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Robust Semi-Global Coordinated Tracking of

Linear Multi-agent Systems with Input

Saturation

Housheng Su, Michael Z. Q. Chen, and Guanrong Chen,

Abstract

This paper investigates the problem of coordinated tracking of a linear multi-agent system subject

to actuator magnitude saturation and dead zone characteristic with input additive uncertainties and

disturbances. Distributed consensus and swarm tracking protocols are developed from a low-and-high

gain feedback approach. Under the assumption that each agent is asymptotically null controllable with

bounded controls, it is shown that robust semi-global consensus tracking and swarm tracking of the multi-

agent system can always be reached provided that the networks are connected. Numerical examples are

provided to illustrate the theoretical results.
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I. INTRODUCTION

Recently, multi-agent systems have been widely studied in different fields, including physics,

biology, computer science, and control engineering, which accelerates the development of sys-

tems science and technology [1], [2]. In particular, research on distributed cooperative control

protocols has advanced the development of cooperative control in multi-agent systems [3], [4],

[5], [6], [7], [8], [9], [10], [11], [12]. For practical applications, various cooperative control

capabilities need to be developed, including coordinated control without leaders and coordinated

tracking to a leader in a multi-agent system.

Coordinated tracking of a multi-agent system means that a large number of followers, each

relying only on its neighbors’ local information, reach a coordinated motion with the predesigned

leader, which are characterized by distributed control, local interactions and self-organization.

Typical coordinated tracking of multi-agent systems includes consensus tracking and swarm

tracking [13]. In previous studies, the coordinated tracking problem was first discussed for single-

integrator kinematics [14], [15], [16], and then generalized to double-integrator dynamics [17],

[18], [19], [20], [21], [22] and general linear or nonlinear dynamics [23], [24], [25], [26], [27],

[28], [29], [30].

This work considers (possibly time-varying) disturbance uncertainties and saturation con-

straints. These issues are not only theoretically challenging but also practically important. In

physical and engineering systems, saturation nonlinearities are omnipresent because of the energy

constraints and input signals saturation. Thus far, only a few studies have taken the saturation

constraints into consideration [20], [31], [32], [33], [34], [35], [36], [37], [38], for example,

to solve the consensus problem in multi-agent systems with single-integrator kinematics [31],

[32], [33] or double-integrator dynamics [20], [34], [35]. In [36], a distributed projected con-

sensus algorithm is developed for consensus problems. Without using velocity measurement,

the consensus of multi-agent systems with double-integrator dynamics is investigated with input

saturation in [37]. Under the assumptions that each agent is asymptotically null controllable with

bounded controls and that the network is connected or jointly connected, low gain feedback based

distributed consensus protocols are developed to achieve semi-global leader-following consensus

of the multi-agent system without additive input uncertainties and disturbances [38].

In this paper, we address the coordinated tracking problem for a linear multi-agent system
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subject to actuator magnitude saturation and the dead zone constraint with additive input un-

certainties and disturbances. In order to stabilize a single control system subject to actuator

magnitude saturation and the dead zone characteristic as well as input additive uncertainties

and disturbances, the control system needs to be asymptotically null controllable with bounded

controls. Therefore, in this paper, we also consider the case that the agents are asymptotically null

controllable with bounded controls. By utilizing the low-and-high gain design technique [39], we

design coordinated tracking algorithms that can achieve robust semi-global consensus tracking

or swarm tracking of multi-agent systems on a fixed communication network. Comparing to

the existing works on similar topics, the contributions of this paper are three-fold. First, to the

best of our knowledge, no existing work considered multi-agent systems subject to actuator

magnitude saturation and the dead zone characteristic as well as input additive uncertainties and

disturbances. Under such a general setting, this work is much closer to the practical situations.

Second, this work extends the existing results on consensus with saturation constraints [20], [31],

[32], [33], [34], [35], [36], [37] to the case of agents described by more general linear dynamics.

Finally, differing from the low gain feedback consensus of linear multi-agent systems in [38],

the low-and-high gain feedback strategy is adopted in this paper, which is more complex than

the low gain feedback one. More precisely, we construct a family of low-and-high gain feedback

laws, where the low gain controller is parameterized by a constant ε > 0, which is completely

separated from the high gain parameter ρ > 0. For any a priori given bounded set in the state

space, the value of ε can be tuned to be small enough so as to increase the size of the equilibrium

region of the closed-loop system in order to achieve coordinated tracking, as long as the network

is connected and the agents are asymptotically null controllable with bounded controls. On the

other hand, the high gain parameter plays a key role in achieving desirable performances beyond

stabilization such as disturbance rejection, robustness and enhancement of control abilities.

The rest of the paper is organized as follows. Section II formulates the semi-global coordinated

tracking problem to be studied in this paper. Section III presents the main results on the

robust coordinated tracking problem. Section IV illustrates the theoretical results with numerical

examples. Section V draws conclusions to the paper.
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II. PROBLEM STATEMENT

Consider a group of N agents with general linear dynamics, labeled as 1, 2, . . . , N , described

by

ẋi = Axi +Bui, i = 1, 2, . . . , N, (1)

where xi ∈ Rn is the state of agent i, and ui ∈ Rm is the control input acting on agent i; A ∈

Rn×n and B ∈ Rn×m are known constant matrices. In the following, let x = [x1
T, x2

T, . . . , xN
T]T

and u = [u1
T, u2

T, . . . , uN
T]T. The dynamics of the leader, labeled as N + 1, is described by

ẋN+1 = AxN+1. (2)

The problem of robust semi-global consensus tracking for the agents and with a leader as

described above is the following: For any given bounded set X ⊂ Rn, construct a control law

ui for each agent i, which is affected by (possibly time-varying) disturbance uncertainties and

only uses local information from neighbor agents, such that

lim
t→∞

∥xi(t)− xN+1(t)∥ = 0, i = 1, 2, . . . , N.

The problem of robust semi-global swarm tracking is similarly defined if the state difference

between each agent and the leader, ∥xi(t)−xN+1(t)∥, i = 1, 2, . . . , N , remains in a prescribed set

X0 ⊂ Rn with 0 ∈ X0, after some finite time, provided that xi(0) ∈ X for all i = 1, 2, . . . , N,N+

1.

We consider the problem of robust semi-global coordinated tracking when the communication

network is fixed. The network consisting of N agents is described by an undirected graph

G = {V,E}. In this graph, the set of vertices V = {1, 2, . . . , N} represents the agents in

the group and the set of edges E = {(i, j) ∈ V × V : i ∼ j}, containing unordered pairs

of vertices, represents neighboring relations among the agents. Vertices i and j are said to be

adjacent if (i, j) ∈ E. The adjacency matrix A = (aij) of graph G is defined by letting aij = 1

if (i, j) ∈ E, and aij = 0 otherwise. The Laplacian of graph G with adjacency matrix A is given

by L = ∆(A) − A, where the degree matrix ∆(A) is a diagonal matrix with the ith diagonal

element given by
∑N

j=1,j ̸=i aij . Denote the eigenvalues of L as λ1(L) ≤ λ2(L) ≤ · · · ≤ λN(L).

Then, λ1(L) = 0, which has a corresponding eigenvector 1 = [1 1 · · · 1]T ∈ RN . Moreover,

G is connected if and only if λ2(L) > 0 [40]. The n-dimensional graph Laplacian is defined

as
⌢

L = L ⊗ In, where In is the identity matrix of order n and ⊗ stands for the Kronecker
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product. Let Ḡ be a graph generated by graph G and a leader (vertex N + 1), and L be the

symmetric Laplacian of the undirected graph G consisting of N agents. If agent i is a neighbor

of the leader at time t, then denote it by hi = 1; otherwise, hi = 0. Finally, define matrix

H = diag {h1, h2, . . . , hN}.

Lemma 1: [14] Let L be the Laplacian of an undirected graph G consisting of N agents.

Let Ḡ be the graph consisting of the N agents and a leader (vertex N + 1), which contains a

spanning tree with the leader as the root vertex. Then, L+H > 0.

Lemma 2: [28] Let L1 and L2 be the symmetric Laplacians of graphs G1 and G2, respectively,

both consisting of N agents. Let Ḡ1 be a graph consisting of the N agents and a leader (agent

N + 1). Assume that Ḡ1 contains a spanning tree. Let Ḡ2 be a graph generated by adding

some edge(s) among the N agents into the graph Ḡ1. Then, λi(L2 + H) ≥ λi(L1 + H) > 0,

i = 1, 2, · · · , N .

Remark 1: Let Ḡs be a spanning tree consisting of the N agents and a leader (agent N +1),

and Ḡs1 be a graph generated by adding some edge(s) among the N agents into the graph Ḡs.

Let Ls and Ls1 be, respectively, the corresponding symmetric Laplacians of Gs and Gs1, both

consisting of the N agents. Then, λ1(Ls +H) ≤ λ1(Ls1 +H). Since the number of the vertices

of the spanning tree is finite and fixed, the number of possible spanning trees consisting of the

N agents and the leader is finite. Therefore, one can obtain the minimum value of λ1(Ls +H),

denoted min{λ1(Ls + H)}. Let Ḡc be a complete graph consisting of the N agents and the

leader and Lc be the corresponding symmetric Laplacian of Gc consisting of the N agents. By

using a similar argument, one can show that λN(Lc +H) is the maximum value of λN(L+H).

III. MAIN RESULTS

To find a solution to the problem of robust semi-global coordinated tracking, the following

assumptions are needed.

Assumption 1: The pair (A,B) is asymptotically null controllable with bounded controls, that

is, (A,B) is stabilizable and all the eigenvalues of A are in the closed left-half plane.

Assumption 2: The graph Ḡ consisting of the N agents and the leader contains a spanning

tree rooted at the leader.

Lemma 3: [39] Let Assumption 1 hold. Then, for each ε ∈ (0, 1], there exists a unique matrix
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P (ε) > 0 that solves the algebraic Riccati equation (ARE)

ATP (ε) + P (ε)A− P (ε)BBTP (ε) + εI = 0.

Moreover, lim
ε→0

P (ε) = 0.

Definition 1: A saturation function σ : Rm → Rm satisfies

(1) σ(s) is decentralized, that is, σ(s) = [σ1(s1) σ2(s2) · · · σm(sm)]
T, s = [s1, s2, . . . , sm]

T ∈

Rm; and

(2) for each i = 1, 2, . . . ,m,

σi(si) =



0, if |si| < b,

si − sign(si)b, if b ≤ |si| ≤ b+ δ,

δ, if si > b+ δ,

−δ, if si < −b− δ,

where sign(·) is the signum function, and the constants δ > 0 and b ≥ 0.

Note that if b = 0, the saturation function σ(·) is the standard saturation function, and if

b > 0, the saturation function σ(·) is the standard saturation function with ideal dead zone

characteristics.

The proposed low-and-high gain feedback design for the multi-agent system (1) is carried out

in two steps.

Low-and-high gain-based coordinated tracking control protocol:

Step 1. Solve the parametric algebraic Riccati equation (ARE)

ATP (ε) + P (ε)A− 2γP (ε)BBTP (ε) + εI = 0, ε ∈ (0, 1], (3)

where γ ≤ min{λ1(Ls+H)} is a positive constant. The existence of a unique positive

definite solution P (ε) for the ARE (3) is guaranteed by Lemma 3.

Step 2. Construct a feedback law for agent i as

ui = −
N∑
j=1

aijσ ((1 + ρ)BTP (ε)(xi − xj)+g(xi − xj, t))

−hiσ((1 + ρ)BTP (ε)(xi − xN+1)+g(xi − xN+1, t)), i = 1, 2, . . . , N, (4)

where the nonnegative parameters ρ and ε are referred to as the high gain parameter

and the low gain parameter, respectively. The function g : Rn × R+ → Rm represents

(possibly time-varying) disturbance uncertainties.
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Remark 2: In the above design algorithm, the control inputs are bounded and each follower

agent only acquires the state information of its neighbors. Moreover, the design algorithm requires

no information of the network topology. If the number of agents, N , is known, the value of γ

is determined.

Assumption 3: [39] The uncertain element

g(v, t) = [g1(v, t), g2(v, t), · · · , gm(v, t)] = −g(−v, t) ∈ Rm

is piecewise continuous in t, locally Lipschitz in v and its norm is bounded by a known function

|g(v, t)| ≤ g0(|v|) +D0,∀(v, t) ∈ Rn × R+,

where D0 is a known nonnegative constant, and the known function g0 : R+ → R+ is locally

Lipschitz and satisfies g0(0) = 0.

Lemma 4: For any K ∈ Rm×n and any ςi, ξi ∈ Rm, i = 1, 2, . . . , N ,

1

2

N∑
i=1

N∑
j=1

aij(ςi − ςj)
Tσ (K(ξi − ξj) + g(ξi − ξj, t))

=
N∑
i=1

N∑
j=1

aijς
T
i σ (K(ξi − ξj) + g(ξi − ξj, t)) .

Proof. The proof involves a simple rearrangement of terms in the following double summation

1

2

N∑
i=1

N∑
j=1

aij(ςi − ςj)
Tσ (K(ξi − ξj) + g(ξi − ξj, t))

=
1

2

N∑
i=1

N∑
j=1

aijς
T
i σ (K(ξi − ξj) + g(ξi − ξj, t))

−1

2

N∑
i=1

N∑
j=1

aijς
T
jσ (K(ξi − ξj) + g(ξi − ξj, t))

=
1

2

N∑
i=1

N∑
j=1

aijς
T
i σ (K(ξi − ξj) + g(ξi − ξj, t))

+
1

2

N∑
j=1

N∑
i=1

ajiς
T
i σ (K(ξi − ξj) + g(ξi − ξj, t))

=
N∑
i=1

N∑
j=1

aijς
T
i σ (K(ξi − ξj) + g(ξi − ξj, t)) .

This complete the proof.
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Lemma 5: Let K ∈ Rm×n and z ∈ Rn, w = Kz = [w1, w2, · · · , wm]
T ∈ Rm, and 0 < |z| ≤

zmax. If |ρwi| ≥ |gi(z, t)|+ b,

−wi[σi((1 + ρ)wi + gi(z, t))− satδ(wi)] ≤ 0,

where satδ(·) is a standard saturation function. If |ρwi| ≤ |gi(z, t)|+ b,

−wi[σi((1 + ρ)wi + gi(z, t))− satδ(wi)] ≤
6

ρ
(D0

2 + b2 +M2|z|2),

where M = supd∈(0,zmax]{
g0(d)
d

}.

Proof. It follows from Definition 1 that, for each i,

si[σi(si + sign(si)b̄)− satδ(si)] ≥ 0,∀si ∈ R, b̄ ≥ b.

Therefore, if |ρwi| ≥ |gi(z, t)|+ b,

−wi[σi((1 + ρ)wi + gi(z, t))− satδ(wi)] ≤ 0.

Otherwise, if |ρwi| ≤ |gi(z, t)|+ b,

−wi[σi((1 + ρ)wi + gi(z, t))− satδ(wi)]

= −wi[σi((1 + ρ)wi + gi(z, t))− σi(wi)]

−wi[σi(wi)− σi(wi + sign(wi)b)]

−wi[σi(wi + sign(wi)b)− satδ(wi)]

≤ (|gi(z, t)|+ b)

ρ
(2|gi(z, t)|+ b+ b)

≤ 2

ρ
(g0(|z|) + b+D0)

2

≤ 6

ρ
(D0

2 + b2 +M2|z|2).

This completes the proof.

Let

M̄ = sup
d∈(0,F ]

{
g0(d)

d

}
,

F =
√
cλ−1

min(P (ε)),

θ = λN(Lc +H),
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ρ∗1 = 12mM̄2 θλmax(P (ε))

ελmin(P (ε))
,

ρ∗2 = N(N − 1)
24mλmax(P (ε))

εc
(D2

0 + b2),

and

ρ ≥ max{ρ∗1, ρ∗2}.

The following is the main results on the robust semi-global coordinated tracking problem of the

multi-agent system.

Theorem 1: Consider a multi-agent system of N agents described by general linear dynamics

(1), with a leader described by dynamics (2). Suppose that Assumptions 1, 2 and 3 hold. Then,

the control inputs ui for the agent (4) will achieve robust semi-global consensus tracking of the

multi-agent system if D0 = 0 and b = 0; or achieve robust semi-global swarm tracking of the

multi-agent system if D0 > 0 or b > 0. That is, for any given bounded set X ⊂ Rn, there is an

ε∗(δ,X ) > 0 and, for each ε ∈ (0, ε∗], there exists a ρ∗(ε, δ, b, g0, D0,X ,X0) such that, for any

given ε ∈ (0, ε∗] and ρ ≥ ρ∗, if D0 = 0 and b = 0,

lim
t→∞

∥xi(t)− xN+1(t)∥ = 0, i = 1, 2, . . . , N,

provided that xi(0) ∈ X for all i = 1, 2, . . . , N,N + 1; if D0 > 0 or b > 0, the state difference

between the agent and the leader, ∥xi(t)− xN+1(t)∥, i = 1, 2, . . . , N , remains in a set X0 ⊂ Rn

with 0 ∈ X0 after some finite time, provided that xi(0) ∈ X for all i = 1, 2, . . . , N,N + 1.

Proof. Part i). In this part, we firstly use the difference between the states of agents and the

leader to construct an error system, which is equivalent to the original system. Base on the error

system, we define a Lyapunov function and a set, and calculate the derivative of the Lyapunov

function along the trajectories of the agents within the set.

Denote the difference between the states of agent i and the leader as x̃i = xi − xN+1, i =

1, 2, . . . , N . Then,

˙̃xi=Ax̃i +Bui

=Ax̃i−B
N∑
j=1

aijσ ((1+ρ)BTP (ε)(x̃i − x̃j)+g(x̃i − x̃j, t))

−Bhiσ((1 + ρ)BTP (ε)x̃i + g(x̃i, t)). (5)
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Consider the Lyapunov function

V (x̃) =
N∑
i=1

x̃T
iP (ε)x̃i, (6)

where x̃ = [x̃T
1 xT

2 · · · x̃T
N ]

T. Let c > 0 be a constant such that

c ≥ sup
ε∈(0,1],xi(0)∈X ,i=1,2,...,N+1

N∑
i=1

x̃T
i(0)P (ε)x̃i(0). (7)

Such a c exists since X is bounded and lim
ε→0

P (ε) = 0 by Lemma 3.

Let LV (c) :=
{
x̃ ∈ RNn : V (x̃) ≤ c

}
, and let ε∗ ∈ (0, 1] be such that, for each ε ∈ (0, ε∗],

x̃ ∈ LV (c) implies that

∥BTP (ε)x̃i∥∞ ≤ δ,

∥BTP (ε)(x̃i − x̃j)∥∞ ≤ δ, i = 1, 2, . . . , N, (8)

where ∥z∥∞ = max
i

|zi| for z ∈ Rn. The existence of such an ε∗ is again due to the fact that

lim
ε→0

P (ε) = 0. Thus, the derivative of V along the trajectories of the agents within the set LV (c)

is given by

V̇ (x̃) = ˙̃x
T
P (ε)x̃+ x̃TP (ε) ˙̃x

=
N∑
i=1

x̃T
i (P (ε)A+ ATP (ε)) x̃i

−2
N∑
i=1

x̃T
iP (ε)B

N∑
j=1

aijσ ((1 + ρ)BTP (ε)(x̃i − x̃j) + g(x̃i − x̃j, t))

−2
N∑
i=1

x̃T
iP (ε)Bhiσ((1 + ρ)BTP (ε)x̃i + g(x̃i, t))

=
N∑
i=1

x̃T
i (P (ε)A+ ATP (ε)) x̃i

−2
N∑
i=1

x̃T
iP (ε)BBTP (ε)

 N∑
j=1

aij(x̃i − x̃j) + hix̃i


−

N∑
i=1

(x̃i − x̃j)
TP (ε)B

N∑
j=1

aijσ ((1 + ρ)BTP (ε)(x̃i − x̃j) + g(x̃i − x̃j, t))

+
N∑
i=1

(x̃i − x̃j)
TP (ε)B

N∑
j=1

aijB
TP (ε)(x̃i − x̃j)

−2
N∑
i=1

x̃T
iP (ε)Bhi(σ((1 + ρ)BTP (ε)x̃i + g(x̃i, t))−BTP (ε)x̃i). (9)
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Part ii). In this part, we consider the derivative of the Lyapunov function along the trajectories

of the agents within the set in two cases. In the first case, the derivative of the Lyapunov function

along the trajectories of the agents within the set is always negative. In the second case, the

derivative of the Lyapunov function along the trajectories of the agents within the set is not

always negative, but it is negative when the value of the Lyapunov function is close to the

boundary value.

Now consider two cases, i) and ii), as follows.

i) If |ρBTP (ε)(x̃i − x̃j)| ≥ |gi(x̃i − x̃j, t)| + b and |ρBTP (ε)x̃i| ≥ |gi(x̃i, t)| + b, for all i =

1, 2, , · · · , N , then from Lemma 5 and Equation (9), one has

V̇ (x̃) =
N∑
i=1

x̃T
i (P (ε)A+ ATP (ε)) x̃i

−
N∑
i=1

N∑
j=1

aij(x̃
T
i − x̃T

j)P (ε)BBTP (ε)(x̃i − x̃j)

−2
N∑
i=1

hix̃
T
iP (ε)BBTP (ε)x̃i. (10)

Recalling from [21] the fact that for any ξi ∈ Rm, i = 1, 2, . . . , N ,

1

2

N∑
i=1

N∑
j=1

aij(ξi − ξj)
T(ξi − ξj) = ξT(L⊗ Im)ξ,

where ξ = [ξ1 ξ2 · · · ξN ]T, and using the identity (A⊗B)(C⊗D) = AC⊗BD, one can obtain

from (10) that

V̇ (x̃) = x̃T (IN ⊗ (P (ε)A+ ATP (ε))) x̃

−2x̃T (IN ⊗ P (ε)B) (L⊗ Im) (IN ⊗BTP (ε)) x̃

−2x̃T (IN ⊗ P (ε)B) (H ⊗ Im) (IN ⊗BTP (ε)) x̃

= x̃T (IN ⊗ (P (ε)A+ ATP (ε))) x̃.

−x̃T ((L+H)⊗ (2P (ε)BBTP (ε))) x̃. (11)

The symmetry of the matrix L+H implies that there exists an orthogonal matrix T ∈ RN×N

such that

L+H=T Tdiag{λ1(L+H), λ2(L+H), . . . , λN(L+H)}T

:=T Tdiag{λ1, λ2, . . . , λN}T.
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Thus, (11) further gives

V̇ (x̃)=x̃T ((T TT )⊗ (P (ε)A+ ATP (ε))) x̃

−x̃T (T Tdiag{λ1, . . . , λN}T ⊗ (2P (ε)BBTP (ε))) x̃

=
N∑
i=1

x̃T
i(T

T⊗In) (P (ε)A+ATP (ε)−2λiP (ε)BBTP (ε)) (T ⊗ In)x̃i

≤
N∑
i=1

x̃T
i(T

T⊗In) (P (ε)A+ATP (ε)−2γP (ε)BBTP (ε)) (T ⊗ In)x̃i

= −ε
N∑
i=1

x̃T
i(T

T ⊗ In)(T ⊗ In)x̃i

< 0, ∀x̃i ∈ LV (c) \ {0}.

ii) If the condition in case i) is not satisfied, then from Lemma 5 and (9), one has

V̇ (x̃) ≤ −ε
N∑
i=1

x̃T
i x̃i +

N∑
i=1

N∑
j=1

aij
6m

ρ
(D2

0 + b2+M̄2(̃xi−x̃j)
T(̃xi−x̃j))

+2
N∑
i=1

N∑
j=1

hi
6m

ρ
(D2

0 + b2 + M̄2x̃T
i x̃i)

≤ −
[
ε

2
λ−1
max(P (ε))− 6m

ρ
M̄2 θ

λmin(P (ε))

]
V (x̃)

−ε

2
λ−1
max(P (ε))V (x̃) +

N∑
i=1

N∑
j=1

(aij + 2hi)
6m

ρ
(D2

0 + b2)

≤ −ε

2
λ−1
max(P (ε))

[
V (x̃)− ρ∗2c

2ρ

]
. (12)

Therefore,

x̃ ∈
{
x̃ ∈ RNn :

ρ∗2c

2ρ
≤ V (x̃) ≤ c

}
⇒ V̇ (x̃) < 0,

∀x̃i ∈ LV (c) \ {0}.

Now, suppose that the state difference between an agent and the leader, ∥xi(t) − xN+1(t)∥,

i = 1, 2, . . . , N , enters into the set B =
{
x̃ ∈ RNn : V (x̃) ≤ c

2

}
at time T . Then, V (T ) = c

2

and, from (12), one has

T ≤ 2λmax(P (ε))

ε
ln

V (0)− ρ∗2c

2ρ

c
2
− ρ∗2c

2ρ

 .

Part iii). In this part, we illustrate that the consensus tracking will be achieved when D0 = 0

and b = 0, and the swarm tracking will be attained when D0 > 0 or b > 0.
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When D0 = 0 and b = 0, one has ρ∗2 = 0. This implies that the trajectory of x̃ starting from

the level set LV (c) will converge to the origin asymptotically as time goes to infinity, which in

turn implies that

lim
t→∞

∥xi(t)− xN+1(t)∥ = 0, i = 1, 2, . . . , N.

If D0 > 0 or b > 0, then the condition discussed in case i) is not satisfied and moreover ρ∗2 ̸= 0.

The state difference between an agent and the leader, ∥xi(t)−xN+1(t)∥, i = 1, 2, . . . , N , remains

in a set X0 ⊂ LV (c) with 0 ∈ X0, provided that xi(0) ∈ X , for all i = 1, 2, . . . , N,N + 1. This

completes the proof.

Remark 3: In this paper, we adopt the ARE-based method to deal with the coordinated

tracking problem. Therefore, the resulting feedback gain is indirectly dependent on the low

gain parameter ε. For each different value of ε, the solution of a parameterized ARE is required.

Therefore, one can use the following bisectioning method to compute the parameter ε∗ and ρ∗

without using any global information of the multi-agent systems. First, we choose an ε∗ ∈ (0, 1].

From Equation (3), one can obtain the corresponding P (ε∗). Note that the calculation of γ in

Equation (3) only depends on the number of the agents N . For a given bounded set X ⊂ Rn, one

can find the maximum value of ∥µ∥∞, where ∥µ∥∞ = max
i

|µ| for µ ∈ X . Let the maximum

value of ∥µ∥∞ be a, and xi(0) ∈ X , one has ∥xi(0)∥∞ ≤ a. Let 1 = [1, 1, . . . , 1]T . Since

x̃i = xi − xN+1, from Equation (6), one has

V (x̃(0)) ≤ 4a2
N∑
i=1

1TP (ε∗)1.

Therefore, from Equation (7), one can design

c = 4a2
N∑
i=1

1TP (ε∗)1.

From Equation (6) and V̇ ≤ 0, one has

x̃T
i P (ε∗)x̃i ≤ c.

Thus, one obtains the maximum values of ∥x̃i∥∞, i = 1, 2, . . . , N . Let the maximum value of

∥x̃i∥∞ be g and

BTP (ε∗) = κ = (κij)m×n ∈ Rm×n.

Let

κ̄ = (| κij |)m×n ∈ Rm×n,
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one has

∥BTP (ε∗)x̃i∥∞ ≤ ∥gκ̄1∥∞ ,

∥BTP (ε∗)(x̃i − x̃j)∥∞ ≤ ∥2gκ̄1∥∞ ,

i = 1, 2, . . . , N.

If ∥2gκ̄1∥∞ ≤ δ, then the parameter ε∗ is feasible. Otherwise, one uses the half value of the

former given value ε∗ to repeat the above calculation process until the saturation constraint

∥2gκ̄1∥∞ ≤ δ is satisfied. Therefore,

M̄ = sup
d∈(0,F ]

{
g0(d)

d

}
,

F =
√
cλ−1

min(P (ε∗)),

θ = λN(Lc +H),

ρ∗1 = 12mM̄2 θλmax(P (ε∗))

ελmin(P (ε∗))
,

ρ∗2 = N(N − 1)
24mλmax(P (ε∗))

ε∗c
(D2

0 + b2),

and

ρ∗ = max{ρ∗1, ρ∗2}.

IV. NUMERICAL EXAMPLES

The simulation is performed with ten agents and one leader. The system matrices are chosen

as

A =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −4 0


, B =



0

0

0

1


.

It is straightforward to verify that (A,B) is asymptotically null controllable with bounded

controls. The disturbance uncertainties function g(xi, t) = 0.002 sin t · ∑n
j=1 xij , the known

function g0(|xi|) = 0.002|xi| and the constant δ = 3. The initial states xi1, xi2, xi3 . . .xi10

of all agents are randomly chosen from the box [−3, 3] × [−3, 3] × [−3, 3] × [−3, 3], and the
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initial state of the leader is chosen as [1.5, 1.5, 1.5, 1.5]. The Laplacian L and the matrix H are

as follows:

L =



2 −1 0 0 −1 0 0 0 0 0

−1 3 −1 −1 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0

0 −1 −1 3 −1 0 0 0 0 0

−1 0 0 −1 3 −1 0 0 0 0

0 0 0 0 −1 3 −1 0 0 −1

0 0 0 0 0 −1 2 0 −1 0

0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 −1 −1 3 −1

0 0 0 0 0 −1 0 0 −1 2



,

H =



1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



.

The minimum eigenvalue of (L+H) is 0.2569. Here, we do not need to use the information

of the interaction network topology. Since there are ten agents and one leader in the group,

using exhaustive search, we can obtain the minimum eigenvalue of the possible spanning trees

consisting ten agents and a leader. Therefore, we can choose γ = 0.1 and θ = λN(Lc+H) = 11.

For ε = 0.1, ε = 0.01 and ε = 0.001, we obtain the following positive definite matrices:

P (0.1) =



1.9721 0.3313 1.3587 0.0498

0.3313 6.5031 0.4756 1.9527

1.3587 0.4756 3.4637 0.1310

0.0498 1.9527 0.1310 1.3453


,
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P (0.01) =



0.6184 0.0332 0.4266 0.0050

0.0332 2.0461 0.0477 0.6177

0.4266 0.0477 1.0879 0.0132

0.0050 0.6177 0.0132 0.4261


,

and

P (0.001) =



0.1954 0.0033 0.1348 0.0005

0.0033 0.6467 0.0048 0.1954

0.1348 0.0048 0.3438 0.0013

0.0005 0.1954 0.0013 0.1348


,

which all satisfy condition (3). Therefore, we obtain λmax(P (ε) = 0.1) = 7.2757, λmin(P (ε) =

0.1) = 0.6859, λmax(P (ε) = 0.01) = 2.2586, λmin(P (ε) = 0.01) = 0.2173, λmax(P (ε) = 0.1) =

0.7129 and λmin(P (ε) = 0.1) = 0.0687. From the boundary of the initial states and the value

of P (ε), we can choose c = 4431.1, c = 1309.2 and c = 405.1444 for ε = 0.1, ε = 0.01 and

ε = 0.001, respectively.

If we choose the constants b = 0 and D0 = 0, then we obtain ρ = 0.0560, ρ = 0.5487 and

ρ = 5.4757 for ε = 0.1, ε = 0.01 and ε = 0.001, respectively. Fig. 1 shows the robust consensus

tracking results of the ten agents under control protocol (4) to follow the leader. Figs. 1(a) and

1(b) plot the consensus tracking between the ten agents and the leader and the control signals

of the ten agents, respectively, when ε = 0.1. Figs. 1(c) and 1(d) plot the consensus tracking

between the ten agents and the leader and the control signals of the ten agents, respectively,

when ε = 0.01. Figs. 1(e) and 1(f) plot the consensus tracking between the ten agents and the

leader and the control signals of the ten agents, respectively, when ε = 0.001.

Starting from the same initial states, Fig. 2 and Fig. 3 present the settling time of the system

as a function of ρ and ε, when b = 0, D0 = 0 for ε = 0.01 and ρ = 0.056, respectively. The

figures show that, the smaller the value of ρ or ε, the larger the settling time.

If we choose b = 0.5 and D0 = 0, after calculation, then we obtain ρ = 8.8665, ρ = 93.1623

and ρ = 950.1271 for ε = 0.1, ε = 0.01 and ε = 0.001, respectively. Fig. 4 shows the robust

swarm tracking of the ten agents under control protocol (4) to follow the leader. Figs. 4(a)

and 4(b) plot the evolution of the state difference between the ten agents and the leader and

the control signals of the ten agents, respectively, when ε = 0.1. Figs. 4(c) and 4(d) plot the

evolution of the state difference between the ten agents and the leader and the control signals
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of the ten agents, respectively, when ε = 0.01. Figs. 4(e) and 4(f) plot the evolution of the

state difference between the ten agents and the leader and the control signals of the ten agents,

respectively, when ε = 0.001. It is obvious from Fig. 4 that the control protocol (4) is capable

of achieving stable swarm tracking.

V. CONCLUSIONS

In this paper, we have investigated the robust semi-global consensus tracking and swarm track-

ing of multi-agent systems subject to actuator magnitude saturation and dead zone characteristic

and input additive uncertainties and disturbances. We have designed tracking algorithms via a

low-and-high gain feedback approach to deal with the two problems. Under the assumption

that the system is asymptotically null controllable with bounded controls and the network is

connected, robust semi-global consensus tracking of the multi-agent system is always reached

when the known nonnegative constant in the uncertain element is zero and the saturation function

has no dead zone characteristic; otherwise, robust semi-global swarm tracking can be attained.

They both start from a given bounded set of initial conditions. Future work will be to investigate

the proposed algorithms on directed and switching networks.
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Fig. 1. Consensus tracking of ten agents with one leader under control protocol (4).
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Fig. 2. The settling time of the system as a function of ρ, where the percentage set for the settling time of the system is chosen

as cts = 0.04.
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Fig. 3. The settling time of the system as a function of ϵ, where the percentage set for the settling time of the system is chosen

as cts = 0.04.
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Fig. 4. Swarm tracking of ten agents with one leader under control protocol (4).
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