i t V l n - - - n "~ Vn_ 1 =~J.

The solution to this problem is Vo~ a = V = V 1 U ... U V ,_ 1. Now, suppose the term
it V, is added to the constraint. Then the new maximum value of V is V = Vot a U V,.
In other words, having calculated Vot a once, we can use it to solve larger problems
maximizing the same variable. For instance, in the case of Example 5.1, we had
calculated the maximal truth value of V to be t (in the second step). In step 4, we
introduce the term it f into the constraint. Then the new maximal value of became
V = t u f = T . Therefore, we can conclude that V = T without solving the maxi-
mization problem from scratch. []

When using the above theorem to compute the maximal value of V~ subject to
the constraint that

it V l) n (i t v2) n --- n (i t v .) =

we need to address how the maximal value of V 1 changes when the value of one of
the V~s changes. The following theorem shows how this may be easily computed.

Theorem 5.2. Le t M P n be the maximiza t ion prob lem given in Theorem 5.1, and let
V 1 = ~ = V 2 u ... u Vn be the m a x i m u m solution. The prob lem MP" is defined by
replacing V i by V i' f o r s o m e 2 < i < n where V i < Vi'. The m a x i m a l solution to MP"

iS Vl = ot U Vi'.

AMALGAMATING KNOWLEDGE BASES, In 63

PROOF. Since ~ V/n n V / = ~ V/, and by Lemma 5.1, ~ (a U V/) = ~ a n ~ V/, then

~ Ol= ~ V 2 (') . . . ('1 ~ V n

il ~ n i l V / = il V2 n --. n i? V / n ... n i~ V.

(J- v, ')) n nv n-., n nv 'n ... n v. = @ .

Hence, V 1 = a tA V i' satisfies the constraint given in MP~, and it is the maximum
such value as a result of the second equality above. []

We will now start defining a mathematical description of the data structures
needed for an OLDT type proof processing procedure. First of all, a table is needed
for catching information obtained in the intermediate levels of resolution. Just as
[33] stores sets of atoms in the table, the table in our well framework will store a
set of annotated atoms. This leads to two key distinctions behind our framework
and that of Sato and Tamaki's [33]:

• As the atoms being inserted are annotated atoms, the insertion of new
annotated atoms to the table and checking if an atom is true in the table are
significantly more complicated operations compared to the simple case in
[33]. This will necessitate the development of three new suboperations called
revision, merging, and simplification. In the next section, we will define these
operations in detail.

• In addition, in our framework, whenever a new atom is inserted into the
table, there may be a need to (implicitly or explicitly) solve a maximization
problem. This is not true in the framework of [33].

5.2. MULTI_OLDT Table

Kifer and Subrahmanian [1811 have defined how substitutions (in the ordinary
sense; cf. Lloyd [22]) may be extended to apply to annotated atoms. The only
difference is that, now, substitutions may assign terms to annotation variables, and
these terms must range over the appropriate truth value lattice. Application of
substitutions to annotated atoms may then be defined in the obvious way. For
instance, when the truth value domain is the unit interval [0,1], the substitution

or= { X = a , Y = f (Z , a) , U = 0 . 2 5 }

when applied to the annotated atom p(X , Y, X):[{1}, ((U + 1)/2)] yields the anno-
tated atom p(a,f(Z,a),a):[{1},((0.25 + 1)/2)]; at this stage, we will assume that
the annotation term ((0.25 + 1) /2) is evaluated to yield the annotated atom
p(a, f (Z, a), A): [{1}, 0.625]. Throughout the rest of this paper, whenever we use the
word "substitution," we will mean a substitution in he extended sense defined above.

Definition 5.2. A MULTI_OLDT-table is a set of annotated atoms of the form A:
[D,/x].

We will now specify how the MULTI_OLDT-table gets updated when a new atom
is inserted. When such an insertion occurs, we would like the table to draw all
possible conclusions (about the truth values of atoms) based on the insertion being
made. For example, suppose the table contains the atom p(X, Y):[{1}, t], and we
insert the atom p(a, Y) : [{1}, ¢]. Now, the atom p(a, Y) : [{1}, -r] is a logical conse-
quence of these two atoms. We have two options. In the first option, we may insert

6 4 S. A D A L I A N D V. S. S U B R A H M A N I A N

the first atom as it is. In this case, to solve the query p(a,Y):[{1}, T] ~ , we will
need to perform two resolutions with the table. In the second option, we can
calculate the logical consequences of the new atom and insert them as well. In this
case, we want to ensure that we have computed all the necessary logical conse-
quences. Note that there are two kinds of logical consequences. (1) The first is
those that change the atom being inserted as in the case above. For example, we
now need to insert p(a, Y) : [{1}, T] instead of p(a, Y) : [{1}, f]. Atoms containing a
~-term smaller than the ~-term of the atom being inserted should be considered
for this case. (2) The second is the logical consequences that change the atoms
already stored in the table. Suppose, now, that we have the atom p(Z,f(Z)):
[{1,2},t] in the table. In this case, the atom p(a,f(a)):[{1,2}, T] is the logical
consequence of this atom and the new atom, i.e., p(a, Y) : [{1}, T]. Observe that if
we did not calculate case (1) before case (2), we could not find this logical
consequence. Hence, we will separate these two cases and call (1) the revision step
and (2) the merge step. After all of these new atoms are inserted into the table, we
have to remove the redundant atoms. We will call this step the simplification step.
For example, atom p(a,Y) :[{1}, T] subsumes the atom p(a, f (a)) : [{1,2}, T]. In
this case, we want to remove the latter from the table.

Definition 5.3. (Revision Step) Suppose F is a MULTI_OLDT-table and AI: [D l, ;z a]
is an annotated atom. Given any set X of annotated atoms of the form A:
[D,/x] where D is ground, we use X ti] to denote the set {A: [D,/x]IA:
[D, tz] eX&card(D)= i} of all annotated atoms in set X whose D component
has cardinality i.

The revision R of the atom Ai: [D 1,/~1] with table F is given as follows:

• R° = {AI: [Ol,/-*1]}"

• l i+1 = R i U { A ' i t r : [Dl, U(i.dlO',tz2tr]}lA'l: [DI , /£ r l]ER i and A2: [O2,/z 2]
E [,[i+1] and A' 1 :/z' 1 and A z :/x 2 are unifiable via mgu or and D E _D1}.

• R = R card(DO.

5.2.1. The Revision Step. Intuitively, the revision step finds all of the atoms in a
table that contain information relevant to the new atom, and updates the "maxi-
mal" truth value that may be associated with the new atom. This process starts by
comparing the new atoms with the atoms having a singleton _~-term. Then it is
compared with atoms with ~ - t e rms of cardinality 2, 3 , . . . until the cardinality of
the current .~-term is reached. Since there cannot be a .°2-term which is a subset
of the current _c~-term after this point, the execution stops. To ensure that all of
the logical consequences are computed in an efficient way, we consider the atoms
in the table in the increasing order of their ~- terms.

Example 5.4. Suppose F is as given below:

F = { p (X , c) : [{ 1 } , t] , p (f (Y) , Y) : [{ 2 } , f] , p (a , Y) : [{2},t] ,

p (a , Y) : [{1,2,3},f] , p (f (Y) , Y) : [{1,2,3}, t]}.

Then the revision of p(U, b): [{1,2},f] with the table F is the set R:

R = {p(U,b): [{1 ,2} , f] ,p (f (b) ,b) : [{1,2}, f] ,p(a,b): [{1,2}, T]} . []

AMALGAMATING KNOWLEDGE BASES, III 65

Definition 5.4. (Merging Step) Suppose the set R contains a set of atoms that are to
be inserted into a MULTI_OLDT-table F. Then the merge of R with F is the set
M = {A2tr: [Dz, U (/~1 o',/.h o')]lAl: [D 1,/x 1] ~ R is unifiable with A2: [D 2, ~z 2]

F via mgu tr and D 1 c D2}.

5.2.2. The Merging Step. The basic intuition (in the case when annotation
variables are ground) behind merging is the following: when inserting an atom AI:
[D 1,/x] ~ R into the MULTI_OLDT-table F, we examine all atoms A2: [D 2,/z 2] ~ F
such that D~ c D 2 and such that A 1 and A 2 are unifiable via mgu o----the
insertion of A~: [D1 , / z] may cause the truth value of A2: [D z, ~2] to "increase"
from /x 2 to U(/x 1,/z2). The above definition uses this intuition to define merging
when annotation variables may be nonground. The following example illustrates
how merging works.

Example 5.5. Consider the table F given in the example above. Let R be given by

R = {p(U,b): [{1,2},f],p(f(b),b): [{1,2},f],p(a,b): [{1,2}, T]}.

Since {1, 2} c {1, 2, 3}, only the atoms p(a, Y) : [{1, 2, 3}, f] and p(f(Y), Y) : [{1, 2, 3}, t]
in F will be considered for merging. The merge of R and F is the set

M = {p(a,b): [{1,2,3},f],p(a,b): [{1,2,3}, T] , p (f (b) , b) : [{1,2,3}, T]}.
[]

Definition 5.5. (Simplification Step) Suppose F is a MULTI_OLDT-table. Then a
simplified version of F is a table F ' where F ' is a minimal subset of F such that,
for all atoms A: [D,/z] ~ (F - F'), there exists an atom A': [D', ~'] ~ F ' such
that A': [D' , /x '] ~A: [D,/~].

5.2.3. The Simplification Step. Note that given a MULTI_OLDT-table F, there
may be many tables F ' which are simplifications of F. Any of these will suffice for
our purposes.

Example 5.6. Consider the sets R, M, and F given in Examples 5.4 and 5.5. The
union of these sets is the set F* given below:

F* = {p(X,c): [{ 1 } , t] , p (f (Y) , Y) : [{ 2 } , f] , p (a , Y) : [{2},t],

p(U,b): [{1,2},f],p(f(b),b): [{1,2},f],p(a,b): [{1,2}, T] ,

p(a,Y): [{ 1,2,3}, f] , p (f (Y) , Y) : [{1,2,3},t] ,p(a,b): [{ 1,2,3},f] ,

p(a,b): [{1,2,3}, T] , p (f (b) , b) : [{1,2,3}, T]}.

Since p(f (Y) , Y) : [{2}, f] ~ p(f(b), b) : [{1, 2}, f], p(a, b) : [{1, 2}, T]
p(a, b) : [{1, 2, 3}, f] and [{1, 2}, T] ~p(a, b) :[{1, 2, 3}, T]. Then the simplified version
F' of the table F* is given as

F ' = F* - {p(f (b) ,b): [{a,2},rl ,p(a, b) : [{1,2,3}, -I-] }. []

5.2.3. Table Insertion. In this section, we will show how the three operations of
revision, merging, and simplification may be jointly used to update a given table.

66 S. ADALI AND V. S. SUBRAHMANIAN

Definition 5.6. (Table Insertion) Suppose F is a MULTZ_Or.DT-table, and AI:
[D1, P-l] is an annotated atom. The result of inserting A 6 [D~, I~] into F is a new
table F ' constructed as follows:

1. Set M to {AI: [D1, t~l]}.
2. WHILE M 4= ~5 DO

BEGIN
(a) Find the revision R i of all the atoms Ai: [D i, p~i] ~ M.
(b) S e t R ' to OiRi .
(c) Set R to the simplified version of R'.
(d) Find the merge M' to R and F.
(e) Set M to the simplified version of M'.
(0 S e t F t o F U R .
END

3. Find the simplified version F' of F; set the final table to F' .

That is, the insertion of AI: [D~,/21] into the table F is a two-step process (after
initialization): in the first step, the atoms in the table are compared and merged
with the new atom in a continuous loop. In the second step, the redundant atoms
are removed. This process is guaranteed to terminate, as explained by the lemma
below:

Lemma 5.2. A t all times in the table insertion process, the following invariant is
maintained:
"I f i and i + 1 are two consecutive executions of the while loop in Definition 5.6
and Mi, Mi+ 1 are the simplified versions of the merges obtained at the end of the ith
and i + lth executions of step 2(e), respectively, then

• either M i+1 is empty,

• or if D~,i~ is a ~-term with the smallest cardinality among the ~-terms of the
atoms in M i, then all the ~-terms D i+1 of the atoms in M/+1 satisfy the
property that

card(Diin) < card(D i + 1).,,

PROOF. Let R i be the revision obtained at step 2(c), and let F ~ be the table
obtained at step 2(f) of the ith execution of the repeat loop. Since the loop is
executed an (i + 1)th time, we know that M i is not empty.

Now, observe that if Ak: [D k, tZk] is an atom in M i, then all of the atoms in the
revision R k of this atom with F ~ have the same ~- t e rm, namely, D k. Hence, the
cardinality of the .~-terms with the smallest cardinality in R ''i÷1 obtained in step
2(b) is the same as that of M i, namely, card(Diin). Since the simplification step
only removes atoms from the set, the same is true for R i÷ 1, i.e., .~-terms with the
smallest cardinality in R/+1 still have the cardinality card(Dill).

Now, consider the merge M ' ' i+1 o f R i+1 and F i. In case M ' ' i + l is empty, the
invariant is automatically maintained. If it is nonempty, we know from the defini-
tion of the merging step that for all atoms A i + ltr: D i ÷ 1, II (i ~i + lo%/_tko")] in M" i + 1,
it is true that there exists an atom A~: [D i,/x ~] in R i+1 that is unifiable with an
atom Ai+l: [Di+l , lzi+l] in F i via mgu or and such that D i c D i+l. Thus ,

card(D i) < card(Di+ 1). Since all the ~ - t e rms with the smallest cardinality in R i+l

AMALGAMATING KNOWLEDGE BASES, III 67

have the cardinality card(D~,in) , we have that card(Olin) <card(DO and
card(D~,i,) < card(Di+l). This is true for all of the atoms in M ''i+1, and since the
simplification step only removes atoms from M ''i+ 1, it is also true for all atoms in
M i+1 . []

Corollary 5.1. (Termination of the Table Insertion Algorithm) Let Dma x be a ~-term
in F with the biggest cardinality. Then the insertion of an atom A: [D, Ix] into F
using the algorithm given in Definition 6 terminates after at most card(Dm~ x)
executions of the WHILE loop.

P~oov. By Lemma 5.2, we know that at each execution of the WHILE loop in
Definition 5.6, the cardinality of ~ - t e rms with the smallest cardinality in M is
strictly larger than that of the previous execution of the body of this loop.
Moreover, we know that the .~-terms of the atoms obtained in the revision and the
merge steps are either equal to the ~ - t e rm of the new atom A: [D, Ix] or to the

_~-term of an atom in F. Hence, card(Dm~ ~) remains constant. Then, if the WHILE
loop is executed card(Oma x) - 1 times, at the end of this set of iterations, all

.~-terms in M with the smallest cardinality have cardinality card(Dmax). At the
card(Dmax)th execution of the repeat loop, the following happens: the revision step
does not change the cardinality of the .~-terms in M since there are no atoms in F
with .~-terms having cardinality strictly larger than card(~max), and consequently,
the merge is empty. Hence, the WHILE loop is exited, and the algorithm termi-
nates. []

The following examples illustrates the notion of insertion into a MULTI_OLDT-
table.

Example 5.7. Suppose we consider the MULTI_OLDT-table

V = {p(a ,b) : [{1,2},0.5] ,q: [{1,2},0 .7] , r : [{2},0.3]}.

The table that results from the insertion of p(a, X): [{1, 2}, 0.6] is

F * = { p (a , X) : [{1,2},0.6] ,q: [{1,2},0.7] , r : [{2},0.31}.

Note that the atom p(a, b): [{1, 2}, 0.5] is implies by the universal closure of the
atom being inserted, viz. p(a,X): [{1,2},0.6], and hence, p(a,b): [{1,2},0.5] is
eliminated from the table F.

A slightly more complicated example is the following:

Example 5.8. Suppose we are considering the lattice FOUR, and F = {p: [{1, 2}, t]},
and we are inserting the atom p: [{1},f]. The merge of these atoms is p: [{1}, 7_].
The table F before the execution of the simplification step consists of

F = {p: [{1,2},-I-] ,p : [{1,2},t] ,p : [{1},fl}.

A minimal subset F' is

r ' = {p: [{ 1 , 2 } , - r] , p : [{1},f]}.

The following example illustrates the execution of the revision and merge steps
of the table insertion routine.

68 S. ADALI AND V. S. SUBRAHMANIAN

Example 5.9. Let us consider the lattice 2 N of time points. An atom of the form p:
[{1,2},{t3,t4}] in this lattice can be read as: "p is true at time points 3 and 4
according to databases 1 and 2 jointly." Now, suppose the table in this example
contains the atoms

F = { p : [{1} , { t l , t 3}] ,p : [{2} , { t l , t 2}] ,p : [{3},{t7}],p:[{1,2,3},{t6}],

p : [{1,2,3,4},{ta,ts}]}

and the atom p: [{1, 2},{t3}] is being inserted into F. The following operations take
place:

• Step 1. M is set to {p: [{1, 2}, {t3}]}.

• Step 2(a-b). The atom p: [{1,2},{t3}] is revised according to atoms p:
[{1},{tl,t3}] and p: [{2},{tl, t2]} in F to give p: [{1,2}, U ({t3},{tl,t3},{tl,t2})] =
p: [{1,2},{tl,t2,t3}]. R is set to {p: [{1,2},{t1,t2,t3}]}.

• Step 2(c-d). M is set to {p: [{1,2,3},{t1,t2,t3,t6}], p: [{1,2,3,4},{tl,t2,t3, ts}]}.
F i s s e t t o F U R .

• Step 2 (a - b) R is set to the revision of all atoms in M, i.e., R = { p :
[{1, 2, 3}, {tl, t2, t3, t6, t7}] , p: [{1, 2, 3, 4}, {tl, t2, t3, ts, t6, t7}]}.

• Step 2(c-d). M is set to {p: [{1,2,3,4},{t1,tE,t3,t5,t6,t7}]}. F is set to F U R .

• Step 2(a-d). R is set to {p: [{1, 2, 3, 4}, {tl, t2, t3, t5, t6,/7}]} and M is set to the
empty set. F is set to F U R

• Step 3. The table before simplification contains the atoms

F = {p: [{1} ,{ t l , ta}] ,p: [{2} ,{ t l , t2}] ,p: [{3}, {t7}] ,p : [{1,2,3},{t6}],

p: [{1,2,3,4},{ts}] ,p: [{1,2},{t1,t2,t3}],

p:[{1 ,2 ,a} ,{ t l , tE , ta , t6 , tT}] ,p: [{1,2,3,4} ,{ t l , tE, t3 , ts , t6 , t7}]} .

This table is simplified to give the final table:

F ' = {p: [{1) , { t l , ta}] ,p:[{2} , { t l , t2}] ,p: [{3},{t7}],

p : [{ 1,2}, {tl , t2, t3}] ,p : [{ 1,2,3}, {tl , t2, t3, t6, t7}],

p: [{1,2,3 ,4} ,{ t l , t2 , ta , ts , t6 , t7}]} . []

Lemma 5.3. (Soundness of Table Insertion) Suppose F is a EULTZ_OLDT-tab/e, A:
[D, I~] an annotated atom and I an A-interpretation. Let F' be the table obtained
by inserting A : [D , Ix] into F. Then I A-satisfies all the atoms in F ' iff I A-satisfies
A: [D, Ix] and all the atoms of F.

PROOF. Suppose I is an A-interpretation that A-satisfies A: [D,/x] and all the
atoms in F. If I A-satisfies all the atoms introduced in the revision and merging
steps, then I A-satisfies all the atoms in F' (the simplification step only reduces the
size of the table). Assume A': [D',/.L'] is an atom in F that is unifiable with A:
[D,/z] via some substitution o- and such that D'c_D. Then the atom Atr:
[D, U (/xtr, /z ' tr)] is added to the table. Clearly, I A-satisfies both Ao-: [D, ~tr]
and A'o': [D',/~'o-]. By the definition of A-satisfaction, txtr< Ui~ O I (A t r X i) and
~'o'< Ui~D,I(A'~r)(i). But D' c D; hence, U(~o-,/~'o-) < Ui~oI (A t r) (i) , and
/A-satisfies Ao': [D, U(~o-,/x' ,o-)]. []

AMALGAMATING KNOWLEDGE BASES, III 69

It follows from the above lemma that if A: [D,/£] is true in the table F at a
given point in time during the computation of a query, this annotated atom will
continue to be true at all times in the fu tu r e - - t h e main difference is that A:
[D,/£'] may also be known to be true where /£ </£ ' . In other words, the set of
consequences of the table is growing monotonically as more time is spent process-
ing a query.

5. 3. Complexity o f Table Insertion

Complexity of Revision. Suppose F til = {A: [D,/£]IA: [D,/£] ~ F and card(D)=i}.
Then the worst case time complexity of computing R i+1 from R i is
O(card(Ri)card(Fti+ll)l) where l is the cost of checking whether two annotated
atoms are unifiable and checking whether D 2 ___ D r An unification is a well-known
linear time problem (cf. Martelli and Montanari [25]), it follows immediately that l
is linear in the number of symbols in the atoms.

It is easy to see that card(R i+ 1)< card(R i) + card(Eli+ 1]). Thus, the total cost of
the revision step for an atom A j: [D r,/£j] with F where card(D)= d is given by

CR <- ~,, card(rtil)l 1 + ~ card(r tkl .
i~l k=l

Assuming that card(F t~l) = a for all i, the above upper bound on C R reduces to
C R <_ (~2dl(d + 1)/2) - (~2 _ a)dl. Hence, the worst case complexity of revision is
0(~2d21) and card(R)< da + 1. In short, revision is a polynomial-time operation.

Complexity of Merging. Suppose F is a MULTT OLDT-table and F vl = {A:
[D,/£]tA: [D,/£] ~ F&card(D) = i}. Suppose there are n deductive databases in
the amalgamated system. Then the time complexity of merging F with a set R is
given by

C M = ~ card(rtil)card(R)l.
i=d

Assuming again that card(F til) = a, CM < card(R)la(n - d + 1) and card(M) < a(n
- d + 1). Thus, the complexity of merging is polynomial-time.

We now come to the third and final step that is used in defining the insertion of
an annotated atom A: [D,/£] into a EULTI_OLDT-table. This step is called
simplification. The basic idea in simplification is that " redundant" atoms in a table
should be eliminated..

Complexity of Simplification. In the worst case, the simplified version of a set M
of atoms may be computed in O(card(M)2l). The reason for this is the following:
consider the ordering ~ on M defined as follows: Ai: [DI,/£1] ~A2: [D2,/£z] iff
A2: [D2,/£2] ~AI : [O1,/£1]" ~ is a reflexive and transitive ordering on M, and
hence induces an equivalence relation ~ on M defined as: AI: [D1,/£ 1] ~Az:
[D2,/£2] iff Ax: [D1,/£1] ~A2: [D2,/£2] and A2: [D2,/£2] ~AI: [D1,/£1]. The
relation can now be extended to the equivalence classes generated by ~ as
follows: [AI: [D1,/£ 1] ~ *[A2: [D2,/£2] iff AI: [D1,/£ 1] ~A2: [D2,/£2]. ~ * is a
partial ordering on equivalence classes. The simplification step corresponds to
finding the ~ *-maximal equivalence classes, and then choosing exactly one mem-
ber from each of these ~ *-maximal equivalence classes.

70 S. ADALI AND V. S. SUBRAHMANIAN

The step of computing whether AI: [D1, ;~1] ~A2: [D2,/z2] is a linear time
operation as it only involves checking whether there exists a substitution g such
that: (1) A2o-=A1, and (2) D 2 __.D 1 and (3)]-~lOr__< /.L2Or. Computing equivalence
relations can be performed in time that is quadratic in the number of annotated
atoms in M (cf. Knuth [19, Alg. E, p. 354]). Finding the , * maximal elements of
the ~-equivalence classes can be done in linear time using standard topological
sorting (cf. Knuth [19, pp. 258-265]). In short, the complexity of simplification is
quadratic.

In the worst case, the cardinality of the simplified version of a set is the same as
the cardinality of the original set.

Complexity of Table Insertion Algorithm. The table insertion procedure (Defini-
tion 5.6) is a polynomial-time procedure. To see this, we observe that the loop
in the table insertion procedure can be executed at most n times, where n is the
total number of deductive databases being integrated. Each iteration of the loop
takes polynomial-time as the steps of revision, merging, and simplification
are all polynomial-time operations. Hence, the overall complexity of table insertion
is polynomial-time,

Improving the Efficiency of Table Insertion. The running time of the table
insertion algorithm given in Definition 5.6 can be reduced if certain assumptions
are made about the MULTI_OLDT-table. Consider MULTI_OLDT-table F that
satisfy the following two conditions at all times:

• (Complete information) Whenever there are two atoms A~: [D1,/z 1] and A2:
[D 2,/z 2] in the table that are unifiable via mgu (r and such that D 1 c_D 2,
then there must be an atom in F that subsumes the atom A2(r: [D 2, tA
(]3"1 Or ,].L20")].

• (No redundant information) At all times, the simplified version of the table is
the same as the original table.

These conditions will be referred to as the compactness conditions.
Furthermore, suppose the table is organized in such a way that all the atoms A:

[D, tz] having the same predicate symbol are stored consecutively in nondecreasing
order of the cardinality of their ~-terms. In other words, the atoms with singleton
sets as ~- terms come first, then the atoms having D-terms with two elements, and
so on. For instance, the table F of Example 5.4 can be stored in the order shown
below:

F = {p(X ,c) : [{ 1 } , t] , p (f (v) , r) : [{ 2 } , f] , p (a , Y) : [{2},t],

p (a , Y) : [{ 1 , 2 , 3 } , f] , p (f (Y) , y) : [{1,2,3},t]}.

However, storing it in the order

F = { p (f (Y) , Y) : [{1,2,3},t] , p (Z (Y) , Y) : [{2},f] , p (a ,Y) : [{2},t],

p(a ,Y) : [{1,2,3},f],p(X ,c) : [{1),t]}

is not permitted.
Given that the tables satisfies the above conditions, the insertion routine for

inserting the atom AI: [D1,/x 1] into the table F can be modified as follows:

1. Set R to the simplified version of the revision of A1: [D 1,/z 1] with F.
2. Set F for F O R .

AMALGAMATING KNOWLEDGE BASES, III 71

3. FOR i = card(D 1) TO card(largest ~- te rm) DO begin
(a) Find the set r[il = {Aj: [Oj,/zj]lZj: [Oj,/xj] ~ r&card(Dj) = i}.
(b) Find the simplified version M of the merge of R and F ti].
(c) Set F t o F U M .
(d) Set R to R u M.
end

4. Find the simplified version F' of F; set the final table to F' .

The difference between this algorithm and the original insertion algorithm is that
this algorithm does not perform the revision operation in each iteration of the loop
--instead, it is performed only once (viz. in step 1 above). The set R stores the set
of new atoms, i.e., atoms that were produced as a result of revision or merge steps.
Unlike the pervious algorithm, the merge operation is performed with the set R of
new atoms and the atoms in nondecreasing order of the cardinality of their
~-terms. As a result, every atom in the original table will be processed only once.
In other words, if the size of the table storing atoms with the same predicate
symbol as A is K, then the for loop is executed at most K times.

The running time of the simplification step can be further reduced if special
data structures are used to store the atoms in the MULTI_OLDT-table. One such
arrangement is that atoms having the same -@-terms are arranged according to a
secondary key. In other words, if AI: [D,/z 1] subsumes A2: [D,/z2], then AI:
[D,/z 1] comes before A2: [D,/z 2] in the table. Moreover, A2: [D,/z 1] contains
links that can be traversed to reach A2: [D,/z 2] and all the other atoms that are
subsumed by A1: [D,/z I]. One advantage of such a data structure is that whenever
it is determined that the atom being inserted subsumes an atom B already in the
table, then all of the atoms that are subsumed by B can be removed without
processing the entire list of such atoms by simply dereferencing a pointer. More
details about the actual data structures will be given later.

5.4. Dynamic MULT I _ OLDT-Computation

In this section, we will show how deductions may be constructed using the
MULT I_ OLDT-table.

Definition 5.7. Suppose F is a MULTI_OLDT-table, and let W be the expression

[Oq
where [Dq,, [d, qsi] , 1 <_~ i < m, are in set expansion form. (Note that every query
has a regular representation of this form.) Then a rfUr.TI_OLmT-child of W
w.r.t. F is:

1. an3(S-resolvent of W with (the regular representation of) a clause in the
amalgamated knowledge base P, or

2. any S-resolvent of W with (the regular representation of) an annotated atom
in F.

Note that the above definition only specifies how queries make use of the
MULTI_OT.DT-tables. We will now specify how MULTI Or,DT-tables get "built up"

72 S. A D A L I A N D V. S. S U B R A H M A N I A N

as queries are being processed. The process of solving queries and caching
intermediate answers in an intermixed fashion will be called a dynamic
MULT I_ OLDT-computation.

Definition 5.8. (Dynamic MULTI_OLDT Computation) Given a query Q and an
amalgamated knowledge base P, a dynamic MULTI_OLDT computation associ-
ated with Q, denoted DYNe(Q) , is a sequence of distinct 4 queries Q~', Q~',. . . , Q*
and a sequence of (not necessarily distinct) tables F1, ['2,---, Fn where:

1. Q~' is the regular representation of the original query Q.
2. F 1 = O .
3. Q*+ a is a l~mLTI_OLmT-child of (2;- for some j < i.
4. Fi+ 1 = F i if 07+1 is a MULTI_OLDT-child of Q* w.r.t, the table F/ using

condition 2 of Definition 5.7.
5. If Q*÷ a is a MULTI_OLDT-child of Q* w.r.t, the table Fi using condition 1 of

Definition 5.7, then F~+I is obtained from F~ as follows:
(a) If the clause in P with which Q'S-resolves has one or more atoms in its

body, then Fi+ a = I ' i"

(b) Otherwise, Fi+ 1 is obtained as follows:
i. Let T 1 be the table obtained by inserting (into table F~*) the anno-

tated atom Ai: [Oi, tzi]O where Ai: [Di, Izi] is the head of the clause
in P that participated in the S-resolution step that generated Q*÷I
and 0 is the unifying substitution used in performing that resolution.

ii. Consider, now, the parent, P, of the atom Aj: [Ds~,/zs~] occurring in
Q*. If there exists a substitution (r such that all of the children B:
[D*, IX*] of the parent are true in T a via substitution or (i.e., there
exists an atom B': [D',/~'] in T a such that Bo" is an instance of
B' ,D' c D * and * _ /.~ cr n ~ /zo-= O), then insert Pt(r into the table T 1
where Pt is the twin of P. Repeat Step 5(b)ii until either no such
substitution exists, or until no parent exists.

The final result of this construction is the table F~+ r

Before we give examples of dynamic MULTI_OLDT-computations, we remind
the reader of the concept of the "twin" of an atom. Suppose we are processing the
query ~ q: [{1, 2}, t], and we resolve (the regular representation of) this query with
the (the regular representation of) the clause q: [{1},t] ~ Body. In this case, the
"twin of the (regular representation of) atom q: [{1,2},t] will be q: [{1},t]. Now,
suppose that later we solve Body, and this allows us to conclude that the query is
solved, and hence q: [{1,2},t] is a logical consequence of the program. In fact, we
know a stronger fact, viz. that q: [{1},t] is a logical consequence. Since q: [{1},t]
implies q: [{1, 2}, t], we would like to store the former rather than the latter. For
this reason, we want to remember the twins of the atoms when building dynamic
MUr.TI_OLDT-computations. The following examples show both how dynamic
iX~JLTI_OLDT-computations are done and how twins are used.

4Two set annotated queries Q~ and Q~ are called distinct if they are not variants/permutations of
each other. The requirement of "distinctness" ensures that loops are eliminated during blZILTI OLDT-
computations.

AMALGAMATING KNOWLEDGE BASES, III 73

Example 5.10. Suppose we consider the lattice FOUR. Let P be the very simple
program

p: [{a},t] *- (5.1)

p: [{1},f] ~- (5.2)

q: [{2},t] *--r: [{1},t] &p: [{1,2}, T] (5.3)

r: [{1},t] ~ p : [{1}, T] (5.4)

and let Q be the query ~ q : [{l,2},t]. The regular representation of Q is q:
[{1, 2}, { _L, f}] ~ . Figure 3 shows an example of a dynamic MUr.TZ_OLDT-computa-
tion.

We now explain how Figure 3 corresponds to a dynamic MUr.TrOLDT compu-
tation:

1. The regular representation of the original query is q: [{1, 2}, {f, 3_ }] ~ --this
resolves with the regular representation of clause (3), yielding

r: [{1},{f, ±}] Vp: [{1 ,2} ,{ f , t ,±}] ~ .

Note that both set-annotated atoms in this S-resolvent having q: [{1, 2}, {f, Z}]
as their parent, and this is shown by dotted links in the diagram. Similarly,
the "twin" of the atom q: [{1,2},{f, ±}] is the head of the clause, i.e., q:
[{2}, t]. The broken lines with arrows at both ends shown in the diagram link
atoms and their twins. As this resolution did not occur with a program clause
that had an empty body, the table remains empty after the S-resolution step.

2. At this stage, r: [{1},{f, ±}] vp : [{1, 2}, {f, t, ±}] ~ S-resolves with the regular
representation of clause (4) in the program, yielding

p: [{1,2},{f,t, l }] Vp: [{1},{f,t, 3_}]

q- [{2},t] < > q: [{1 ,~} , f f , ±}] , -
.......... ~ . . ~ ~ (a) ~ ~..

r : [{1} , t] < > r : [{1} , { f , .L}] ¥ p : [{]';2}, { f , t~ 2_}] +--

A: ~ ,~ ~ (4)

p : [f l } , t] < > p : [g } , ff , t , z }] v p : [g , 2 } , { f , t , x }] , -

p: [{i}, ~ ~-- - ~ a,: [g}, if,t, a_)] v p : [g,2}, {t}] ,-

~ ,~t~ ~ 1~)
p: [f l } , { f , t , z }] ,--

~ with tsble

~:MI~I'Y QUJ~Y

FIGURE 3. Dynamic ~LTI_OLDT-computation of <--- q: [{], 2}, t].

74 S. ADALI AND V. S. SUBRAHMANIAN

Note that the parent of p: [{1},{f,t, 3-}] is r: [{1},{f, 3_}]. As this resolution
did not occur with a program clause that had an empty body, the table
remains empty after the S-resolution step.

3. p: [{1, 2}, {f, t, 3-}] v p : [{1},{f,t, 3-}] ~ now resolves with regular representa-
tion of clause (1), yielding

p: [{1,2},{t}] v p : [{1},{f,t , 3-}] ~ .

Note that the parent of the set-annotated atom p: [{1,2},{f, 3-}] is p:
[{1, 2}, {f, t, _1_ }]. As this resolution occurs with a program clause that had an
empty body, this means that the annotated atom p: [{1}, t] gets added to the
table, i.e.,

F = {p: [{1},t]}.

4. In the next step, p: [{1,2},{t}] v p : [{1},{f,t, 3_}] *- S-resolves with clause (2),
yielding p: [{1},{f,t, 3-}] *--. As this resolution also occurred with a program
clause having an empty body, the annotated atom p: [{1}, f] must be inserted
into the MULTI_OLDT-table, F. As F already contains the atom p: [{1},t]
which is not implied by the atom p: [{1}, f] being inserted, these two atoms
must be "merged"; this leads to the new table

F = {p: [{1}, V]}.

Since all the children of p: [{1, 2}, {t}] are solved, its twin, which is p: [{1},f],
should be inserted into F. Since p: [{1}, -1-] subsumes p: [{1},f], I" remains
unchanged. Now, all of the children of p: [{1, 2}, {f, t, 3_}] are solved, and its
twin p: [{1}, t] is inserted into the table. Since this atom is also subsumed by
the atom in F, the table remains the same. At the next step of the
propagation, the twin of the atom r: [{1}, {f, 3_ }], which is r: [{1}, t], is inserted
into the table, giving

r = { p : [{ 1 } , T] , r : [{1},t]}.

At the final step of the propagation, the atom q: [{1,2},{f, 3_}] is solved, and
its twin q: [{2},t] is added to the table to give the final table:

F={p: [{1},T],r: [{1},t],q: [{2},t]}.
5. Finally, the set-annotated atom p" [{1},{f,t, 3_}] resolves with (the regular

representation of) p: [{1}, T] in the table, yielding the empty query.

The preceding example does not show how the MULTI_OT.DT-table gets modi-
fied when an atom has more than one child or when atoms contain annotation
variables. To illustrate this better, consider the following example.

Example 5.11. Consider the amalgamated knowledge base in Example 5.10, and
suppose we add the following clauses to it:

s: [{m},V1] ~---p: [{1},V1] &q: [{1,2},t] . (5.5)

t: [{m},V2] *--s: [{m},V2] &r: [{ 1 } , V j . (5.6)

Let us now consider the simple query Q---*--t: [{m},V]. The regular representa-
tion of Q is Q* = t: [{m},~Y-- ~ V] *--. The dynamic MULTI_OLDT-computation

A M A L G A M A T I N G K N O W L E D G E B A S E S , I I I 75

Step 1

Step 2

Step 3

Step 0

~ : [{ , . 1 , r - it v] . -
.,~....

. ~ • ~
~atla ~l,u~..(6)

.. . . . - , . , . .

: [t = } , (r - ~ v)n *t v,] v , : [{ - } , r - ~t vd v , : [f l } , r - ~ vd .-

. . " '-.

: [{ - } , (r - It v) n ,r v,] ~ , , : [{ = } , (r - . ~ v ~ ltv,] v ~ : [f l } , r - , t v,]v

p : [f l } , r - rr v,] v ~ : (0 , =} , { < z }] . -

: [{ , , } , (r - ~ v) n ltv2] v , : [{ = } , (r - It v2)n,r v,] v , : [{ ~ } , r - It vdv

p : [{~} , :r- it v,] . -

with table

zu P~t Q u zzY

FIGURE 4. Dynamic MULTI OLmT-computation of ~ t: [{m}, V].

associated with this query is shown in Figure 4 - - the twins of the atoms are not
shown in the figure. Let us examine how this query is processed.

1. Initially, the MULTI_OLDT-table is empty, and the root of the dynamic
MUr.Tm_OLmT-computation has Q * = t: [{ m } , J - It V] <--- as its label. This
S-resolves with the clause (6), yielding the S-resolvent

t: [{ m } , (J - ~'V) N ~'V2] Vs: [{m} ,g - - ItV2] Vr : [{1} , J - - ItV2] ~-.

The three new set-annotated atoms all have t: [{ m } , J - It V] as their parent
(cf. dotted lines in Fig. 4). The twin of t: [{ m } , J - It V] is t: [{m},V2]. Since
the body of clause (5.6) is not empty, the table remains empty.

2. In the next step, the atom s: [{m},3-- 1} I"2] is S-resolved with clause (5.5) in
the program to give the resolvent

t: [{ m } , (3 - - {}V)n Itv2] v s L [{ m } , (3 - - ItV2)n 11112] v

r: [{ 1 } , g - I}V2] v p : [{1} ,3- - ~ <] Vq: [{1,2},{f, _L}] ~ .

The three new atoms p: [{1},3-- ~ V1],q: [{1,2},{t _L}], and s: [{m},(3--
1} 1/2)A It V 1] all have s: [{m},~q--11V 2] as their parent. The twin of s:
[{ m } , J - I} V2] is s: [{m},V1]. Again, the table F remains empty.

3. At this stage, q: [{1,2},{f, J_}] is chosen, and it is processed as shown in
Figure 3, and the table at the end of this process is as follows:

r = {p: [{1}, q-] ,q : [{2}, t] , r : [{1},t]}.

4. (Propagation Step) Since one of the atoms in the query at step 3 is solved, the
propagation of the result starts from this point. Consider the substitution

76 S. A D A L I AfqD V. S. SUBRAHIVIANIAN

0-1 -= {V1 =] - , V2 = V1}. The atom (p: [{1},J-- it V1])0- is true in F, and the
atom (s: [{m},(~T- it V 2) n it 1/1])o- 1 = s: [{m},O] is a tautology; hence, all the
children of s: [{m},~- it V 2] are solved via substitution o-. Hence, the twin of
(s: [{m},3-- it V 2]})0-1, which is (s: [{m}, V 1]) 0-1 - s: [{in}, T], is inserted into
F, giving

F = { p : [{1}, T] , q : [{2}, t l , r : [{1},t] ,s: [{Ill}, T]}.

The propagation continues. Since an atom in the query at step 2 is solved, its
parent should be checked. Now, consider the substitution 0- 2 = {V 2 = V = t}.
This satisfies all of the children in t: [{m}, (J - 1} V)] since the atoms (r:
[{1},3-- 1} V2])0- 2 - r : [{1},{f, _L}] and (s: [{m} , J - 1} V2]})0- 2 i=s" [{m},{f, Z}]
are both true in F and the atom (t: [{m},(3-- 1} V) n 1} 1/2])0- 2 - t: [{m},QS] is
a tautology. Hence, the twin of (t: [{m},3-- it V])0-2, which is the atom t:
[{m}, t], is inserted into F to give the table

F = { p : [{1}, T] , q : [{2}, t] , r : [{1},t] ,s: [(m}, T] , t : [{m},t]}.

5. Finally, the original query is resolved with the atom t: [{m},t] in F via
substitution {V= t} to give the empty clause.

5.4.1. Soundness and Completeness of Dynamic MULTI_OLDT-Computation. We
are now in a position to establish the soundness and completeness of dynamic
MULTI _ OLDT-computations.

Theorem 5.3. (Soundness and Completeness of Dynamic MULTI_OLDT-Computa-
tion) Suppose P is an amalgamated knowledge base and Q is a query. Then:

1. If Q~' Q* is F 1 F, is a dynamic MULTI_OLDT computation associ-
ated with Q, and if A: [D,/2] is in Fn, then P mA: [D,/2].

2. Suppose C = (AI: [D 1 , / 2 1] • - - . dZ.Ak: [Dk,/2k])- If P m (V)Ctr for some sub-
stitution 0-, then there exists a dynamic MULTI_OLDT computation associ-
ated with Q = ~ C, and a table F, in this MULTI_OLDT-computation such
that for all 1 < i < k, either/2i o- = ± or there exists an atom A'i: IDa,/2'J ~ Fj
such that A'i: [D~, ~.] subsumes Ai0-: [Di,/2i0-].

PROOF. (1) By induction on n.
Base Case (n = 1). A: [D,/2] e F 1 means /2 = _L, which means that A: [D,/2] is

a tautology in the logic, and so P mA: [D,/2].
Inductive Case (n = m + 1). In this case, by the induction hypothesis, all atoms

A: [D,/2] ~ F,, are logical consequences of P. Qm+I is obtained in one of two
ways:

1. The first possibility is that Q,,+ 1 is the S-resolvent of an atom AI: [D1,/21] E
F n and Qj (j < n) on an atom A2: [D2,/22] via mgu 0. In this case, no atoms
are added to the table as a result of the resolution. But, if it is the case that
(/22,0) n 1}(/210) = 0 , then the parents of A2: [D 2,/22,] have to be checked.
For this, we will prove the soundness of propagation in item 3 below.

2. The second possibility is that Qm + 1 is obtained by S-resolving a clause C with
Qj (j < n) on an atom A2: [D 2,/22,] via mgu 0. If the body of the clause C is
nonempty, then no atoms are added to the table. Otherwise, suppose C =AI:

AMALGAMATING KNOWLEDGE BASES, n l 77

[D1, Ix1] ~ . Then this atom is added to the table. Clearly, P ~AI : [D 1, Ixl]"

Now, the propagation step starts.
3. (Soundness of propagation) Suppose A: [D, Ixs] is an atom in Qk (k < m),

and suppose its twin is the atom At: [D, Ixt]. The children of this atom are
Ai: [Di,,-~'-~ Ixi](l < i < m) and AO: [D, IxsON ~ Ixt] for some mgu 0.
Clearly, At: [Dr, IxJ ~ A I : [D1, Ix1]& ... &A": [Dm, Ix,.] is an instance of a
clause C in P; hence, P ~ C. Now, suppose there exists a substitution tr such
that all of the children (Ai: [Di ,3 - - ~ Ixi])o- and (AO: [D,(Ixs n ~ Ix)0])tr
of A: [D, Ix] are true in Fn. In this case, (At: [D t, IxJ)tr is added to Fn+ 1. By
the definition of an atom being true in the table, there must be an atom A'/:
[D~,Ix'i]~ F n such that Aitr is an instance of A'i,D ~ c_D i and (~ - - ~ Ixitr) n

Ix'i=Q. By the induction hypothesis, P~A' / : [D~,~]. Thus, P ~A ~t r :
[D i, I.{i]. Since (3 - - ~ Ixio-)n ~ ~ = Q, then Ixi O ' = ~ is a solution to this
equation; this implies that P ~Zio-: [Oi, Ixio]. Thus, all of the atoms in the
body of C are logical consequences of P, and the same is true for the head of
C, i.e., P _1_ (At: [Dr, Ixt])o r.

(2) Clearly, every MULTI OLDT-resolution corresponds to an S-deduction. By
definition of dynamic MULTI OLDT-computations, an annotated atom is placed in
the corresponding MULTI_OLDT table as soon as it is solved. Hence, by the
completeness of S-resolution, if P is an amalgamated knowledge base having the
fixpoint reachability property, and if P m V(Ai: [D i, Ixi])tr, then either Ixi o- = ± or
there exists an S-refutation for the atom A'i: [D~, Ix'/] where A'~: IDa, ~] subsumes
(A~: [D/, Ixi])tr. In the first case, the statement of the theorem is proven automati-
cally. In the second case, the atom A'i: [D~,#J will be placed in the
MULTI_OLDT-table. []

5.4.2. Computation of Maximal Answers Using MUL T I _ O LDT-Computations. Hav-
ing established the soundness and completeness of dynamic MULTI_OLDT-compu-
tations, it is now relatively straightforward to show that all maximal answers (in the
declarative sense of Section 5.1.1) are guaranteed to be found by dynamic
M U L T I _ OLDT-computations.

Theorem 5.4. (Completeness of Maximal Answers Found by Dynamic MULTI _OLDT-
Computation) Suppose P is an amalgamated knowledge base and Q is a query.
Then:

1. Suppose Q = A : [D,V] where A is a ground atom, and suppose IX is the
maximal answer to this query. Then there is a dynamic MULTI_OLDT-computa-
tion consisting of Q~ Q* and F 1 F n associated with Q such that A:
[D , IX] is subsumed by some atom in Fn.

2. Suppose Q =A: [D, V] where A is a nonground atom, and suppose (tr, Ix) is a
maximal answer to this query. Then there is a dynamic MULTm_OLDT-computa-
tion consisting of Q* Q* and F 1 I" n associated with Q such that A A:
[D,mu'] is in F, and tx <_ Ix' and A is more general than tr. []

PROOF. (1) As P ~A: [D, Ix], it follows immediately that P ~ (V)[A: [D, V]]tr
where t r= {V= Ix}. Therefore, it follows by part (2) of Theorem 5.3 that there
exists a dynamic MULTI_OLmT-computation Q~' Q* and F 1 F, associated
with Q such that A: [D, Ix] is subsumed by an atom in In.

78 S. ADALI AND V. S. SUBRA_HMANIAN

(2) In this case, P ~ (V)A tr: [D,/z]. There foreP ~ (VXA: [D, V])3, where y = tr U
{V =/z}. The result now follows immediately from part (2) of Theorem 5.3. []

5.4.3. Termination Properties of Dynamic MULTI_OLDT-Computations. In the
definition of dynamic MULTI_OLDT-computations, the sequence of queries and
the sequence of tables are finite. Conceptually, there is no reason these sequences
cannot be infinite (although computational considerations benefit from finiteness).
Suppose P is an amalgamated knowledge base, Q is a query, and DYNe(Q) is a
dynamic MULTm_OLDT-computation associated with Q of the distinct sequence of
queries * * . * Q1, Q2 Qn and the sequence of MULTI_OLDT tables F 1, l" 2 I n.
An infinitary extension of DYNe(Q) is any infinite sequence of queries Q~',
Q~ Q*, Q*+I and any s eq u en ce of MULTI_OLDT-tables ,
F 1,F 2, , F , , F n+l having Q~' * * Q2 Qn and F 1, F 2 In, respectively, as
prefixes. These sequences satisfy all of the same conditions as MULTI_OLDT-tables
- - t h e only difference is that they are infinite. We would like to ensure that such
computations do not arise when an interpreter attempts to construct dynamic
MULTI_OLDT-computations. We now define conditions on MULTI_OLDT-compu-
tations that will allow infinite computations to be eliminated.

Definition 5.9. (Finitary Dynamic MULTI_OLDT-Computation) Suppose P is an
amalgamated knowledge base, Q is a query, and DYNe(Q) is a dynamic
M U L T I OLDT-computation associated with Q of the distinct sequence of queries
Q1 ,Q2 Qn and the sequence of MULTI OLDT tables I'l,I" 2 I n. Then
DYNe(Q) is said to be finitary iff, whenever an atom A: [D,/z s] in query Q*,
i < n is S-resolved with a clause C in the program to give Q*, i < j _< n, it is the
case that:

1. (Subsumption Rule) neither A: [D, tz s] nor any of the parents of A: [D,/zs]
are entailed by any of the children A: [D,/zs],

2. (Irredundancy Rule) there is no other query in the above sequence of queries
that was obtained from Q* by S-resolving on atom A: [D,/z~] with clause C
in the program, and

3. (Halting Rule) if Q* is the empty query, then i = n.

Definition 5.10. (Subcomputations) Suppose P is an amalgamated knowledge base,
Q is a query, [(Q~',Q~,.. * * • , Q n , Qn + 1), (F1, F 2 F,, F, + 1)] is an infinite
MULTI_Or.DT-computation of O w.r . t .P . Any MULTm_or.mT-computation

• * * ' ' . . . , r ~)] [(O,~o), O~(2) a~(,,)), (F1, F2,

where

1. Q~ = Q*o),
2. F 1 = F~, and
3. each Q,,(i) = (27 for some 1 _< i < j

is said to be a subcomputation of the infinite MULTm_OgDT-computation
given above.

The following result shows that given any atom A: [D,/~] that is true in a table
associated with an infinitary MULTI_OLmT-computation, there is an equivalent
subcomputation.

AMALGAMATING KNOWLEDGE BASES, I l l 79

Lemma 5.4. Suppose P is an amalgamated knowledge base that has no function
symbols (logical and annotation). Suppose Q is a query. Then for every infinite
MULTI _ OLDT-computation,

* • .
. . . . Qn,Qn+,, . .) , (r l , r : 2 , r , , r n + , )]

of Q w.r.t. P, there exists a finitary MULTI_OLDT-subcomputation

* * - * r' r -)] ~ ' = [(Q.(1),Q~(2) ~ (, ~) i , , -] , :

of ~ such that if A : [D,/z] is entailed by an atom in U i~=] Fi , then A: [D,/~] is
entailed by an atom in F' m "

PRoof. As there is no annotation functions and Datalog function symbols, only
finitely many annotated atoms (up to renaming of variables) can be generated in ~ .

o~ F implies A: Thus, there exists an integer i such that F/implies A: [D,/x] iff U j=l j
[O,/x]. []

5.4.4. Search Strategy. Lemma 5.4 says that whenever an amalgamated knowl-
edge base contains no annotation functions and no ordinary function symbols, then
all MULTm_OLDT-computations can be made "finitary." The space of
MUr.TI OLmT-computations associated with a query may be viewed as a finitely
branching tree, all of whose paths are MULTI OLmT-computations. Let us call this
tree F e. Thus, each node in F e is labeled with Q* for some query Q. As each path
can, by the above lemma, be "truncated" at a finite level, this means that this tree
is finite. Hence, there exists a search procedure that searches this space (the
well-known A* algorithm [26] can be used) with guaranteed termination. Note that
algorithms such as A* can search such search spaces even if cycles occur in the
graph. Furthermore, A* is guaranteed to terminate as well.

Another issue that needs to be addressed is the question: "When should we use
the table?" We say that a search strategy is fair iff, whenever a node N in F e is
labeled with query Q* containing an atom A: /x', the following conditions hold:

1. if there is a clause C in P of the form: A : tz where /z is a constant-annota-
tion and /z is greater than u{ plA': p is an atom in the ~JLTT_OLDT-table
and A is an instance of A'}, then C is eventually used in an S-resolution step
to generate a node in the subtree of Fp rooted at N or

2. if there is a clause C in P of the form A : V is a variable-annotation, then C
is eventually used in an S-resolution step to generate a node in the subtree of
F e rooted at N.

The first condition above guarantees that we never use a rule unless that rule is
likely to generate a truth value for an atom that exceeds the truth value of the
atom currently implies by the MULTI OLmT-table. The two conditions jointly state
that any rule that is likely to enhance the truth value of an atom is eventually used.
It is easy to see that any fair search strategy is guaranteed to preserve complete-
ness. These include fair computation strategies such as the strategies proposed by
Chen and Warren in [9]. However, different fair search strategies may lead to
different degrees of efficiency in query processing; an empirical evaluation that is
beyond the scope of this paper is needed for this purpose.

80 S. ADAZ,I AND V. S. SUBRAHM, ANIAN

5.5. Implementation o f MULTI OLDT Resolution

5.5.1. Overview. Two different data structures are needed for the implementa-
tion of dynamic MULTT OLmT-computations: a table and a list of queries. These
structures will be referred to as TABLE and QUERY, respectively. The detailed
description of these data structures, together with the pseudocode for the dynamic
MULTm_OLmT-computations, can be found in [1]. All of these data structures and
algorithms have been implemented by Kullman [20] (with minor modifications).

There are a few differences between the mathematical model of dynamic
MULTI_OLDT-computations and the real data structures used to implement them.
In the implementation, QUERY is just a list of atoms. In contrast, in the mathemati-
cal model, an atom in a query contained pointers to its parent, its children, and its
twin (when applicable). This information will not be stored in the QUERY data
structure. Instead, this information will be encapsulated within the TABLE data
structure. Jointly, the TABLE and QUERY data structures will contain the same
information present in the mathematical framework given in the preceding section.

Recall the dynamic F 1 F n of MULTI_OLDT tables. At step n, the TABLE
data structure contains all of the atoms in Fn, and the QUERY data structure will
contain all of the atoms in * * Q1-Qn. Since the queries in the sequence may have
some atoms in common, duplication will thus be eliminated. AS the sequence of
queries is flattened to a single query, links are established in the TABLE tO indicate
the relative positions of atoms in QUERY.

In contrast to the queries in dynamic MULTI_OLDT-computations, the atoms in
QUERY are atoms of the form A: [D, F] - - n o t e that a query of the form A: [D,/z]
can be viewed as: "Find a value F such that A: [D, V] is true and where V is
greater than or equal to the desired value, it."

TABLE is a linked list of records. Each record in the list contains information
about an atom in QUERY. Hence, if A: [D, V] is at atom in QUERY, then the TABLE
record R corresponding to this atom contains links to the parent, the children, and
the twin in A: [D, V]. R also has a field that stores the list of substitutions (for
both ordinary and annotation variables) 0 such that AO: [D,/.~0] is in F n. The
table insertion routine will update this field only.

5.5.2. Description of Data Structures. In this section, we briefly describe data
structures to implement the dynamic MULTI OLDT-computations described above.

The QUERY Data Structure. As explained in Section 5.1, every resolution step
results in a new maximization problem in the annotation term. Consider the
situation when the query A: [D , 9 " - ~ T 0] ~ is S-resolved with the clause A:
[D, T 1] ~- to given the resolvent A: [D, (3 r - 1~ T0) n ~ T 1]. As explained in Section
5.1, the maximal truth value of T O that causes the annotation term in the above
resolvent to evaluate to Q is T O = T 1. Suppose, now, that the above resolvent is
further resolved with the clause A: [D, T 2] ~ . The new resolvent is A: [D,(~5 z--

T 0) n ~ T 1 n ~ T2], and the maximum truth value of T O that causes the annota-
tion term to evaluate to the O is To = T1 u T 2.

AS we can see from the above example, there are no need to explicitly store the
set-annotations produced during intermediate levels of resolution. Instead, only the
current maximal truth value of the annotation term (there is always a unique
solution to the corresponding maximization problem by Theorem 5.1) and the

AMALGAMATING KNOWLEDGE BASES, 111 81

unifying substitution for this term need to be saved. If the annotation term T O in
the original query had been ground (T O =/z0), then it can be replaced with an
annotation variable, V 0. The query A: [D , 3 - - ~ ~b 0] ~ will be solved when the
current maximal truth value,/z~ of V 0 exceeds /~0. (I f / x 0 </z'0, then (3 " - ~ !%) n

/z' 0 = •.) Note that annotation functions are only allowed in the head of clauses;
hence, T O can only be a variable or a constant.

If the annotation term T 1 above is a variable V 1, then initially V l's truth value is
unknown; hence, its maximal (current) truth value is ± . Whenever Vl's value
changes, this change should be reflected to T O since T O = V 1. In case T l is a
complex function of the form f (V1 , . . . , V m) and initially the values of 1/1 Vm are
all unknown, then the initial truth value of T O is T O =f(_l_ , . . . , _1_). This value is
updated every time the value of one of V/, 1 < i < m changes.

Hence, only the atoms A: [D, V] are stored in QUERY, whereas details such as
the name of the annotation variable, its truth value if it is ground, or the address of
the code implementing the annotation function are stored in the TABLE. Finally,
when the a tom A: [D, 3 - - 1} V0] ~ is S-resolved with another clause A: [D, n V~]

, the maximum truth value of V0 is set to lub of T~ and the current maximum
truth value of V 0 by Lemma 5.1.

The TABLE Data Structure. The TABLE data structure is a linked collection of
records. Each record contains information about an atom A: [D, V] in the query.
This information can be categorized as follows:

• Information about the annotation term V: If V was a variable substituted for a
ground term /z, then the value of /z is stored. Otherwise, a status bit
indicating that V was nonground is set.

• Information about the position o f the atom in the query sequence: A link is set
to the parent of this atom, and all of the children of the same atom are
placed next to each other in the table. This way, all of the children of an
a tom will constitute a block of atoms in TABLE having the same parent link.

• Information about the twin o f an atom: Note that twins are obtained when an
S-resolution is performed. After an S-resolution, the children of A: [D, V]
are placed consecutively in the table. Then an additional record for the twin
of A: [D, V] is added to the end of the block containing the records for the
children in A: [D,V] . I f the twin (the head of a clause) contains an
annotation function, the address of the code implementing this function is
also placed in this additional record.

• Information about the current instances o f A: [D, V] that have been proven to
be true: This field is stored as a list of substitutions.

Suppose C is a clause in the amalgamated knowledge base. Then the head of C
may contain an annotation function of the form f (V 1 I'm). In this case, the
following assumptions are made about C.

• All of V/, 1 < i < m are variables only.

• There is no nesting among the function symbols in f (V 1 Vm).

• Every variable occurs only once in the term.

• All of the variables F (V 1 V m) occur at least once in one of the atoms in
the body of C.

82 S. A D A L I A N D V. S. S U B R A H M A N I A N

• The atoms in the body of C are arranged so that all of the atoms with the
annotation variable V 1 come first, then those with V2, and so on.

There is no loss of generality in the above assumptions--for instance, the
annotation term f(V~ h(Vm)) which contains nested functions can be replaced
by another term f (V 1 , W) where W = f(Vm).

The Interruptability of MULTmOLDT-Computations. At any given stage during an
MULTZ_OLmT-computation, the user may wish to halt processing and examine the
MULTI_OLDT-table. As the information in the MULTI_OLDT-table is monotoni-
cally improving (i.e., the set of annotated atoms entailed by the table increases as
more and more time is spent processing the query), this means that the user can
halt processing when he needs to, and do the best he can with the answers
obtained thus far (if he has no further time to continue processing).

The reader who is interested in details of the algorithms manipulating the
QUERYI and TABLE data structures may read the technical report for the required
pseudocode [1]. They implement the algorithms described in Section 5.2 using the
T A B L E and QUERY data structures described above. The pseudocode has also been
implemented by Kullman in Germany [20].

6. RELATED WORK

A great deal of work has been done in multidatabase systems and interoperable
database systems [40, 16, 37]. However, most of this work combines standard
relational databases (no deductive capabilities). Not much has been done on the
development of a semantic foundation for such databases. The work of Grant et al.
[16] is an exception: the authors develop a calculus and an algebra for integrating
information from multiple databases. This calculus extends the standard relational
calculus. Further work specialized to handle the interoperability of multidatabases
is critically needed. However, our paper addresses a different topic--that of
integrating multiple deductive databases containing (possibly) inconsistencies, un-
certainty, nonmonotonic negation, and possibly even temporal information. Zicari
et al. [40] describe how interoperability may be achieved between a rule-based
system (deductive DB) and an object-oriented database using special import~export
primitives. No formal theory is developed in [40]. Perhaps closer to our goal is that
of Whang et al. [37] who argue that Prolog is a suitable framework for schema
integration. In fact, the approach of Whang et al. is in the same spirit as that of
metalogic programming discussed earlier. Whang et al. do not give a formal
semantics for multidatabases containing inconsistency and/or uncertainty and/or
nonmonotonicity and/or temporal information.

Baral et al. [2, 3] have developed algorithms for combining different logic
databases which generalizes the update strategy by giving priorities to some
updates (when appropriate), as well as not giving priorities to updates (which
corresponds to combining two theories without any preferences). Combining two
theories corresponds, roughly, to finding maximally consistent subsets (also called
flocks by Fagin et al. [13, 14]). As we have shown in [31], our framework can express
maximal consistency as well. References [2, 3] do not develop a formal model-theo-
retic treatment of combining multiple knowledge bases, whereas our method does
provide such a model theory. References [2, 3] are unable to handle nonmonotonic-
ity (in terms of stable/well-founded semantics), or uncertainty, or time-stamped
information--our framework is able to do so.

AMALGAMATING KNOWLEDGE BASES, I l l 83

Dubois et al. [12] also suggest that formulas in knowledge bases can be
annotated with, for each source, a lower bound of a degree of certainty associated
with that source. The spirit behind their approach is similar to ours, although
interest is restricted to the [0,1] lattice, the stable and well-founded semantics are
not addressed, and amalgamation theorems are not studied. However, for the [0, 1]
case, their framework is a bit richer than ours when nonmonotonic negations are
absent.

In [15], Fitting generalizes results in [34, 4], to obtain a well-founded semantics
for bilattice-based logic programs. We have given a detailed comparison of our
declarative framework with Fitting's in [31].

Our work builds upon works by Lu et al. [23] who have independently developed
a framework for query processing in GAPs. As stated by Leach and Lu [21], the
work of [23] applies not just to the Horn-clause fragment of annotated logic (which
is the case in our work), but to the full-blown logic. However, [23] does not deal
with annotation variables and annotated functions--our results apply to those
cases as well. Finally, our development of MULTI_OLDT-resoIution is new.

Warren and his co-workers [10, 9] have studied OLmT-resolution for ordinary
logic programs (both with and without nonmonotonic forms of negation). In this
paper, we have dealt only with the monotonic case, and have focused on: (1) how
truth value estimates of atoms can be monotonically improved as computation
proceeds, and how this monotonic improvement corresponds to solving certain
kinds of incremental optimization problems over a lattice domain, and (2) how
OLDT tables must be organized so as to efficiently support such computations. As
shown by Warren [36], OLDT-resolution is closely related to magic set computa-
tions, and hence our work enjoys the same relationships with magic sets discussed
in [36].

7. CONCLUSIONS

Wiederhold has proposed mediators as a framework within which multiple
databases may be integrated. In the first of this series of papers [31], it has been
shown that certain forms of annotated logic provide a simple language within which
mediators can be expressed. In particular, it was shown that the semantics of
"local" databases can be viewed as embeddings within the semantics of amalga-
mated databases. In [31], we did not develop an operational theory for query
processing in amalgamated KBs. In this paper, we have provided a framework for
implementing such a query processing paradigm. This framework supports:

• incremental, approximate query processing in the sense that truth value
estimates for certain atomic queries will increase as we continue processing
the query. Thus, if a user (or a machine) wishes to interpret the processing,
then at least an approximate estimate will be obtained, based on which a
knowledge-based system may take some actions.

• reuse o f previous computations using the table data structure(s). In particular,
we have specified access paradigms for updating answers, i.e., (substitution,
truth-value) pairs as processing continues.

In future work, we will extend the above paradigm to handle nonmonotonic
modes of negation. The work being described here is being implemented as part of
system called HERMES (Heterogeneous Reasoning and Mediator System) that

84 S. A D A L I A N D V. S. S U B R A H M A N I A N

allows not only for the integration of multiple databases, but also multiple data
structures, software packages, and reasoning paradigms [32].

APPENDIX: PROOFS OF RESULTS ON S-RESOLUTION

PROOF OF THEOREM 4.1. Suppose C* is the regular representation of a clause and
Q* is a set-annotated query as specified in Definitions 4.2 and 4.5. Let 0 be the
mgu of A 0 and B i.

Suppose I S-satisfies C* and Q~ and (Q~+l)a is a ground instance of (Q~+I).
Since Q~Ocr and C'0o" must be ground and I ~s Q~, I ~s C*, it must be the case
that I ~s Q~O~r and I ~s C'0o'. We need to show that I S-satisfies (Q~+ 1). Since I
S-satisfies * S-satisfy one Qk 0o, it must of the amalgamated atoms Bj: [Dqj, i.~%]0~r.
There are two cases to consider:

• Case 1. (j--# i) In this case (Bj: [Dql, Pqs])0cr occurs in (Q~+l)o" and I
• , " j o

S-satisfies this atom m (Q~+ l)~r, and therefore satisfies the resolvent.

• Case 2. (j = i) In this case, I must S-satisfy Bi: ([Dq,,/~q,]}Ocr in Q~Ocr. Since
I S-satisfies C'0o-, there are two cases to consider:
--Case 2.1. I falsifies the body of C'0o. Then there must be at least one

atom (Ak: [D i, ~ pk])Oor that is not S-satisfied in L Let /.,x =
t2 d~DkI(AOo-)(d). Since pz ~/-~k, it must be the case that, /z I ~ (3- - Pk)-
Then (Ak: [Dk,J-- ~ pk])O0" must be S-satisfied in I. Since this atom
occurs in (Q~+ 1)o', I satisfies (Q~+ 1).

--Case 2.2. I S-satisfies both the body and the head of the clause C'0~.
Then, by the definition of S-satisfaction, there exists a truth value /~'

/~0 such that I A-satisfies (A0: [Do,/,])0o-. Then, since D O C_Dq,, I must
A-satisfy an annotation (Bi: [Dq,,p"])0o" such that, /~">/ .d > p . This
implies that /~" ~ ~ p, and this annotation occurs in the resolvent. There-
fore, I S-satisfies the resolvent. []

The proof of the Completeness Theorem (Theorem 4.2) for S-resolution needs
several intermediate theorems that are stated below•

Theorem 7.1. (Ground Completeness of S-Resolution) Suppose Q is the ground query
~ A : [D, tx], P ~ A: [D, Ix], and that P possesses the focpoint reachability property.
Then there is an unrestricted S-refutation of (~ Q)* from P*. (An unrestricted
refutation does not require the unifier used at each deduction step to be the most
general unifier,)

PROOF. As P satisfies the flxpoint reachability property, we know that AQ t k
satisfies A: [D,/x] for some k < to. We proceed by induction on k.

Base case (k = 1). According to the definition of AQ, there exist ground in-
stances

A: [D1,/zl] -'*

A: [DE,/~2] <--

[D,,,

A M A L G A M A T I N G K N O W L E D G E B A S E S , I l I 8 5

of a finite set of clauses

Am: [D'~, ~'1] ~-
A2: [D~,/.t'~]

° . .

Am: [D',~Zm] ~

In P, m > 1, such that t_l { ~ /x m} >/~ and U 1 _< j ~ m Dj c D. Note that for all
1 < i < m, there is a substitution 0 i such that AiO i = A , [D~, ~] 0 = [Di,/.ti]. By the
definition of regular representation, P* contains ground instances

A: [D1, ~ /zl] *--

A: [D2, li' /x2] <-
° ° °

h : [Dm, "~ l.tm] ~---

of unit clauses

AI: [D'I, ~]£'1] ~ - -

D t ~:- A2:[2, ~ ~'~]
° ° °

A~: [D ' , ~ ~'~] ~-

and (~- Q)* =A: [D , J - - n /z] ~ . Since for all 1 < i < m , D i c_D, (~ Q)* resolves
with all A i: [D i, ft Izi]. It follows that there is an S-refutation

(A: [D , J - ~ /z] ~ ,A: [D1, ~ /z,] ~ 01) ,

(A : [D , 3 - - n / z n (]~ /zl)])) , - - ,A : [D2, ~ /.t21 ~ ,02) ,
- . - ,

<A: [D , (: - ~ .) n n i ~ , , ~ ~ ,,] ~ - , - , - > .

We must show that the last query evaluates to O. Let iZl~ b = L] {/z 1 /z,,}. Since
/zl~ b >/.t, we have ~ /z~b _ ~ /z; hence, ~ iZtu b n (3--- ~ /z) = ~l. Then it suffices to
show that (n l~ i<_m~ Pti)c-~ IZl~b. For all / Z k ~ (n l ~ i ~ m ~ /zi) , we have that
/zk > /.tj for all j. Since [~lub is the smallest such truth value, we must have
tz~ > lZtu b, and therefore iz k ~ ~ iZtu b.

Inductive Case (k > 1). By the definition AQ, there exist ground instances
C101 C m 0 m of the form

A: [D1,/Zl] ~ B ~ : [D] , / z~]&. - .&B2" [D~l,/z~]

2 . 2

of

A: [D2, ~2] *-- B2:
. ° .

A: [Din,/Zk] ~-B~:

clauses C 1 Cm

IDa , / z~] & "" &BL: [Dk~ ,/Zk"]

• . . 1 . 1 ' 1 ' A,: [D'I,I-gl]"--BI: [D[, l z I ']& &Bkl. [Dk,,IZk,]

A2: [O~,/z'21 ~- B2: [D12',/z2'] &-.. &B22: [D2:,/z2:]
. . .

Am: [D ' , #] , - B•: [D~", ~ "] &"" &B~ : [Dk~,l~k~]

86 s. ADALI AND V. S. SUBRAHMANIAN

in P, m_>l such that U{/Zl,...,/~,n} >_tZ, I, JI<j~mDjC_D a n d A Q ? (k - 1) ~ B ~ :
i i . . . i . i i [DI, ~ l]& &Bkd [Ok,, /.tk,], and there is a substitution 0 i such that AiO i =A,

[D~,l~'i]O= [D i, i~i] for all 1 < i < m . By the definition of regular expression, P*
contains ground instances C~O 1 C* O,n

A: tO,, ~ ~ll'--B~: [DI, ~ #~]&'"&B~,: [ol~, ~ /z~,]

A: [D2, ~ la.2]c--B~:[D~,lz~]&'"&B22:[D~2,~ tz~2]
, , .

A: [Din, ~f lZm] ~ g~': [D~', ~ ~ ' 1 &"" &B~' : [Dk m, ~ /Zk~]

of clauses C 1 C m

AI: [D'I, ~ /x'l] *--BI: [D~', ~ tz~']&...&B1;[D~',~f tz~,,]

A2: [D'2, ~ /x'21 *-- B2: [D~', ~ /x~'l)&"" &B22: [Dk2'2, ~ /x2'2]
. . .

D t Am:(m, ff I£m] ~ B~': [D~",~ /z~"]&.- .&B~' : D m' [
By the inductive hypothesis, there is an S-refutation R i of

• . , . i . ['

for all i < i < m. By the same argument as above, (~Y-- N /z) N ["] 1 _< i _< m ~ /zi = Q"
Therefore, (~ Q)* has an unrestricted S-refutation as follows:

(A: [D , 3 " - ~ /z] ~ ,C~', Oi),
. . , ~

(A : [D , (~ 9 ~ - ~ / x) C~ ["],_<i~m~/Zi=Q~] *- , ,),

R 1 ,R m,
(, - - , - , -) . []

The completeness of S-resolution may now be established from the ground com-
pleteness result using standard techniques.

Lemma 7.1. (mgu Lemma) Suppose there is an unrestricted S-refutation (~ Q)*O
from an amalgamated knowledge base P. Then there is an S-refutation of (~ Q)*
from e. []

Lemma 7.2. (Lifting Lemma) Suppose there is an S-refutation of (~- Q)*O from an
amalgamated knowledge base P. Then there is an S-refutation of (~ Q)* from
P. []

The completeness of S-resolution is an immediate consequence of the ground
completeness theorem and mgu lemma.

We have benefited from conversations with Mike Kifer, Jim Lu and Terry Swift. We are particularly
grateful to Jim Lu for helping us determine the differences between S-resolution and work in [23].

AMALGAMATING KNOWLEDGE BASES, III 87

REFERENCES
1. Adah, S., and Subrahmanian, V. S., Amalgamating Knowledge Bases: II: Algorithms,

Data Structures and Query Processing, Technical Report CS-TR-3124, Computer Sci-
ence Department, University of Maryland, College Park, 1993.

2. Baral, C., Kraus S., and Minker J., Combining Multiple Knowledge Bases, IEEE Trans.
Knowledge and Data Eng. 3(2):200-220 (1991).

3. Baral, C., Kraus S., Minker, J., and Subrahmanian, V. S., Combining Knowledge Bases
Consisting of First Order Theories, Computational Intell. 8(1):45-71 (1992).

4. Baral, C., and Subrahmanian, V. S., Dualities between Alternative Semantics for Logic
Programming and Nonmonotonic Reasoning, in" Proe. 1991 Int. Workshop on Logic
Programming and Nonmonotonic Reasoning, MIT Press, 1991. Full version in J. Auto-
mated Reasoning 10:339-420 (1993).

5. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J., Magic Sets and Other Strange Ways
to Implement Logic Programs, Proc. 5th Syrup. on Principles of Database Syst., 1986,
pp. 1-15.

6. Beeri, C., and Ramakrishnan, R., On the Power of Magic, in: Proc. 6th Syrup. on
Principles of Database Syst., 1987, pp. 269-283.

7. Belnap, N. D., Jr., A Useful Four Valued Logic, in: G. Epstein and J. M. Dunn (eds.),
Modem Uses of Many Valued Logic, McGraw-Hill, New York, 1977, pp. 8-37.

8. Blair, H. A., and Subrahmanian, V. S., Paraconsistent Logic Programming, Theoretical
Comput. Sci. 68:35-54 (1989). Preliminary version in: LNCS 287, Springer, Dec. 1987.

9. Chen, W., and Warren, D. S., A Goal-Oriented Approach to Computing Well-Founded
Semantics, in: Proc. 1992 Int. Conf. on Logic Programming, K. R. Apt (ed.), MIT Press,
1992.

10. Dietrich, S., Extension Tables: Memo Relations in Logic Programming, in: Proc. 1987
IEEE Syrup. on Logic Programming, 1986, pp. 264-272.

11. Dubois, D., Lang, J., and Prade, H., Towards Possibilistic Logic Programming, in: Proc.
1991 Int. Conf. on Logic Programming, K. Furukawa (ed.), MIT Press, 1991, pp. 581-595.

12. Dubois, D., Lang, J., and Prade, H., Dealing with Multi-Source Information in Possibilis-
tic Logic, in: Proc. lOth European Conf. on Artificial Intelligence, Wiley, 1992.

13. Fagin, R., Ullman, J. D., and Vardi, M. Y., On the Semantics of Updates in Databases,
in: Proc. ACM SIGACT/SIGMOD Symp. on Principles of Database Syst., pp. 352-365.

14. Fagin, R., Kuper, G., Ullman, J., and Vardi, M., Updating Logical Databases, in:
Advances in Computing Research, Vol. 3, 1986, pp. 1-18.

15. Fitting, M. C., Well-Founded Semantics, Generalized, in: Proc. 1991 Int. Logic Program-
ming Syrup., MIT Press, 1991, pp. 71-83.

16. Grant, J., Litwin, W., Roussopoulos, N., and Sellis, T. , An Algebra and Calculus for
Relational Multidatabase Systems, in: Proc. 1st Int. Workshop on Interoperability in
Multidatabase Syst., IEEE Computer Society Press, 1991, pp. 118-124.

17. Kifer, M., and E. Lozinskii, RI: A Logic for Reasoning with Inconsistency, in: Proc. 4th
Symp. on Logic in Comput. Sci., Asilomar, CA, 1989, pp. 253-262.

18. Kifer, M., and Subrahmanian, V. S., Theory of Generalized Annotated Logic Program-
ming and its Applications, J. Logic Programming 12(4):335-368 (1992). Preliminary
version in: Proc. 1989 North American Conf. on Logic Programming, MIT Press, 1989.

19. Knuth, D. E., The Art of Computer Programming, Vol. 1. Fundamental Algorithms,
Addison-Wesley, Reading, MA, 1973.

20. Kullman, P., Master's Thesis, Univ. of Kartsruhe, Germany, 1994.
21. Leach, S., and Lu, J., Computing Annotated Logic Programs, in: Proc. 11th Int. Conf. on

Logic Programming P. Van Hentenryck (ed.), MIT Press, 1994, pp. 257-271.
22. Lloyd, J. W. Foundations of Logic Programming, Springer-Verlag, 1987.
23. Lu, J., Murray, N., and Rosenthal, E., Signed Formulas and Annotated Logics, draft

manuscript. Preliminary version in: Proc. Int. Symp. on Multiple-Valued Logic, IEEE
Computer Society Press, 1993, pp. 48-53.

88 S. ADALI AND V. S. SUBRAHMANIAN

24. Lu, J., Nerode, A., and Subrahmanian, V. S., Hybrid Knowledge Bases, IEEE Trans.
Knowledge and Data Eng., submitted May 1993, revised Jan. 1994, accepted Nov. 1994.

25. Martelli, A., and Montanari, U., An Efficient Unification Algorithm, ACM Trans. Prog.
Lang. and Syst., 4(2):258-282 (1982).

26. Nilsson, N. J., Principles of Artificial Intelligence, Morgan Kaufmann, CA, 1980,
pp. 76-84.

27. Ramakrishnan, R. Magic Templates: A Spellbinding Approach to Logic Programs,
J. Logic Programming 11:189-216 (1991).

28. Seki, H., and Itoh, H., A Query Evaluation Method for Stratified Programs under the
Extended CWA, in: Proc. 5th Int. Conf./Syrup. on Logic Programming, K. Bowen and R.
Kowalski (eds.), 1989, pp. 195-211.

29. Seki, H., On the Power of Alexander Templates, in: Proc. 8th ACM Syrup. on Principles
of Database Syst., 1989, pp. 150-159.

30. Shoenfield, J., Mathematical Logic, Addison-Wesley, Reading, MA, 1967.
31. Subrahmanian, V. S., Amalgamating Knowledge Bases, ACM Trans. Database Syst.

19(2):291-331 (1994).
32. Subrahmanian, V. S., Adah, S., Emergy, R., Rajput, A., Rogers, T. J., and Ross, R.,

HERMES: A Heterogeneous Reasoning and Mediator System, Univ. of Maryland, Techni-
cal Report, 1994.

33. Tamaki, H., and Sato, T., OLD Resolution with Tabulation, in: Proc. 3rd Int. Conf. on
Logic Programming, E. Shapiro (ed.), Springer, 1986, pp. 84-98.

34. van Gelder, A., The Alternating Fixpoint of Logic Programs with Negation, in: Proc. 8th
ACM Symp. on Principles of Database Syst. 1989, pp. 1-10.

35. Vieille, L. A Database-Complete Proof Procedure Based on SLD-Resolution, in: Proc.
4th Int. Conf. on Logic Programming, J.-L. Lassez (ed.), MIT Press, 1987, pp. 74-103.

36. Warren, D. S., Memoing for Logic Programs, Commun. ACM 35(3):94-111 (1992).
37. Whang, W. K., Navathe, S. B., and Chakravarthy, S., Logic-Based Approach for Realiz-

ing a Federated Information Systems, in: Proc. 1st Int. Workshop on Interoperability in
Multidatabase Syst., IEEE Computer Society Press, 1991, pp. 92-100.

38. Wiederhold, G., Jajodia, S., and Litwin, W., Dealing with Granularity of Time in
Temporal Databases, in: Proc. 3rd Nordic Conf. on Advanced Inform. Syst. Eng., Lecture
Notes in Comput. Sci., Vol. 498, R. Anderson et al. (eds.), Springer-Verlag, 1991, pp.
124-140.

39. Wiederhold, G., Jajodia, S., and Litwin, W., Integrating Temporal Data in a Heteroge-
neous Environment, in: Temporal Databases, Benjamin Cummings, Jan. 1993.

40. Zicari, R., Ceri, S., and Tanca, L., Interoperability between a Rule-Based Database
Language and an Object-Oriented Language, in: Proc. 1st Int. Workshop on Interoperabil-
ity in Multidatabase Syst., IEEE Computer Society Press, 1991, pp. 125-135.

