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A multiple view time—frequency distribution

based on the empirical mode decomposition

N.J. Stevenson, M. Mesbah, and B. Boashash

Abstract

This paper proposes a novel, composite time—frequencsitdison (TFD) constructed using a
multiple view approach. This composite TFD utilises theiittic mode functions (IMFs) of the
empirical mode decomposition (EMD) to generate each vieviclwlare then combined using the
arithmetic mean. This process has the potential to eliraitia inter-component interference gener-
ated by a quadratic TFD (QTFD), as the IMFs of the EMD are, inegal, mono—component signals.
The formulation of the multiple view TFD in the ambiguity dam results in faster computation,
compared to a convolutive implementation in the time—fegy domain, and a more robust TFD in
the presence of noise. The composite TFD, referred to asMB-HFD, was shown to generate a
heuristically, more accurate representation of the distion of time—frequency energy in a signal.
It was also shown to have performance comparable to the WVBnvestimating the instantaneous

frequency (IF) of multiple signal components in the pregeatnoise.
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A multiple view time—frequency distribution

based on the empirical mode decomposition

I. INTRODUCTION

The analysis of signals in a joint time—frequency domain basn useful for radar and sonar
signal processing [2]. The ambiguity domain which is a twicrahsional (2D) Fourier transform of
the Wigner-Ville distribution (WVD) has long been used imaoand radar processing for determining
target range and velocity [2]. The instantaneous frequefieydetected signal component can assist
in target classification and identification, for examplegtelic patterns in the time—frequency domain
such as those generated by quadratic frequency modula®ds{§nals are often seen in passive sonar
due to multiple path interference from the sea floor [3, pfy]6Ratterns, or specific arrangements of
signal components, in time—frequency distributions (TFBave also been used to classify artificial
and mammalian underwater acoustics [3], [4]. Advances @ ridpresentation of signal energy in
a joint time—frequency domain will improve classificationdaestimation of the FM or amplitude
modulation (AM) of signal components in sonar and radar iappbns.

A significant class of real nonstationary signals (signdi®se frequency content varies over time)

can be represented using the signal model,

M
s(t) =Y ay(t) cos (¢x(t)) 1)
=1

where, si(t) = ax(t)cos (¢r(t)) is a signal component or monocomponehf, is the number of
componentsgy(t) is the amplitude anady(t) is the phase (which is the anti—derivative of the FM
or instantaneous frequency (IF)) of th& component, [5]. The use of (1) as a nonstationary signal
model results in signal components that are not unique.diy flere are an infinite number of choices
for ai(t), ¢r(t) and M that can result ins(¢) where the nonstationarity can be embedded into the

AM, FM or both. In order to overcome these infinite choices,tymcally constrain the definition of
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a signal component as a contiguous region of significanttirequency energy. An approximation
to the definitions of significant is determined using Bedan&s theorem [6].

The representation of signals, defined using (1), for theaetibn of signal components is an im-
portant problem in signal processing. There are a numberetfioals for representing the distribution
of the time—frequency energy. These include atomic decaitipn, the Hilbert—-Huang transform
(HHT) and linear, quadratic and affine TFDs [3], [7]-[9]. Nimgle method is ideal for representing
all signals modelled by (1) and the application of each miéikpas a result, highly signal dependent.
This paper investigates the combination of the empiricatlendecomposition (EMD), the algorithm
underlying the HHT and quadratic TFDs (QTFDs) in order torogene deficiencies in each method.

The class of QTFDs is defined as,

pz(ta f) = Wz(t> f) (f?) 7(757 f) (2)

where W, (t, f) is the WVD, « is the convolution operation, and(t, f) is a distribution specific

kernel or filter (typically some form of 2D low pass filter). @WVD is defined as,

[e.e]

Wt f) = / 2(t+2)2(t — D)e 2T dr 3)

where,z(t) denotes the complex conjugate 1), z(¢) is the analytic associate of the signal under
analysis, that isz(t) = s(t) + jH{s(t)} whereH is the Hilbert transformf is frequencyt is time
andr is time lag.

The major problem with QTFDs is the interference generagaiden signal components due to the
quadratic nature of the transform. This interference melaatsa QTFD represents a signal modelled
by (1) as [10],

M

M
WZ(t7 f) = Z Wzk (t7 f) + Z WZqz,Zj (t7 f) (4)

k=1 i=1,j=1,i#]

where the first summation represents the signal componewtshe second summation of cross—
WVDs, W, .. (t, f) — see [3], represents the interference terms. There havedeseral attempts to
remove this interference via filtering the WVD [10], [11]. %€ techniques are based on 2D low pass

filtering as the interference terms in (4) tend to be highlgil@dory and are, therefore, represented
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in the outer regions of the ambiguity domain. Recent tealesghave used adaptive filters to better
differentiate between interference and signal energyeratinbiguity domain. The concept of adaptive
techniques for representing nonstationary signals appesaltthe fundamental problem of resolving
the AM and FM elements of a signal component means that nptisdaechniques are unable to
offer high performance for a wide range of nonstationannaig. In this paper, we use the EMD
to decompose a signal into several sub-signals, denotedtréissic mode functions (IMFs) in the
nomenclature of the EMD. An optimal ambiguity domain filterthen defined for each IMF and the
resultant optimal filter set is used to construct a compd&RP using a multiple view approach.

The EMD decomposes a signal according to (1) by estimatiagsitinal envelope, using a spline
fitted to the local maxima and minima, then iteratively sabting the mean of this envelope from
the signal. A time—frequency representation (the HHT) carfdimed using estimates @f.(¢) and
¢r(t). These functions are estimated using the magnitude anck @iabkeir analytic associates. The
estimation of these functions using such a method is prorertr from approximating the infinite
impulse response function of the Hilbert transform withténfilters and the enhancement of high
frequency noise due to a differentiation process.

The multiple view approach uses a series of different clsofoe (¢, f), called views, that are
designed to align with the IF law of particular signal comeots in the QTFD [12], [13]. The major
problem with a multiple—view TFD is that the choice of thewseis purely arbitrary unlesa priori
information is known. The use of the EMD offers the posdipilbf implementing a set of views
that more accurately differentiate between regions ofrietence and signal energy in the ambiguity
domain. This is because each IMF is, in general, a monocoemaignal and should, therefore,
generate no interference in a QTFD.

This suggests that an obvious choice for a composite TFDdbasghe EMD is,

TFD(t, f) = % WVD{IMF,(t)} (5)
k=1

The problem with such an implementation is that the EMD dostsatways accurately decompose

multicomponent nonstationary signals, in terms of (1) [Blg§nals that have high bandwidth/duration,
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transients or significant noise result in a decompositia@at ttan be approximated by the output of
a bank of stationary low pass filters with dyadically inciagscutoff frequencies, [15]. In addition,
the EMD is sensitive to the sampling frequency, and the emdlitions of the cubic spline fits [14],
[16]. As a result, the EMD can only accurately represent aaiglefined with respect to (1) if the
signal components are suitably constrained. The solutido design a sequence of filters that adapt
according to the localisation of IMF energy in the ambigudtymain. Constraints can be placed on
these filters to ensure that a meaningful composite TFD iegead even when the EMD is not
accurately decomposing a signal. The resultant composii2 i$ a high resolution, low interference

TFD suitable for use on a wide range of signals.

I[I. THE EMD-TFD

A multiple view TFD can be generated by combining a numbermbathed or filtered WVDs.
This composite, multiple view TFD is a combination of seVdiaDs generated by a series of filters

or views,

W(ta f) = {’71(7; f)> "'a’yn(ta f)}>

using the operatoR (e.g. a logical OR operation, the arithmetic or geometri@meThe original
filter set used was a series of Gabor atoms with linear IF 1&&F [The composite TFD can, therefore,

be defined as,

TFD(, f) =R [v(t, f) 5% WVD(t, f)] (6)
This can be readily interpreted (whéu is a linear operator) in the ambiguity domain as,
Dt f) =R | [~ [~ @) A ) M ar] @)

where G(v, 7) is the 2D Fourier transform of(¢, f) and A.(v, 1) is the 2D Fourier transform of
WVD(t, f).
The shape of the 2D filter set(t, f), and the type of operator will determine the performance of

the composite TFD for various nonstationary signals.
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The multiple view technique is shown diagrammatically ig.Fi(a). In the case of the EMD-TFD
the signal views are generated using the IMFs of the EMD, sgelkb). The multiple view, EMD-
TFD adaptively generates a set of 2D filters functio@gy, 7), in the ambiguity domain localised

around the significant ambiguity energyd(™ (v, 7)|2) of each IMF.

The proposed multiple view EMD-TFD uses the arithmetic masrthe operator. This operator
is chosen as it offers similar performance compared witleotperators (see Table I) and permits a
simplified implementation of the multiple view approache $&0). The arithmetic mean is calculated
using L views. These views are constructed from a sequende bfiFs (L is generally limited to
log,(N) where N is the signal length, [15]). Only the IMFs, with high energiyat contribute to a
user defined approximation of the original signal (typic&b%) are used to limit the computational
burden of the EMD-TFD. The ambiguity domain filters/views defined as,

Gi(v,7) = G (v, 1) ** h(v,7), i=11,.., L] (8)

(v,7)
whereh(v, ) is a 2D filter,

1 when |A™ (v, 7)| > t; max(|A™ (v, 7))
G (v, 7) = 9)

0 elsewhere
where A™ (v, 7) is the ambiguity domain representation of tiié IMF and ¢, is a user defined
threshold (a value ranging o, 1]) where a smaller value results in a view with a lower cutoff
in the ambiguity domain and a TFD with higher suppressionntérference but lower resolution).
This value also reflects the accuracy of the EMD with respe¢i}, the higher the value, the closer
the IMFs of the EMD are to true monocomponent signals. Thdcehof the filter (in this case
we refer to its representation in the time—frequency dojnairarbitrary but, as a rule of thumb,
long duration sinusoids with slowly varying IF laws requiomg duration, narrowband filters, long
duration sinusoids with rapidly varying IF laws require mad duration, medium bandwidth filters

and impulse functions require short duration, high bantwidters.
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The EMD-TFD is then defined as,

Pemd(t, f) = / / ! {ZG v, T } (v, 7')6]2”(’/t M dy dr (20)

I[I1l. THE PERFORMANCE OF THEEMD-TFD

The ability of the EMD-TFD to represent the time—frequenogrgy of a signal, with minimal
interference, was investigated using goodness of fit measamts that were designed to compare
a TFD with the ideal time—frequency representation. The suwess outlined in [17] are used to
heuristically assess TFD performance. The ability of thelENMIFD to estimate the IF of multiple
signal components was also investigated. The performaitbe &MD-TFD was compared to several

nonadaptive QTFDs and the adaptive radial Gaussian keRt&K] TFD proposed in [11].

A. Time—frequency energy localisation

The ability of the EMD-TFD to localise time—frequency enewgs tested using a synthetic three
component signal. This signal consists of a linear FM (LFnponent with increasing frequency, a
LFM component with decreasing frequency and a quadratic @¥M) component, all with constant

amplitude. It is defined as,

(11)

I
'Mm
V)
S
—~
o~

.
Il
—_

where,

si(t) = sin (10247(0.075¢ + 0.05¢))
so(t) = sin(10247r(—0.075t2+O.2t))

s3(t) = sin (1024m(=0.20° 4+ 0.3* + 0.3¢)
t ranges on [0,1] and is sampled as 512Hz. The ideal time-drexyurepresentation is,

3
t f = Zaz f fz( )) (12)
i=1
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where the IFs of the components are,

filt) = 76.8t+25.6
folt) = —T76.8t+120.4
f3(t) = —307.2t* +307.2t + 153.6

andai(t) = as(t) = as(t) = 1, (see Fig. 2).

The ambiguity domain filter seG (v, 7), for the EMD-TFD is shown in Fig. 3.

The EMD-TFD, WVD, spectrogram, HHT, RGK, Choi-Williams tlibution and modified B—
distribution, in addition to a TFD constructed according(3p called the WVD-EMD were used in
comparison. The TFDs of the test signal generated by eachothetre shown in Fig. 4.

The performance measures used to assess the goodness aWéebahe TFD under trial and
the desired TFD are the 2D linear correlation coefficidd)f, and the correlation between the ideal
time—frequency representation and a truncated versiomefTFD at a selected thresholé&;. A
TFD with high values for both correlations can be considexe@ high resolution, low interference
TFD. The linear correlation coefficient indicates the leskinterference in the TFD (the higher the

interference, the lower the correlation) and is defined as,

_ J S ot fpia(t, fdedf
(ffp(t,f)zdtdffj pid(t, f)thdf)O.E)

where pi4(t, f) is the ideal TFDp(t, f) is the TFD under comparison and the integrals are defined

Riq (13)

on [0, o<].
The second correlation coefficient indicates the resatutd the TFD. A TFD that is highly
concentrated around the IF of different signal componernlisrasult in a high value ofR;. This

measure is defined similarly t8;, except that the TFD under comparison is truncated,

1 when p(t, f) > t, max(p(t, f))
pult, 1) = 4

0 otherwise

wherep(t, f) is the TFD under comparison agl is a user defined threshold (selected arbitrarily as

0.75). It must be noted that the responsefpfwith respect to this threshold is monotonic and, as
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such, will consistently affect the results.
The effect of different operators in forming the EMD-TFD igen in Table I. The operators tested

where the arithmetic mean, a logical OR, and the geometrinme

TABLE |

PERFORMANCE OF OPERATOR ON THEMD-TFD

TFD Riq Ry R

arithmetic 0.38 0.44 0.82
geometric 0.38 0.44 0.82

OR 0.32 047 0.79

The response of the measures of interference and energgrtoaiion are given in Table Il. The
TFDs that required the definition of particular parametead these parameters optimally selected
to maximise the performance measures. The parametersisgdirwere, the energy threshold in the
EMD-TFD (e;), the window length in the spectrograrl’{) assuming a Hanning window, the
parameter in the modified—B distribution, theparameter for the Choi—Williams distribution, and
the o or volume parameter for the RGK. The optimisation procedis®d a fixed grid, maximisation
procedure where the cost function to be maximised was thi#i@udf the two performance measures,
R = Rijq + R;. The optimal parameter chosen of each TFD is shown in lastnwolof Table II.

Similar analysis was performed in the presence of 100 egadiss of additive white Gaussian noise.
The outcome of these results is shown in Table Ill, wh&re= R;q + R;, the subscripty, denotes
the signal to noise ratio (SNR) in decibels and the resultspaesented as mean (standard deviation)

over 100 realisations. The TFDs were implemented with thiana parameters shown in Table II.

B. Component estimation

The ability of the EMD-TFD to estimate the IF of a signal coment was tested using an automated
method for extracting the IF of a signal component from a TFBe IF estimator proposed in [18] is

used. This IF estimation procedure uses image processihgitpies, namely edge linking algorithms,
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TABLE Il

TIME—FREQUENCY PERFORMANCE OF VARIOUS FDs

TFD Ria  R: R optimal parameter value

WVD-EMD 0.28 0.37 0.65 -

EMD-TFD 0.38 044 0.82 er = 0.54
WVD 0.18 0.27 0.45 -
spectrogram 0.25 0.33 0.58 W, =137
modified—B 0.30 0.40 0.70 68 =0.23
Choi-Williams 0.28 0.36 0.64 o =67
RGK 0.34 041 0.75 a = 3.69

HHT 0.11 0.21 0.32 -
TABLE Il

NOISE PERFORMANCE OF VARIOUS FDs

TFD Roo RZ() Rl() RS RO

0.53 (0.03) 0.35 (0.04) 0.22 (0.05)

WVD-EMD  0.65 0.63 (0.03)

EMD-TFD  0.82 0.78 (0.01) 0.71(0.02) 0.54 (0.04) 0.40 (0.05)
WVD 0.45 0.43 (0.01) 0.35(0.03) 0.22 (0.04) 0.15 (0.05)

spectrogram 0.58 0.53 (0.03) 0.47 (0.04) 0.40 (0.04) O.3W4j0

modified-B  0.70 0.70 (0.01) 0.63 (0.02) 0.46 (0.03) 0.334D.0
Choi-Williams 0.64 0.62 (0.01) 0.53 (0.03) 0.38 (0.03) 0(2D3)
RGK 0.75 0.75(0.01) 0.74 (0.03) 0.72 (0.02) 0.67 (0.03)

HHT 0.32 0.2 (0.03) 0.25(0.03) 0.15 (0.03) 0.10 (0.03)

to detect signal components.

The results of the IF estimation procedure on each comparfemtwo component signak(t) =
s1(t) + s3(t)) based on the selected TFDs are shown in Fig. 5. A two compagmal was tested
as the automated method of IF extraction mentioned abovdiffasilty separating components that
share similar regions of the time—frequency domain, as ae#e intersection between(t) andss(t)

and to avoid excessive bias towards TFDs that were designegtesent only LFM components such
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as the RGK. The variance is estimated using 100 realisatibr&lditive white Gaussian noise and
normalised frequency. In the case where more than two coemsmvere found, the components that
best approximated the LFM and QFM were used to estimate thanegs. Note, that the LFM and

QFM components could not be located in the HHT across allenkeigels and the QFM component

could not be located in the RGK across all noise levels.

C. Real Underwater Acoustic Signal

The EMD-TFD was then applied to an underwater acoustic kigrtee signal under test is a
segment of humpback whale song recorded using a hydropAtee EMD—-TFD is plotted along

with the WVD in Fig. 6.

D. Discussion

The multiple view approach was initially designed with severe—defined filters or views opti-
mised to detect linear FM components. The use of a nonstatiasighal decomposition results in
adaptive filter design that can be more accurately focusedtie®regions of high energy in the joint
time—frequency domain and requires agriori information. In fact, a composite multiple view TFD
can be constructed using any appropriate signal deconpusithe EMD is particularly suited to
a multiple view framework as it aims to decompose a signal mtseries of monocomponents that
can be represented by the model outlined in (1) of which QTEEsideally suited to represent.
This is reflected in the results which show improved repregiem of the time—frequency energy
compared to nonadaptive TFDs and comparable IF estimagdiomqmance to the WVD. In fact, the
IF estimation method applied to the EMD—TFD generates lasgidate signal components compared
to the WVD (a reduction of 17% averaged across noise levdiglvwmeans that any post—hoc analysis
to determine whether the detected component is associdtldaweal signal component should be
simplified.

The disadvantage of the EMD-TFD is that it is computatignadbre expensive than other methods

due to the addition of an EMD algorithm and the calculationaohumber of ambiguity domain
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representations. The other disadvantage of the EMD-TFBatswhen the EMD fails to accurately
deompose a signal the EMD-TFD default to a smoothed TFD, asithe Choi—Williams distribution,

which can be more efficiently implemented.

The applicability of the EMD-TFD is limited by the performamof the EMD which is known
to approximate a filter bank with dyadic cutoff frequencigsich like a wavelet decomposition, in
the presence of significant noise [15]. A composite QTFDneatied directly from the IMFs, such
as the EMD-WVD, will, as a result, have little relationshipthe actual time—frequency behaviour
of the signal. The use of ambiguity domain filtering rathearththe direct mapping of the IMFs
using a QTFD is more robust with, and without the presencedditi@e white noise. This means
that signals that are not accurately decomposed by the EMIGstili be represented by a smoothed
WVD. This is shown in the Fig. 6 where the interference reiucis generated primarily by the
smoothing filter,h(v, 7), rather than the characteristics of the IMFs. It is also shbwy the higher
correlation measures for the EMD-TFD compared to the WVDEENWhe EMD-TFD also provides
a more accurate representation of signal energy in the fiore—frequency domain compared to the

HHT which has the poorest performance of the analysed TFDs.

The EMD algorithm forces continuity of time on each IMF. Thiseans that unrelated signal
components are grouped together if they occur at separaés tin the signal. A recently proposed
modification to the EMD algorithms using the DCT to remove thstriction of continuity in time
on an IMF should provide additional improvement in the EMBBT[14]. This may help remove
interference by components that are separated in timeerrdittan frequency (the effects of such
interference can be seen in Fig. 6(a) at [128ms, 2.5kHz] a88rhs, 3kHz]). Furthermore, additional
improvements in the EMD algorithm for decomposing nonstaty multicomponent signals will
directly improve the performance of the EMD-TFD as more amteulocalisation of the ambiguity

domain signal energy can, potentially, be achieved.

The technique used to adapt the filter or view according taggniecalisation about the origin is

similar to that used in the RGK. The assumption that thereismss term energy in the ambiguity
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domain, due to the signal under analysis being mono—cormmpomeans that the proposed method is
more suitable for signals that have nonlinear IF laws. Téigrilike the RGK which is optimised for
only linear FM signals. This explains why the RGK has impperformance in the presence of noise
as its ability to resolve the LFM components outweighs ititity to resolve the QFM component.
It also explains why the IF estimation procedure cannotagxtthe QFM signal component from the
TFD generated by the RGK.

The EMD-TFD, like many adaptive TFDs, does not satisfy matdtically desirable properties of a
QTFD such as marginals, non—negativity, finite supportpf8,60—62]. It does, however, satisfy more
general characteristics of a TFD such as real valuednessrsrdy concentration around the IF law
of a signal component [3, pp. 11-12]. These characteriatiesmportant for real world applications
such as signal component detection and estimation. Mdsga@a be enforced by setting the axes of
the ambiguity domain to one [11].

It must also be noted, that other high resolution TFDs candmmdd using techniques such as
short—time kernel adaption, the S—method, and reassignburithese are different in concept and
implementation compared to ambiguity domain filtering,. [Bhe advantage of using the EMD is
that optimisation processes such as these may be more sfudlyegnplemented on each IMF than
on the original signal. For example, when using the adapgpectrogram the estimation of the
optimal window length may be performed on each IMF and a cait@omultiple view spectrogram

constructed.

IV. CONCLUSION

This paper proposes a composite TFD based on a multiple \ppwoach. The IMFs of an EMD are
used to construct a series of views in the ambiguity domaihibkilighting concentrations of energy
in the ambiguity domain. The advantage of such a method isittan overcome interference in
TFDs generated by the existence of multiple signal compisranthe cost of increased computation.
The EMD-TFD has been shown to offer superior performancenwkeresenting time—frequency

energy concentration, and estimating the IF, of nonstatipsignal components. The quality of the
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signal decomposition technique, however, is critical andust decompose the signal according to a

well known nonstationary multiple component signal modwed &e robust in the presence of noise.
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Figure 1. The multiple view composite TFD.

Figure 2: The ideal TFD of the synthetic test signal.

Figure 3: The ambiguity domain filter set or views for the BM FD.

Figure 4: Several TFDs of the simulated multiple compadrségnal. The contours are set to
65% of the maximum value of the quadratic FM component.

Figure 5: The variance of the IF estimates using edgeirlinkn a TFD.

Figure 6: The EMD-TFD and WVD of a segment of whale song (AR&hning filter is used

ande; = 0.05).
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Fig. 4. Several TFDs of the simulated multiple componenhaigThe contours are set to 65% of the maximum value of
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Fig. 6. The EMD-TFD and WVD of a segment of whale song (a 2D Htapfilter is used and:



