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A multiple view time–frequency distribution

based on the empirical mode decomposition

N.J. Stevenson, M. Mesbah, and B. Boashash

Abstract

This paper proposes a novel, composite time–frequency distribution (TFD) constructed using a

multiple view approach. This composite TFD utilises the intrinsic mode functions (IMFs) of the

empirical mode decomposition (EMD) to generate each view which are then combined using the

arithmetic mean. This process has the potential to eliminate the inter-component interference gener-

ated by a quadratic TFD (QTFD), as the IMFs of the EMD are, in general, mono–component signals.

The formulation of the multiple view TFD in the ambiguity domain results in faster computation,

compared to a convolutive implementation in the time–frequency domain, and a more robust TFD in

the presence of noise. The composite TFD, referred to as the EMD–TFD, was shown to generate a

heuristically, more accurate representation of the distribution of time–frequency energy in a signal.

It was also shown to have performance comparable to the WVD when estimating the instantaneous

frequency (IF) of multiple signal components in the presence of noise.
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A multiple view time–frequency distribution

based on the empirical mode decomposition

I. INTRODUCTION

The analysis of signals in a joint time–frequency domain hasbeen useful for radar and sonar

signal processing [2]. The ambiguity domain which is a two–dimensional (2D) Fourier transform of

the Wigner-Ville distribution (WVD) has long been used in sonar and radar processing for determining

target range and velocity [2]. The instantaneous frequencyof a detected signal component can assist

in target classification and identification, for example parabolic patterns in the time–frequency domain

such as those generated by quadratic frequency modulated (FM) signals are often seen in passive sonar

due to multiple path interference from the sea floor [3, pp. 617]. Patterns, or specific arrangements of

signal components, in time–frequency distributions (TFDs) have also been used to classify artificial

and mammalian underwater acoustics [3], [4]. Advances in the representation of signal energy in

a joint time–frequency domain will improve classification and estimation of the FM or amplitude

modulation (AM) of signal components in sonar and radar applications.

A significant class of real nonstationary signals (signals whose frequency content varies over time)

can be represented using the signal model,

s(t) =
M
∑

k=1

ak(t) cos (φk(t)) (1)

where,sk(t) = ak(t) cos (φk(t)) is a signal component or monocomponent,M is the number of

components,ak(t) is the amplitude andφk(t) is the phase (which is the anti–derivative of the FM

or instantaneous frequency (IF)) of thekth component, [5]. The use of (1) as a nonstationary signal

model results in signal components that are not unique. In fact, there are an infinite number of choices

for ak(t), φk(t) andM that can result ins(t) where the nonstationarity can be embedded into the

AM, FM or both. In order to overcome these infinite choices, wetypically constrain the definition of
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a signal component as a contiguous region of significant time–frequency energy. An approximation

to the definitions of significant is determined using Bedrosian’s theorem [6].

The representation of signals, defined using (1), for the extraction of signal components is an im-

portant problem in signal processing. There are a number of methods for representing the distribution

of the time–frequency energy. These include atomic decomposition, the Hilbert–Huang transform

(HHT) and linear, quadratic and affine TFDs [3], [7]–[9]. No single method is ideal for representing

all signals modelled by (1) and the application of each method is, as a result, highly signal dependent.

This paper investigates the combination of the empirical mode decomposition (EMD), the algorithm

underlying the HHT and quadratic TFDs (QTFDs) in order to overcome deficiencies in each method.

The class of QTFDs is defined as,

ρz(t, f) = Wz(t, f) ∗∗
(t,f)

γ(t, f) (2)

whereWz(t, f) is the WVD, ∗ is the convolution operation, andγ(t, f) is a distribution specific

kernel or filter (typically some form of 2D low pass filter). The WVD is defined as,

Wz(t, f) =

∫ ∞

−∞
z(t + τ

2 )z̄(t − τ
2 )e−j2πfτ dτ (3)

where,z̄(t) denotes the complex conjugate ofz(t), z(t) is the analytic associate of the signal under

analysis, that is,z(t) = s(t) + jH{s(t)} whereH is the Hilbert transform,f is frequency,t is time

andτ is time lag.

The major problem with QTFDs is the interference generated between signal components due to the

quadratic nature of the transform. This interference meansthat a QTFD represents a signal modelled

by (1) as [10],

Wz(t, f) =
M
∑

k=1

Wzk
(t, f) +

M
∑

i=1,j=1,i6=j

Wzi,zj
(t, f) (4)

where the first summation represents the signal components and the second summation of cross–

WVDs, Wzi,zj
(t, f) – see [3], represents the interference terms. There have been several attempts to

remove this interference via filtering the WVD [10], [11]. These techniques are based on 2D low pass

filtering as the interference terms in (4) tend to be highly oscillatory and are, therefore, represented
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in the outer regions of the ambiguity domain. Recent techniques have used adaptive filters to better

differentiate between interference and signal energy in the ambiguity domain. The concept of adaptive

techniques for representing nonstationary signals appeals as the fundamental problem of resolving

the AM and FM elements of a signal component means that nonadaptive techniques are unable to

offer high performance for a wide range of nonstationary signals. In this paper, we use the EMD

to decompose a signal into several sub-signals, denoted as intrinsic mode functions (IMFs) in the

nomenclature of the EMD. An optimal ambiguity domain filter is then defined for each IMF and the

resultant optimal filter set is used to construct a compositeTFD using a multiple view approach.

The EMD decomposes a signal according to (1) by estimating the signal envelope, using a spline

fitted to the local maxima and minima, then iteratively subtracting the mean of this envelope from

the signal. A time–frequency representation (the HHT) can be formed using estimates ofak(t) and

φk(t). These functions are estimated using the magnitude and phase of their analytic associates. The

estimation of these functions using such a method is prone toerror from approximating the infinite

impulse response function of the Hilbert transform with finite filters and the enhancement of high

frequency noise due to a differentiation process.

The multiple view approach uses a series of different choices for γ(t, f), called views, that are

designed to align with the IF law of particular signal components in the QTFD [12], [13]. The major

problem with a multiple–view TFD is that the choice of the views is purely arbitrary unlessa priori

information is known. The use of the EMD offers the possibility of implementing a set of views

that more accurately differentiate between regions of interference and signal energy in the ambiguity

domain. This is because each IMF is, in general, a monocomponent signal and should, therefore,

generate no interference in a QTFD.

This suggests that an obvious choice for a composite TFD based on the EMD is,

TFD(t, f) =
M
∑

k=1

WVD{IMFk(t)} (5)

The problem with such an implementation is that the EMD does not always accurately decompose

multicomponent nonstationary signals, in terms of (1) [14]. Signals that have high bandwidth/duration,
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transients or significant noise result in a decomposition that can be approximated by the output of

a bank of stationary low pass filters with dyadically increasing cutoff frequencies, [15]. In addition,

the EMD is sensitive to the sampling frequency, and the end conditions of the cubic spline fits [14],

[16]. As a result, the EMD can only accurately represent a signal defined with respect to (1) if the

signal components are suitably constrained. The solution is to design a sequence of filters that adapt

according to the localisation of IMF energy in the ambiguitydomain. Constraints can be placed on

these filters to ensure that a meaningful composite TFD is generated even when the EMD is not

accurately decomposing a signal. The resultant composite TFD is a high resolution, low interference

TFD suitable for use on a wide range of signals.

II. T HE EMD–TFD

A multiple view TFD can be generated by combining a number of smoothed or filtered WVDs.

This composite, multiple view TFD is a combination of several TFDs generated by a series of filters

or views,

γ(t, f) = {γ1(t, f), ..., γn(t, f)},

using the operatorR (e.g. a logical OR operation, the arithmetic or geometric mean). The original

filter set used was a series of Gabor atoms with linear IF laws [12]. The composite TFD can, therefore,

be defined as,

TFD(t, f) = R

[

γ(t, f) ∗ ∗
(t,f)

WVD(t, f)

]

(6)

This can be readily interpreted (whenR is a linear operator) in the ambiguity domain as,

TFD(t, f) = R

[
∫ ∞

−∞

∫ ∞

−∞
G(ν, τ) Az(ν, τ)ej2π(νt−fτ)dν dτ

]

(7)

whereG(ν, τ) is the 2D Fourier transform ofγ(t, f) and Az(ν, τ) is the 2D Fourier transform of

WVD(t, f).

The shape of the 2D filter set,γ(t, f), and the type of operator will determine the performance of

the composite TFD for various nonstationary signals.
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The multiple view technique is shown diagrammatically in Fig. 1(a). In the case of the EMD–TFD

the signal views are generated using the IMFs of the EMD, see Fig. 1(b). The multiple view, EMD–

TFD adaptively generates a set of 2D filters functions,G(ν, τ), in the ambiguity domain localised

around the significant ambiguity energy (|Aimf(ν, τ)|2) of each IMF.

The proposed multiple view EMD–TFD uses the arithmetic meanas the operator. This operator

is chosen as it offers similar performance compared with other operators (see Table I) and permits a

simplified implementation of the multiple view approach, see (10). The arithmetic mean is calculated

using L views. These views are constructed from a sequence ofL IMFs (L is generally limited to

log2(N) whereN is the signal length, [15]). Only the IMFs, with high energy,that contribute to a

user defined approximation of the original signal (typically 95%) are used to limit the computational

burden of the EMD–TFD. The ambiguity domain filters/views are defined as,

Gi(ν, τ) = Gth
i (ν, τ) ∗∗

(ν,τ)
h(ν, τ), i = [1, ..., L] (8)

whereh(ν, τ) is a 2D filter,

Gth
i (ν, τ) =



















1 when |Aimf
i (ν, τ)| ≥ th max(|Aimf

i (ν, τ)|)

0 elsewhere

(9)

whereAimf
i (ν, τ) is the ambiguity domain representation of theith IMF and th is a user defined

threshold (a value ranging on[0, 1]) where a smaller value results in a view with a lower cutoff

in the ambiguity domain and a TFD with higher suppression of interference but lower resolution).

This value also reflects the accuracy of the EMD with respect to (1), the higher the value, the closer

the IMFs of the EMD are to true monocomponent signals. The choice of the filter (in this case

we refer to its representation in the time–frequency domain) is arbitrary but, as a rule of thumb,

long duration sinusoids with slowly varying IF laws requirelong duration, narrowband filters, long

duration sinusoids with rapidly varying IF laws require medium duration, medium bandwidth filters

and impulse functions require short duration, high bandwidth filters.
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The EMD–TFD is then defined as,

ρemd(t, f) =

∫ ∞

−∞

∫ ∞

−∞

1

L

{

L
∑

i=1

Gi(ν, τ)

}

Az(ν, τ)ej2π(νt−fτ)dν dτ (10)

III. T HE PERFORMANCE OF THEEMD–TFD

The ability of the EMD–TFD to represent the time–frequency energy of a signal, with minimal

interference, was investigated using goodness of fit measurements that were designed to compare

a TFD with the ideal time–frequency representation. The measures outlined in [17] are used to

heuristically assess TFD performance. The ability of the EMD–TFD to estimate the IF of multiple

signal components was also investigated. The performance of the EMD–TFD was compared to several

nonadaptive QTFDs and the adaptive radial Gaussian kernel (RGK) TFD proposed in [11].

A. Time–frequency energy localisation

The ability of the EMD–TFD to localise time–frequency energy was tested using a synthetic three

component signal. This signal consists of a linear FM (LFM) component with increasing frequency, a

LFM component with decreasing frequency and a quadratic FM (QFM) component, all with constant

amplitude. It is defined as,

s(t) =
3

∑

i=1

si(t) (11)

where,

s1(t) = sin
(

1024π(0.075t2 + 0.05t)
)

s2(t) = sin
(

1024π(−0.075t2 + 0.2t)
)

s3(t) = sin
(

1024π(−0.2t3 + 0.3t2 + 0.3t
)

t ranges on [0,1] and is sampled as 512Hz. The ideal time–frequency representation is,

ρd(t, f) =
3

∑

i=1

ai(t)
2δ(f − fi(t)) (12)
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where the IFs of the components are,

f1(t) = 76.8t + 25.6

f2(t) = −76.8t + 120.4

f3(t) = −307.2t2 + 307.2t + 153.6

anda1(t) = a2(t) = a3(t) = 1, (see Fig. 2).

The ambiguity domain filter set,G(ν, τ), for the EMD–TFD is shown in Fig. 3.

The EMD–TFD, WVD, spectrogram, HHT, RGK, Choi–Williams distribution and modified B–

distribution, in addition to a TFD constructed according to(5) called the WVD-EMD were used in

comparison. The TFDs of the test signal generated by each method are shown in Fig. 4.

The performance measures used to assess the goodness of fit between the TFD under trial and

the desired TFD are the 2D linear correlation coefficient,Rid, and the correlation between the ideal

time–frequency representation and a truncated version of the TFD at a selected threshold,Rt. A

TFD with high values for both correlations can be consideredas a high resolution, low interference

TFD. The linear correlation coefficient indicates the levelof interference in the TFD (the higher the

interference, the lower the correlation) and is defined as,

Rid =

∫ ∫

ρ(t, f)ρid(t, f)dtdf

(
∫ ∫

ρ(t, f)2dtdf
∫ ∫

ρid(t, f)2dtdf)0.5 (13)

whereρid(t, f) is the ideal TFD,ρ(t, f) is the TFD under comparison and the integrals are defined

on [0,∞].

The second correlation coefficient indicates the resolution of the TFD. A TFD that is highly

concentrated around the IF of different signal components will result in a high value ofRt. This

measure is defined similarly toRid except that the TFD under comparison is truncated,

ρt(t, f) =



















1 when ρ(t, f) > th max(ρ(t, f))

0 otherwise

(14)

whereρ(t, f) is the TFD under comparison andth is a user defined threshold (selected arbitrarily as

0.75). It must be noted that the response ofRt with respect to this threshold is monotonic and, as
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such, will consistently affect the results.

The effect of different operators in forming the EMD–TFD is given in Table I. The operators tested

where the arithmetic mean, a logical OR, and the geometric mean.

TABLE I

PERFORMANCE OF OPERATOR ON THEEMD–TFD

TFD Rid Rt R

arithmetic 0.38 0.44 0.82

geometric 0.38 0.44 0.82

OR 0.32 0.47 0.79

The response of the measures of interference and energy concentration are given in Table II. The

TFDs that required the definition of particular parameters had these parameters optimally selected

to maximise the performance measures. The parameters optimised were, the energy threshold in the

EMD–TFD (et), the window length in the spectrogram (Wl) assuming a Hanning window, theβ

parameter in the modified–B distribution, theσ parameter for the Choi–Williams distribution, and

theα or volume parameter for the RGK. The optimisation procedureused a fixed grid, maximisation

procedure where the cost function to be maximised was the addition of the two performance measures,

R = Rid + Rt. The optimal parameter chosen of each TFD is shown in last column of Table II.

Similar analysis was performed in the presence of 100 realisations of additive white Gaussian noise.

The outcome of these results is shown in Table III, whereRx = Rid + Rt, the subscript,x, denotes

the signal to noise ratio (SNR) in decibels and the results are presented as mean (standard deviation)

over 100 realisations. The TFDs were implemented with the optimal parameters shown in Table II.

B. Component estimation

The ability of the EMD–TFD to estimate the IF of a signal component was tested using an automated

method for extracting the IF of a signal component from a TFD.The IF estimator proposed in [18] is

used. This IF estimation procedure uses image processing techniques, namely edge linking algorithms,
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TABLE II

TIME–FREQUENCY PERFORMANCE OF VARIOUSTFDS

TFD Rid Rt R optimal parameter value

WVD–EMD 0.28 0.37 0.65 –

EMD–TFD 0.38 0.44 0.82 et = 0.54

WVD 0.18 0.27 0.45 –

spectrogram 0.25 0.33 0.58 Wl = 137

modified–B 0.30 0.40 0.70 β = 0.23

Choi–Williams 0.28 0.36 0.64 σ = 67

RGK 0.34 0.41 0.75 α = 3.69

HHT 0.11 0.21 0.32 –

TABLE III

NOISE PERFORMANCE OF VARIOUSTFDS

TFD R∞ R20 R10 R3 R0

WVD–EMD 0.65 0.63 (0.03) 0.53 (0.03) 0.35 (0.04) 0.22 (0.05)

EMD–TFD 0.82 0.78 (0.01) 0.71 (0.02) 0.54 (0.04) 0.40 (0.05)

WVD 0.45 0.43 (0.01) 0.35 (0.03) 0.22 (0.04) 0.15 (0.05)

spectrogram 0.58 0.53 (0.03) 0.47 (0.04) 0.40 (0.04) 0.36 (0.04)

modified–B 0.70 0.70 (0.01) 0.63 (0.02) 0.46 (0.03) 0.33 (0.04)

Choi–Williams 0.64 0.62 (0.01) 0.53 (0.03) 0.38 (0.03) 0.28(0.03)

RGK 0.75 0.75 (0.01) 0.74 (0.03) 0.72 (0.02) 0.67 (0.03)

HHT 0.32 0.42 (0.03) 0.25 (0.03) 0.15 (0.03) 0.10 (0.03)

to detect signal components.

The results of the IF estimation procedure on each componentof a two component signal (s(t) =

s1(t) + s3(t)) based on the selected TFDs are shown in Fig. 5. A two component signal was tested

as the automated method of IF extraction mentioned above hasdifficulty separating components that

share similar regions of the time–frequency domain, as seenat the intersection betweens1(t) ands2(t)

and to avoid excessive bias towards TFDs that were designed to represent only LFM components such
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as the RGK. The variance is estimated using 100 realisationsof additive white Gaussian noise and

normalised frequency. In the case where more than two components were found, the components that

best approximated the LFM and QFM were used to estimate the variances. Note, that the LFM and

QFM components could not be located in the HHT across all noise levels and the QFM component

could not be located in the RGK across all noise levels.

C. Real Underwater Acoustic Signal

The EMD–TFD was then applied to an underwater acoustic signal. The signal under test is a

segment of humpback whale song recorded using a hydrophone.The EMD–TFD is plotted along

with the WVD in Fig. 6.

D. Discussion

The multiple view approach was initially designed with several pre–defined filters or views opti-

mised to detect linear FM components. The use of a nonstationary signal decomposition results in

adaptive filter design that can be more accurately focussed on the regions of high energy in the joint

time–frequency domain and requires noa priori information. In fact, a composite multiple view TFD

can be constructed using any appropriate signal decomposition. The EMD is particularly suited to

a multiple view framework as it aims to decompose a signal into a series of monocomponents that

can be represented by the model outlined in (1) of which QTFDsare ideally suited to represent.

This is reflected in the results which show improved representation of the time–frequency energy

compared to nonadaptive TFDs and comparable IF estimation performance to the WVD. In fact, the

IF estimation method applied to the EMD–TFD generates less candidate signal components compared

to the WVD (a reduction of 17% averaged across noise levels) which means that any post–hoc analysis

to determine whether the detected component is associated with a real signal component should be

simplified.

The disadvantage of the EMD–TFD is that it is computationally more expensive than other methods

due to the addition of an EMD algorithm and the calculation ofa number of ambiguity domain
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representations. The other disadvantage of the EMD–TFD is that when the EMD fails to accurately

deompose a signal the EMD–TFD default to a smoothed TFD, suchas the Choi–Williams distribution,

which can be more efficiently implemented.

The applicability of the EMD–TFD is limited by the performance of the EMD which is known

to approximate a filter bank with dyadic cutoff frequencies,much like a wavelet decomposition, in

the presence of significant noise [15]. A composite QTFD estimated directly from the IMFs, such

as the EMD–WVD, will, as a result, have little relationship to the actual time–frequency behaviour

of the signal. The use of ambiguity domain filtering rather than the direct mapping of the IMFs

using a QTFD is more robust with, and without the presence of additive white noise. This means

that signals that are not accurately decomposed by the EMD will still be represented by a smoothed

WVD. This is shown in the Fig. 6 where the interference reduction is generated primarily by the

smoothing filter,h(ν, τ), rather than the characteristics of the IMFs. It is also shown by the higher

correlation measures for the EMD–TFD compared to the WVD–EMD. The EMD–TFD also provides

a more accurate representation of signal energy in the jointtime–frequency domain compared to the

HHT which has the poorest performance of the analysed TFDs.

The EMD algorithm forces continuity of time on each IMF. Thismeans that unrelated signal

components are grouped together if they occur at separate times in the signal. A recently proposed

modification to the EMD algorithms using the DCT to remove therestriction of continuity in time

on an IMF should provide additional improvement in the EMD–TFD [14]. This may help remove

interference by components that are separated in time, rather than frequency (the effects of such

interference can be seen in Fig. 6(a) at [128ms, 2.5kHz] and [192ms, 3kHz]). Furthermore, additional

improvements in the EMD algorithm for decomposing nonstationary multicomponent signals will

directly improve the performance of the EMD–TFD as more accurate localisation of the ambiguity

domain signal energy can, potentially, be achieved.

The technique used to adapt the filter or view according to energy localisation about the origin is

similar to that used in the RGK. The assumption that there is no cross term energy in the ambiguity
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domain, due to the signal under analysis being mono–component, means that the proposed method is

more suitable for signals that have nonlinear IF laws. This is unlike the RGK which is optimised for

only linear FM signals. This explains why the RGK has improved performance in the presence of noise

as its ability to resolve the LFM components outweighs its inability to resolve the QFM component.

It also explains why the IF estimation procedure cannot extract the QFM signal component from the

TFD generated by the RGK.

The EMD–TFD, like many adaptive TFDs, does not satisfy mathematically desirable properties of a

QTFD such as marginals, non–negativity, finite support, [3,pp. 60–62]. It does, however, satisfy more

general characteristics of a TFD such as real valuedness andenergy concentration around the IF law

of a signal component [3, pp. 11–12]. These characteristicsare important for real world applications

such as signal component detection and estimation. Marginals can be enforced by setting the axes of

the ambiguity domain to one [11].

It must also be noted, that other high resolution TFDs can be formed using techniques such as

short–time kernel adaption, the S–method, and reassignment but these are different in concept and

implementation compared to ambiguity domain filtering, [3]. The advantage of using the EMD is

that optimisation processes such as these may be more successfully implemented on each IMF than

on the original signal. For example, when using the adaptivespectrogram the estimation of the

optimal window length may be performed on each IMF and a composite, multiple view spectrogram

constructed.

IV. CONCLUSION

This paper proposes a composite TFD based on a multiple view approach. The IMFs of an EMD are

used to construct a series of views in the ambiguity domain byhighlighting concentrations of energy

in the ambiguity domain. The advantage of such a method is that it can overcome interference in

TFDs generated by the existence of multiple signal components at the cost of increased computation.

The EMD–TFD has been shown to offer superior performance when representing time–frequency

energy concentration, and estimating the IF, of nonstationary signal components. The quality of the
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signal decomposition technique, however, is critical and it must decompose the signal according to a

well known nonstationary multiple component signal model and be robust in the presence of noise.
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1) Figure 1: The multiple view composite TFD.

2) Figure 2: The ideal TFD of the synthetic test signal.

3) Figure 3: The ambiguity domain filter set or views for the EMD–TFD.

4) Figure 4: Several TFDs of the simulated multiple component signal. The contours are set to

65% of the maximum value of the quadratic FM component.

5) Figure 5: The variance of the IF estimates using edge–linking on a TFD.

6) Figure 6: The EMD–TFD and WVD of a segment of whale song (A 2DHanning filter is used

andet = 0.05).
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Fig. 1. The multiple view composite TFD.
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Fig. 2. The ideal TFD of the synthetic test signal.
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Fig. 3. The ambiguity domain filter set or views for the EMD–TFD.
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Fig. 4. Several TFDs of the simulated multiple component signal. The contours are set to 65% of the maximum value of

the quadratic FM component.
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Fig. 5. The variance of the IF estimates using edge–linking on a TFD.
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Fig. 6. The EMD–TFD and WVD of a segment of whale song (a 2D Hanning filter is used andet = 0.05).


