
Title Federated Private Clouds via Broker’s Marketplace: A
Stackelberg-Game Perspective

Author(s) Qiu, X; Wu, C; Li, H; Li, Z; Lau, FCM

Citation

The IEEE 7th International Conference on Cloud Computing
(CLOUD), Anchorage, Alaska, USA, 27 June-2 July 2014. In the
Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD), 2014, p. 296-303

Issued Date 2014

URL http://hdl.handle.net/10722/201099

Rights IEEE International Conference on Cloud Computing (CLOUD).
Copyright © I E E E Computer Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38052092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Federated Private Clouds via Broker’s Marketplace:
A Stackelberg-Game Perspective

Xuanjia Qiu∗, Chuan Wu∗, Hongxing Li†, Zongpeng Li‡ and Francis C.M. Lau∗

∗Department of Computer Science, The University of Hong Kong, Hong Kong, {xjqiu,cwu,fcmlau}@cs.hku.hk
†Department of Computer Science, University of California, Davis, U.S., hxlihku@gmail.com
‡Department of Computer Science, University of Calgary, Canada, zongpeng@ucalgary.ca

Abstract—More and more enterprises have set up their own
private clouds by applying virtualization to their data centers; the
benefit is flexible resource supply to different internal demands.
Aiming to meet the peak demand in their resource provisioning,
private clouds are often under-utilized. A new paradigm has
emerged that advocates leasing the spare resources to external
users, when and if adequate rental prices are offered. A broker
is typically employed which pools the spare resources of multiple
private clouds together and leases them to serve external users’
jobs. Good mechanisms have yet to be derived for the broker
to set the offered prices to buy spare resources from the private
clouds, and to schedule jobs on the available resources, such
that the economic benefits of both the broker and the private
clouds are maximized. The design of the mechanism is especially
challenging when we consider the dynamic arrival of users’ jobs
and volatile availability of spare resources at the private clouds,
while aiming at long-term profit optimality. In this paper, we
model the interaction between the broker and the private clouds
as a two-stage Stackelberg game. As the leader in the game, the
broker decides and offers prices for renting VMs of different
types from each private cloud. As a follower, each private cloud
responds with the number of VMs of each type that it is willing to
lease. By combining with the Stackelberg game model we design
online algorithms for the broker to set the prices and schedule
jobs on the private clouds, and for the private cloud to decide the
numbers of VMs to lease, based on the Lyapunov optimization
theory. We prove that the broker achieves a time-averaged profit
that is close to the offline optimum with complete information on
future job arrivals and resource availability, while each private
cloud makes their best earning. The proposed online algorithm is
carefully evaluated based on usage traces of Google cluster and
Amazon EC2.

I. INTRODUCTION

More and more enterprises have set up their own private

clouds. They add virtualization to their data centers such that

the available computing resources can be flexibly allocated

to different internal jobs at different times, with minimal

management efforts. The resources in a private cloud are often

provisioned according to the peak demand, which could lead

to low utilization (e.g., 10%) at times [1]. A new paradigm is

called for, which tries to lend out idle resources to external

jobs, for monetary remuneration that can offset the investment

and maintenance costs of the private cloud. Internet users

on the other hand can enjoy low-price cloud computing

[2]. A broker is commonly employed, who pools together

The research was supported in part by a grant from Hong Kong RGC under
the contract HKU 718513.

spare resources from individual private clouds and publishes

resource availability information to the Internet users. In the

process, it tries to maintain the anonymity of the resource

providers. A prominent example is SpotCloud [3], which is

a marketplace where computing capacity is sold and bought;

buyers can enjoy a lower rate for computing services most of

the time, as compared to the spot instance market of Amazon

EC2 [4].

Although a promising paradigm for federating private cloud-

s, the important broker’s mechanisms need to be carefully

designed. There have been studies [5][2] advocating double

auctions, where each private cloud decides the resource prices,

the users do their bidding based on their willingness-to-pay,

and the broker as the auctioneer tries to match the sell and

buy prices. With such a mechanism, the private clouds can

fully express their valuation of the resources by setting up

the prices themselves. Nevertheless, we argue that in reality,

a private cloud that wishes to sell its idle resource in a “best-

effort” manner, may not like to spend the effort in devising

a pricing mechanism, and would passively decide whether to

accept an offered price and the amount of resources to lease at

this price. To cater for such a practical scenario, we consider

a federated cloud marketplace where the broker offers prices

and purchases idle resources from private clouds on the fly,

and re-sells them to the users.

The broker not only judiciously decides different prices to

elicit contribution of computing resources from private clouds

in different geographical locations, but also exploits temporal

and spatial availability of resources when scheduling users’

jobs. Due to the volatility of spare resources from the private

clouds, resources from this marketplace are suitable for delay-

tolerant workloads, i.e., compute-intensive jobs with relaxed

completion deadlines [6], such as scientific computing jobs,

weekly batch jobs, background transcoding tasks, etc.

We are interested in the following questions: Given dy-

namical arrival of jobs and volatile availability of resources,

how can the broker efficiently decide resource prices and

schedule jobs at each time instant, in order to achieve long-

term profit maximization while guaranteeing completion of the

jobs within the respective deadlines? Given prices offered by

the broker, how should each private cloud determine the types

and amounts of resources (e.g., virtual machines) to supply

out of its idle pool, in order to maximize its own profit?

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.48

296

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.48

296

To answer these questions, we model the interaction be-

tween the broker and the private clouds as a two-stage S-

tackelberg game [7]. As the leader in the game, the broker

decides and offers the best prices for renting VMs of different

types from each private cloud that can maximize its profit.

As a follower, each private cloud responds with the best

number of VMs of each type that it is willing to lease, in

order to maximize its own profit. Closely combined with

the Stackelberg game model are online algorithms that we

design for the broker to decide its prices and to schedule

the jobs on the private cloud and for each private cloud to

decide the numbers of VMs to lease, which is based on

the Lyapunov optimization theory. We prove that the broker

achieves a time-averaged profit that is close to the offline

optimum with complete information on future job arrivals and

resource availability. Putting selfishness of the broker and the

private clouds aside, we also design an online social wel-

fare maximization algorithm, and compare the social welfare

achieved by our Stackelberg game based algorithm with the

optimal social welfare. The proposed online algorithms are

carefully evaluated based on usage traces of Google cluster

and Amazon EC2.

The remainder of this paper is organized as follows. We

discuss related work in Sec. II, introduce the system model and

formulate the problem in Sec. III and IV respectively. In Sec. V

we present online algorithms for the broker and each private

cloud. We carry out a theoretical analysis in Sec. VI and report

on the performance evaluation in Sec. VII. We conclude the

paper in Sec. VIII.

II. RELATED WORK

SpotCloud [3][2] hosts a cloud capacity market where

consumer-provided cloud computing resources are leased to

a wide range of buyers. Pricing guidelines are provided to

the sellers, and the sellers decide resource prices by them-

selves, with some unclear mechanisms. Cloud federation has

been proposed to achieve resource scalability and to increase

individual cloud providers’ profits [8] [9], where the focus

has been on mutual resource leasing among the clouds. Our

federated cloud model is different, where private clouds are

not directly connected but pooled by a broker to serve users.

In the context of grid computing, broker mechanisms have

been investigated for pooling individual grids’ capacities to

run large tasks [10]. Their emphasis has been on fairness of

resource usage among different tasks, instead of individual

grids’ profit maximization, since the autonomy of grids is less

important in grid computing.

Stackelberg game has been used to model interactions

among participants in a variety of scenarios, including cloud

computing [11][12]. Valerio et al. [11] apply the Stackelberg

game to model interactions between an IaaS provider and

a number of SaaS providers, which rent resources from the

IaaS cloud. Hadji et al. [12] decide on optimal prices by

the cloud provider and the resource demands from the users

using a Stackelberg game. Both works consider either fixed or

predicted user demands, and achieve utility maximization of

Fig. 1. System model.

the participants in one shot. In contrast, we novelly combine

a Stackelberg game with the Lyapunov optimization frame-

work, and design some algorithms that can achieve long-term

optimality without information into the future.

Lyapunov optimization [13] has been frequently applied

in resource scheduling in wireless networks [14], mobile

computing [15] and data center power supply [16]. Li et al. [5]

integrate Lyapunov optimization with double auctions for joint

pricing and scheduling problem in federated clouds. But they

investigate a market where the clouds need to make effort to

offer prices, and actual trading prices are cleared by double

auction, while here we study a market where clouds just want

to sell their idle resources in a “best-effort” manner and simply

choose to accept prices offered by the broker or not.

III. SYSTEM MODEL

A. Participants in the Marketplace

We consider a broker-leading market with three types of

participants:

� A broker that accepts jobs from the external users and

delegates them to the private clouds. It also charges the

external users and pays to private clouds. The broker

wishes to maximize its profit.

� A set of private clouds F that are owned by different en-

terprises and managed separately. The owners are willing

to lease their spare resources via the broker. Their aim is

to maximize their individual profits.

� A set of external users who submit computation jobs to

the broker for processing and are willing to pay for the

service they receive.

An illustration of the system model is given in Fig. 1. All

important notations in the paper are summarized in Table I.

B. Computing Resources

The system operates in a time-slotted fashion. In a private

cloud i ∈ F , Si(t) homogeneous servers are available at time

t, which is the total number of servers in cloud i minus the

number of servers running internal jobs at t.1 Si(t) renders an

ergodic random process with upper bound S
(max)
i . Each server

1We consider whole servers for leasing to external users and exclude the
possibility of VMs running internal and external jobs sharing the same servers,
for better performance isolation between internal and external jobs.

297297

TABLE I
IMPORTANT NOTATION

amk The amount of resource k that a VM of type m demands
Aik The amount of resource k that a server at cloud i offers
Ci Feasible configuration set at cloud i
dj(t) No. of jobs dropped at the job queue Qj at t

dj(max) Max. value of dj(t)
Dj Scheduling deadlines for job of type j
F Set of private clouds

El
i(t) The cost of turning a server at cloud i off and restarting it later

at t

Eh
i (t) Extra cost per server per time slot when a server at cloud i

running external workload at t
Gb(t) The profit of the broker at t
Gi(t) The profit of cloud i at t
Gs(t) Social welfare achieved by the social planner at t
gj No. of VMs that a job of type j needs simultaneously

hj(t) The charge by the broker for processing a job of type j, at t
J Set of job types

Lj
i No. of jobs of type j a server in cloud i can process in a slot

M Set of VM types

oj(t) No. of external jobs of type j arriving at the broker at t.

oj(max) Upper bound of oj(t)
pmi (t) The price of using a VM of type m at cloud i
Qj(t) Backlog of the queue buffering jobs of type j at t
Si(t) No. of available servers in cloud i at t
smc No. of VMs of type m at configuration c
vmi (t) No. of VMs of type m that cloud i is willing to lease

W j(t) Backlog of virtual queue bounding scheduling delays of jobs in
Qj

xc
i (t) No. of servers running at configuration c in cloud i at t

μj
i (t) No. of jobs of type j dispatched to cloud i at t

ξj Penalty of dropping a job of type j.

εj Constant for controlling scheduling delays for jobs in Qj

in cloud i has K types of resources (such as CPU, RAM, disk,

etc.), with the amount of Aik for type-k resource, ∀k ∈ K.

Suppose there areM types of virtual machines (VMs) in the

system. Each type-m VM requires the amount amk of resource

k, ∀k ∈ K. At each time slot, a server can be configured

to provision a number of VMs of different types, which we

refer to as a configuration. A configuration c is described by a

vector �sc =< s1c , ..., s
m
c , ..., s

|M|
c >, where smc is the number

of VMs of type m ∈ M coexisting on the server. A feasible

configuration should satisfy the following constraints:∑
m∈M

smc amk ≤ Aik, ∀k ∈ K (1)

We denote the set of feasible configurations of servers in

cloud i as Ci.
C. Workload

We consider delay-tolerant workloads. Let J denote the

set of jobs submitted by users to the broker. A job of type

j ∈ J is specified by a three-tuple < mj , gj , Dj >, where

mj ∈M is the type of required VMs, gj specifies the number

of VMs of type mj that the job needs simultaneously, and Dj

is the maximally allowed time for scheduling the job. Each

job can be processed within one time slot, i.e., Dj + 1 is the

deadline for completing a type-j job. Let oj(t) (with upper

bound oj(max)) be the total number of type-j jobs that the

external users submit at the beginning of time slot t, to the

broker for processing, ∀j ∈ J .

D. Job Scheduling

Job queues at the broker: The broker buffers jobs from

the external users, by placing jobs of the same type j in a

queue Qj . The broker decides how to dispatch the jobs from

the queues to the private clouds. At time slot t, the number

of type-j jobs dispatched from the broker to private cloud i is

μj
i (t), ∀i ∈ F , j ∈ J , i.e.,

μj
i (t) ∈ Z

+ ∪ {0}, ∀i ∈ F , j ∈ J (2)

Let �μi(t) =< μ1
i (t), ..., μ

|J |
i (t) > be the vector of the numbers

of different types of jobs distributed to cloud i. When a job

cannot be scheduled within the specified deadline, it is dropped

from the queue and delegated to an outside public cloud for

immediate processing. Let dj(t) be the number of type-j jobs

dropped by the broker at t, the maximum value of which is

dj(max), i.e.,
dj(t) ∈ Z

+ ∪ {0}, dj(t) ≤ dj(max), ∀j ∈ J (3)

The update equation of job queue Qj(t), ∀j ∈ J , is

Qj(t+ 1) = max{Qj(t)−
∑
i∈F

μj
i (t)− dj(t), 0}+ oj(t) (4)

Handling scheduling delay constraints: To guarantee that

all non-dropped jobs are scheduled before the respective

deadlines Dj , we apply the ε-persistence queue technique [17],

by associating a virtual queue Wj with each job queue Qj .

The update equations of these virtual queues are as follows:

W j(t+ 1) = max{W j(t) + 1{Qj(t)>0}[ε
j −

∑
i∈F

μj
i (t)]− dj(t)

− 1{Qj(t)=0}
∑
i∈F

Si(t)L
j
i/gj , 0}, ∀j ∈ J , (5)

where εj’s are constants for controlling the delays Dj’s,

for which the values are set by our online algorithms (to

be discussed later), and Lj
i is a constant representing the

maximum number of jobs of type j a server in private cloud

i can process in one time slot, i.e., Lj
i = mink∈K{� Aik

amjk
�}.

1{X} is an indicator function, the value of which is 1 if X
is true, or 0 otherwise. To avoid overwhelming the system

when the overall workload is large, the maximum number

of dropped jobs should be sufficiently large, i.e., we assume

dj(max) ≥ max{oj(max), εj}.
E. VM Provisioning

At time slot t, in private cloud i, each server can be

configured into a configuration c ∈ Ci, or turned off to save

power [18]. Let xc
i (t) be the number of servers configured

to configuration c in cloud i, and vmi (t) be the total number

of type-m VMs that private cloud i can supply. Let �vi(t) =<

v1i (t), ..., v
|M|
i (t) > be the vector of the total numbers of VMs

of different types that private cloud i can supply. They should

satisfy the following constraints:

vmi (t) ≤
∑
c∈Ci

xc
i (t)s

m
c , ∀m ∈M (6)

∑
c∈Ci

xc
i (t) ≤ Si(t) (7)

vmi (t) ∈ Z
+ ∪ {0}, ∀m ∈M (8)

xc
i (t) ∈ Z

+ ∪ {0}, ∀c ∈ Ci (9)

298298

Since the workload dispatched from the broker to a private

cloud should not exceed the total number of VMs that the pri-

vate cloud is willing to supply, we further have this constraint:∑
j:mj=m,j∈J

gjμ
j
i (t) ≤ vmi (t), ∀m ∈M, ∀i ∈ F . (10)

F. Prices and Costs

Charges to the external users: The broker charges an

external user hj(t) for running a job of type j ∈ J at t. We

suppose that hj(t) is determined by the broker at a level which

offers a discount off the rate of instances in public clouds [19],

in order to make this platform attractive to users.

Prices offered to the private clouds: Let pmi (t) be the

price that the broker offers to private cloud i for leasing a

VM of type m for one time slot, i.e.,
pmi (t) ≥ 0, ∀i ∈ F ,m ∈M (11)

Let �pi(t) =< p1i (t), ..., p
|M|
i (t) > be the vector of prices

offered to cloud i, for VMs of different types.

Operational costs at the private clouds: Operational cost

is mainly related to the power consumption [1]. We assume

that the cost of turning a server off and restarting it later is

El
i(t) in cloud i, while keeping a server running incurs a cost

of El
i(t)+Eh

i (t). The rationale behind is that even with a very

low load, such as 10% CPU utilization, the power consumption

of a server is over 66% of its peak power usage [18].

Penalty for dropping jobs: When the dropped jobs are

delegated to outside public clouds for immediate processing,

the broker needs to pay the public clouds, constituting a

penalty to the broker. Let ξj be the penalty for dropping a

job of type j, which is larger than any charge of a single job

hj(t).

IV. PROBLEM FORMULATION

Next, we first formulate decision making at the broker and

the private clouds based on the Stackelberg game, and then

present a cooperative, social-welfare maximization problem.

A. The Stackelberg Game Formulation

The objective of the broker is to maximize its long-term-

average profit, by deciding prices for renting VMs from the

private clouds, and scheduling the jobs from its job queues

to the private clouds at each time, subject to scheduling

delay guarantee of each job. The objective of a private cloud

is to maximize its long-term-average individual profit, by

determining the amount of resource supply to serve external

workload in each time slot, subject to its limit of available

servers.

We consider a two-stage Stackelberg game where the broker

is the leader and the private clouds are the followers. In Stage

I, the broker announces the price �pi(t) (per VM of type m
per time slot) to each private cloud i, maximizing its profit. In

Stage II, each private cloud i decides the number of VMs �vi
to lease to the broker, also maximizing their individual profits.

We introduce the two stages in a backward fashion.

1) Stage II: Each Private Cloud Optimizing Its Own Profit:
In time slot t, the profit Gi(t) for private cloud i ∈ F is

defined as its proceeds from the broker, minus its operational

costs, i.e., Gi(t) =
∑

m∈M pmi (t)vmi (t) − Eh
i (t)

∑
c∈Ci

xc
i (t) −

El
i(t)Si(t).

Let X represent the time-averaged value of a time-varying

process X(t), i.e., limT→∞ 1
T

∑T
t=1 E{X(t)}. The optimiza-

tion problem for private cloud i is:

max Gi s.t. (6)(7)(8)(9), ∀t (12)

In the above formulation, the private cloud i is given the

offered prices �pi(t), ∀t, from the broker, and computes the

numbers of VMs �vi(t) to supply to the broker at each time t.

2) Stage I: The Broker Maximizing its Profit: In time slot t,
the profit of the broker Gb(t) is defined as the proceeds from

the external users minus the payment to the private clouds,

and minus the job dropping penalties, i.e.,

Gb(t) =
∑
j∈J

hj(t)oj(t)−
∑
i∈F

∑
m∈M

pmi (t)
∑

j∈J :mj=m

μj
i (t)gj−

∑
j∈J

dj(t)ξj .

The broker’s long-term optimization problem is

max Gb (13)

s.t. (2)(3)(10)(11), ∀t
oj ≤

∑
i∈F

μj
i + dj , ∀j ∈ J (14)

�vi(t) = argmax
�pi(t)

Gi, ∀t (15)

(14) represents that each job queue is rate stable. (15) states

that the amount of computing resources that the broker can rent

from the private clouds is determined by the private clouds and

affected by the rental prices offered by the broker.

B. The Cooperative Social-Welfare Maximizing Problem

As the two parties (the broker and the private clouds)

selfishly make decisions to maximize their own profits, the

social welfare in the system, i.e., the overall profit of both

parties, may not be the largest, as compared to a cooperative

scenario where a social planner globally optimally schedules

job execution on the available resources for social-welfare

maximization, without pricing/charges between the parties. To

reveal the gap from the optimal social welfare, we further

formulate a social welfare maximization problem, as follows.

The social welfare in time slot t is

Gs(t) =
∑
j∈J

hj(t)oj(t)−
∑
i∈F

Eh
i (t)

∑
c∈Ci

xc
i (t)− El

i(t)Si(t)−
∑
j∈J

djξj

The long-term social welfare maximization problem that the

social planner pursues is:

max Gs s.t. (2)(3)(6)(7)(8)(9)(10) (16)

299299

V. ONLINE ALGORITHMS

When the input to the long-term optimization problems (i.e,

job arrivals, operational costs and the number of available

servers in the private clouds) varies over time with unknown

statistics, neither the broker nor the private clouds can plan

prices, VM provisioning or job scheduling in advance, let

alone guaranteeing the scheduling deadline. We apply the

Lyapunov optimization framework [13] to design online algo-

rithms that allow the broker and the private clouds to interact

on the fly. We first design dynamic algorithms for each private

cloud and for the broker, respectively, and then design an

online algorithm which solves the social welfare maximization

problem (16).

A. Dynamic Algorithm for Each Private Cloud

To maximize the long-term-average profit in (12), it suffices

for a private cloud to maximize Gi(t) subject to (6) (7) (8)

(9) in each time slot t. We can derive an upper bound of G(t)
as follows:

Gi(t) ≤
∑

m∈M
pmi (t)

∑
c∈Ci

xc
i (t)s

m
c − Eh

i (t)
∑
c∈Ci

xc
i (t)− El

iSi(t)

=
∑
c∈Ci

xc
i (t)(

∑
m∈M

pmi smc − Eh
i (t))− El

iSi(t)

≤
∑
c∈Ci

xc
i (max

c∈Ci

{
∑
mM

pmi smc } − Eh
i (t))− El

iSi(t)

≤ Si(t)(max
c∈Ci

{
∑
mM

pmi smc } − Eh
i (t))− El

iSi(t)

The equality can be established, i.e., Gi(t) achieves its

largest value which is equal to the upper bound in the last row

above, if there exists a c∗i ∈ argmaxc∈Ci
{∑m∈M pmi smc },

such that
∑

m∈M pmi (t)smc∗i −Eh
i (t))x

c∗i
i (t) ≥ 0. That is, c∗i is

the most profitable configuration that private cloud i can make,

and the prerequisite for the private cloud to lease the server is

that at least the operational cost can be covered if the private

cloud provisions a server as the most profitable configuration.

Hence, we derive the following optimal solution to (12):

xc
i (t) =

{
Si(t) if c = c∗i and

∑
m∈M pmi (t)smc∗i

≥ Eh
i (t)

0 otherwise
(17)

and,

vmi (t) =

{
smc∗i

Si(t) if
∑

m∈M pmi (t)smc∗i
− Eh

i (t) ≥ 0

0 otherwise
(18)

∀t, ∀i ∈ F , c ∈ Ci,m ∈M. In each time slot t, private cloud i
looks for the most profitable configuration c∗i , and see if it can

cover the operational cost or not. If yes, the private cloud will

offer all available servers as configuration c∗i to the broker.

Otherwise, it decides not to lease any servers.

B. Online Algorithm for the Broker

The broker solves its long-term profit maximization problem

(13) by dynamically making decisions in each time slot. Ap-

plying the drift-plus-penalty framework in Lyapunov optimiza-

tion [13], we derive the following optimization problems to be

solved by the broker in each time slot (derivation is detailed

in our technical report [20]), such that optimal solution to the

long-term optimization problem (13) is pursued:

min
∑
j∈J

dj(t)(V ξj −Qj(t)−W j(t)) (19)

s.t. Constraint (3)
and,

min
∑
i∈F

∑
m∈M

∑
j∈J :mj=m

μj
i (t)(V gjp

m
i (t)−Qj(t)−W j(t)) (20)

s.t. Constraints (2)(10)(11)(15).

where V is a controlling constant that represents the trade-off

between scheduling delays and profit. We will show its impact

in Sec. VII.

(19) is a weight-minimizing problem. Its solution is readily

available as follows:

dj(t) =

{
dj(max) if V ξj < Qj(t) +W j(t)
0 Otherwise

, (21)

(21) means that when the sum of the backlogs of the job

queue and the associated virtual queue goes beyond a threshold

(Viξj), the jobs in queue j should be maximally dropped (i.e.,
sent to public cloud for immediate processing), in order to

meet the job scheduling delay requirement. More analysis will

come in Sec. VI.

In (20), the constraints are separated for different i ∈ F , and

thus we can equivalently decompose the problem into multiple

disparate problems related to �μi(t) and �pi(t) of each cloud

i ∈ F only. In addition, as the broker knows that each private

cloud i will respond with �vi(t) to given �pi(t) according to

(18), constraint (15) can be replaced by (18). Therefore, (20)

is equivalent to the following: for each i ∈ F ,

min
∑

m∈M

∑
j∈J :mj=m

μj
i (t)(V gjp

m
i (t)−Qj(t)−W j(t)) (22)

s.t.
∑

j∈J :mj=m

gjμ
j
i (t) ≤ vmi (t), ∀m ∈M

∑
m∈M

pmi (t)smc = max
c∈Ci

{
∑

m∈M
pmi (t)smc } (23)

vmi (t) =

{
smc Si(t) if

∑
m∈M pmi (t)smc − Eh

i (t) ≥ 0
0 otherwise

∀m ∈M
The above is further equivalent to:

min (22)

s.t.
∑

j∈J :mj=m

gjμ
j
i (t) ≤ smc Si(t), ∀m ∈M (24)

∑
m∈M

pmi (t)smc ≥ Eh
i (t) (25)

(23)
This is a Mixed Integer Bilevel Program, which is generally

NP-hard [21]. Therefore we design a heuristic as follows,

which is summarized in Alg. 1:

1. We relax the integer constraint of �sc in the second-

level optimization problem (23), which then becomes a linear

program. The KKT optimality conditions [22] of the relaxed

liner program are as follows:

KKTi

⎧⎪⎨
⎪⎩

∑
m∈M pmi (t) +

∑
k∈K λk

∑
m∈M amk = 0

(1)
λk ≥ 0, ∀k ∈ K
λk(

∑
m∈M smc amk −Aik) = 0, ∀k ∈ K

where λi, ∀k ∈ K are dual variables associated with con-

straints (1).

300300

Algorithm 1: The Broker’s Algorithm for each i ∈ F at t

Input: V, gj , Qj(t),W j(t), ∀j ∈ J , and, Eh
i (t), Si(t).

Output: pmi (t), ∀m ∈M, and, μj
i , ∀j ∈ J , and,

smc , ∀c ∈ Ci, ∀m ∈M.
1. Solve the integral relaxation of

max (22) s.t.: Constraints (24)(25),KKTi

and get (�pi
1(t), �μi

1(t), �sc
1).

2. Fix �pi
1(t) to solve (23), with the integral constraint kept,

and get the integral optimal solution �sc
2.

3. If (�pi
1(t), �sc

2) does not satisfy (25), update

�pi
1(t) = �pi

1(t) · Eh
i (t)∑

m∈M pm
i (t)smc

.

4. Fix �pi
1(t) and �sc

2 to solve

max (22) s.t. Constraint (24).

with integral constraint kept, and we can get �μi
3(t).

5. Return an approximated solution (�pi
1(t), �μi

3(t), �sc
2).

Now we are able to reformulate (22) as a one-level opti-

mization problem by replacing (23) by KKTi, i.e.,

max (22) s.t.: Constraints (24)(25),KKTi.
It is still a mixed integer program. We further relax the

integral constraint on �μi(t), and then solve the relaxed problem

to derive solution (�pi
1(t), �μi

1(t), �sc
1).

2. We fix �pi(t) to �pi
1(t) to solve (23), with the integral con-

straint. It is a classical Multi-dimensional Knapsack Problem,

which can be solved by many mature methods [23]. We can

solve it and obtain the integral optimal solution �sc
2.

3. If (�pi
1(t), �sc

2) does not satisfy (25), we update �pi
1(t) =

�pi
1(t) · Eh

i (t)∑
m∈M pm

i (t)smc
. Doing this still honors (23).

4. We fix �pi(t) to �pi
1(t) and �sc to �sc

2 to solve

max (22) s.t.: Constraint (24), with integral constraint kept,

and we can get �μi
3(t).

5. Combine (�pi
1(t), �μi

3(t), �sc
2) as the approximated solu-

tion to the original problem (22).

In summary, at the beginning of each time slot t, the broker

accepts job submissions from the external users, runs Alg. 1

and then offers computed prices �pi
1(t) to private cloud i ∈ F .

Upon receiving the prices, each private cloud responds with

the maximum number of VMs to supply (�vi(t)) according to

(18). The broker then schedules jobs according to �μi
3(t), and

drops jobs according to (21). Finally the broker updates queue

backlogs according to (4) and (5).

We will show in Sec. VI that this online algorithm combined

with the optimal strategy of private clouds shown in Sec. V-A

achieve a close-to-offline-optimum time-averaged aggregate

profit for the broker and private clouds, while honoring the

job scheduling deadlines of all jobs.

C. Online Social-Welfare Maximizing Algorithm

Similarly, we apply the drift-plus-penalty framework of

Lyapunov optimization to derive an online algorithm to solve

the social welfare maximization problem (16). The social

planner should solve the following optimization problem in

Algorithm 2: Social-welfare Maximization Alg. at t

Input: V, gj , Qj(t),W j(t), ∀j ∈ J , and, Eh
i (t), Si(t), ∀i ∈ F .

Output: For each private cloud i ∈ F : μj
i , ∀j ∈ J , and,

smc , ∀c ∈ Ci, ∀m ∈M.
1. For each private cloud i ∈ F :
1.1. Solve (28), so we pick a job queue j∗m for each VM type m.
1.2. Find the optimal server configuration �sc, by solving (32).

1.3. If
∑

m∈M smc (Qj∗m(t) +W j∗m(t)) > V Eh
i (t), we can

configure each server in private cloud i to that configuration,

and schedule μ̂j
i = �Si(t)s

mj
c∗

gj
� jobs out of queue Qj∗m to

private cloud i. Otherwise, put all the servers in private cloud
i into low power state.

2. Drop jobs according to (21) and update queue backlogs

according to (4) and (5).

each time slot (derivation is detailed in our technical report

[20]):

min
∑
j∈J

dj(t)(V ξj −Qj(t)−W j(t)) s.t. Constraint (3) (26)

and for each private cloud i,
min−

∑
j∈J

μj
i (t)(Q

j(t) +W j(t)) +
∑
c∈Ci

xc
i (t)V Eh

i (t) (27)

s.t. :
∑

j:mj=m,j∈J
gjμ

j
i (t) ≤

∑
c∈Ci

xc
i (t)s

m
c , ∀m ∈M

Constraints (2)(7)(9)

The solution of (26) is the same as (21).

(27) is an Integer Linear Program. We design a solution

heuristic with reduced computation time and satisfactory sub-

optimal results, as follows:

1. We assume xc
i , ∀c ∈ Ci, are known and solve (27)

by relaxing the integral constraint of μj
i (t)’s. We note that

round-downs of the solution μj
i (t)’s, i.e., �μj

i (t)�, are always

feasible solutions of (27) with integral constraints satisfied

and given xc
i ’s. The relaxation of (27) with given xc

i ’s is a

weight-minimizing problem, with weight −Qj(t)+W j(t)
gj

. For

each m ∈M, there exsits

j∗m = argmax
j′
{Q

j′(t) +W j′(t)

gj′
|j′ : mj′ = m} (28)

The solution of the relaxation of (27) is:

μ̂j
i =

{ ∑
c∈Ci

xc
i (t)s

mj
c

gj
if j = j∗mj

0 Otherwise
. (29)

This means that among all the job types that correspond to

a VM type, we select a job type that is associated the minimal

weight and assign all VMs of the corresponding type to serve

jobs of this type.

2. By plugging (29) into (27), we get

min
∑
c∈Ci

xc
i [V Eh

i (t)−
∑

m∈M
smc (Qj∗m(t) +W j∗m(t))] (30)

s.t. Constraints (7)(9)

This is an integer program with special structure to be

exploited. Its optimal solution is

x̂c
i =

⎧⎨
⎩

Si(t) if c = c∗ and

V Eh
i (t) <

∑
m∈M smc (Qj∗m(t) +W j∗m(t))

0 otherwise

,

(31)

301301

where c∗ = argmaxc′∈Ci
{∑m∈M smc′ (Q

j∗m(t) + W j∗m(t))}.
This means that we configure all Si(t) servers to configuration

c∗.

3. What remains to do is to find c∗ ∈ Ci as follows:

max
∑

m∈M
smc (Qj∗m(t) +W j∗m(t)) s.t. Constraint (1). (32)

(32) is a small-scale Multiple-dimensional Knapsack Problem

[23]. Consider there are in general 3 types of resources with

each VM (CPU, RAM, and disk storage). Then the number of

VMs that can be packed into a server is a small number, and

the problem can be solved with a classical method quickly.

4. By plugging (31) into (29) and rounding the numbers

down, we have

μ̂j
i =

{
�Si(t)s

mj
c∗

gj
� if j = j∗mj

0 otherwise
. (33)

The social planner’s algorithm is summarized in Alg. 2.

VI. PERFORMANCE ANALYSIS

Detailed proofs of the following theorems can be found in

our technical report [20].

A. Guarantee of Job Scheduling Delays

Theorem 1: (Guarantee of Scheduling Delay) If we set

εj = Qj(max)+W j(max)

Dj
at the broker, each job of type j ∈ J

on the broker is either processed in the federated private

clouds or dropped for outsourcing before its maximum allowed

scheduling delay Dj .

Theorem 1 is proved based on Lemma 1 in [20] and the ε-
persistence queue technique introduced in [17]. The condition

on εj is to make the growth of the virtual queue fast enough to

pose pressure on scheduling the corresponding jobs, or ensure

triggering the drop mechanism before the deadline is passed.

The broker only drops jobs when the resource capacity is lower

than the workload demand, either at a time-average sense, or

at a temporary sense due to the spike of job arrival curves and

server availability curves.

B. Optimality of Profit

Theorem 2: (Optimality of Profit of the Broker) Let Ψ∗

be the offline optimum of the time-averaged profit that the

broker and the private clouds can obtain based on complete

information on job arrivals, server availability, and operational

costs of the private clouds for all the time. The solutions of

(19) and (22) can achieve a time-averaged profit, Ψ, within a

constant gap B
V to Ψ∗, i.e., Ψ ≥ Ψ∗− B

V , where V and B are

constants defined in our technical report [20].

Although the above theorem only shows the performance

gap between the exact solutions of (19) and (22) and the

offline optimum, we will show that our heuristic in Alg. 1

also performs well in Sec. VII.

Because our algorithm for each private cloud maximizes

Gi(t) and therefore maximizes Gi according to the discussion

in Sec. V-A, we see that each private cloud already earns the

best it can.

VII. PERFORMANCE EVALUATION

A. Simulation Configuration

Our experiments are driven by a set of synthetic traces based

on data from Google cluster usage [24] and Amazon EC2 [4].
1) Compute Resource: There were approximately 12000

servers in the Google data center where the usage data

was collected. We simulate 12 private clouds. The number

of available servers in each private cloud varies over time

following a Poisson process with mean 600. The resource con-

figuration of each type of VMs is based on the configuration

of on-demand VMs in Amazon EC2, as given in Table II.

Because configuration of physical servers in Amazon EC2 is

not publicly available, we set the resource of a server using

the configuration of the most powerful on-demand compute

optimized VM in EC2.
2) Workload: Jobs in Google cluster trace are of many

different types, including delay-sensitive and delay-tolerant

ones. We extract the workloads with the lowest priorities 2, 1,

and 0 from the Google cluster trace, to represent delay-tolerant

workloads. We follow the job arrivals from the Google traces,

where each time slot corresponds to one hour (as is the case in

the instance markets of SpotCloud [3] and Amazon EC2). We

convert resource usage of jobs submitted to Google cluster to

the number and type of VMs of jobs in our model. The lowest

priorities of 2, 1, 0 are converted to the maximally allowed

scheduling delays of 24, 48, 72 hours, respectively.

TABLE II
SERVER/VM RESOURCE CONFIGURATION AND CHARGE

ECU RAM(GB) Storage (GB) Charge
a server 108 60 2 x 320 SSD
medium VM 3 3.75 1 x 4 SSD 0.113$/h
large VM 6.5 7.5 1 x 32 SSD 0.225$/h
xlarge VM 4 13 15 2 x 40 SSD 0.450$/h
2xlarge VM 8 26 30 2 x 80 SSD 0.900$/h

3) Costs and Prices: The charge to the external users for

a job equals to the charge for one VM of its required type,

multiplied by the required number of VMs in that job. The

charges for VMs are set to be 80% of the time-varying prices

of Amazon spot instances [4], because we believe that the

levels of prices should be competitive enough to attract the

external users to use the system. Penalties for dropping jobs

equal to the charges for on-demand instances in Amazon EC2,

as shown in Table II. The operational costs in different private

clouds are set to be the electricity rates reported in [25].
4) Other parameters: By default V is set to be 50000.

B. Individual Profit and Social Welfare

In Fig. 2 we compare the aggregate profit of the broker

and the private clouds obtained by the online algorithms in

Sec. V-A and Sec. V-B, and the social welfare obtained by

the social planner’s algorithm in Sec. V-C. It shows that the

selfish individual profit maximization algorithms can achieve

an aggregate profit close to the maximal social welfare. In

Fig. 3 we further show the aggregate profit achieved at

different values of V . We observe that when V increases,

302302

0 200 400 600
0

1

2

3

4

5

6x 104

Time (hour)

A
gg

re
ga

te
 p

ro
fit

 ($
)

Social planner
Selfish profit maximization

Fig. 2. Aggregate profit over time.

0 2 4 6 8 10
x 104

0

2

4

6

8

10x 106

V

A
gg

re
ga

te
 p

ro
fit

 ($
)

Social planner
Selfish profit maximization

Fig. 3. Aggregate profit at different
values of V .

24 48 72
0

20

40

60

80

100

Scheduling Deadline (hour)

A
vg

. A
ct

ua
l S

ch
ed

ul
in

g
D

el
ay

 (h
ou

r)

Social planner
Selfish profit maximization

Fig. 4. Comparison of average
scheduling delays.

24 48 72
0

5

10

15

20

Scheduling Deadline (hour)

A
vg

. J
ob

 D
ro

p
R

at
e

(%
)

Social planner
Selfish profit maximization

Fig. 5. Comparison of average job
drop rates.

higher aggregate profits are achieved in both cases. This is

because when V grows, the gap between the aggregate profit

achieved by our online algorithms and the offline optimum is

getting smaller, which is given in Theorem 2.

C. Scheduling Delays and Job Drops

Next we investigate the actual scheduling delays experi-

enced by the jobs with the selfish individual profit maxi-

mization algorithms and the social planner’s algorithm. Fig. 4

shows that the average scheduling delays with our online

algorithms are smaller than the scheduling deadlines. In Fig. 5

we compare the job drop rates. When the overall compute

capacity in the system is fixed and the scheduling deadline

of jobs is larger, the system has more flexility to schedule

the jobs in such a way that the deadlines of more jobs are

met, so the average drop rates tend to be smaller. The average

scheduling delays (and the job drop rates) experienced with

the selfish profit maximization algorithms are slightly longer

(and larger) than those with the social planner’s algorithm, due

to the selfishness of the players.

VIII. CONCLUSION AND FUTURE WORK

This paper presents the design of efficient mechanisms

for a computing resource market led by a broker, where

private clouds lease their spare computing resources to external

users. We model the interaction between the broker and the

private clouds as a two-stage Stackelberg game, and tailor the

Lyapunov optimization framework to design online algorithms

for the broker and the private clouds respectively, under time-

varying job arrivals, operational costs, server availability and

charges. We also develop an online algorithm for social wel-

fare maximization as a benchmark to compare the individual

profit maximization algorithms. Our proposed algorithms are

evaluated based on real-life traces, and performance achieved

with the individual profit maximization algorithms is shown to

be close to that of the social welfare maximization algorithm.

In our future work, we plan to extend our model to the case

of compute capacity trading with multiple brokers.

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of a
Cloud: Research Problems in Data Center Networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, pp. 68–73, 2009.

[2] H. Wang, F. Wang, J. Liu, and J. Groen, “Measurement and Utilization of
Customer-Provided Resources for Cloud Computing,” in Proc. of IEEE
INFOCOM, Mar. 2012.

[3] SpotCloud, http://spotcloud.com/.
[4] Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2.
[5] H. Li, C. Wu, Z. Li, and F. C. Lau, “Profit-Maximizing Virtual Machine

Trading in a Federation of Selfish Clouds,” in Proc. of IEEE INFOCOM
(Mini-Conference), Apr. 2013.

[6] J. Luo, L. Rao, and X. Liu, “Temporal Load Balancing with Service
Delay Guarantees for Data Center Energy Cost Optimization,” IEEE
TPDS, accepted on Feb. 15, 2013.

[7] D. fudenberg and J. Tirole, Game Theory. MIT Press, 1991.
[8] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya, “Resource

Provisioning Policies to Increase IaaS Provider’s Profit in a Federated
Cloud Environment,” in Proc. of IEEE HPCC, Sep. 2011.

[9] B. Rochwerger et al., “The RESERVOIR Model and Architecture for
Open Federated Cloud Computing,” IBM Journal of Research and
Development, vol. 53, no. 4, 2009.

[10] J. Altmann, C. Courcoubetis, G. D. Stamoulis, M. Dramitinos, T. Rayna,
M. Risch, and C. Bannink, “GridEcon: A Market Place for Computing
Resources,” in Proc. of International Workshop on GECON, Aug. 2008.

[11] V. D. Valerio, V. Cardellini, and F. L. Presti, “Optimal Pricing and
Service Provisioning Strategies in Cloud Systems: A Stackelberg Game
Approach,” in Proc. of IEEE CLOUD, Jun. 2013.

[12] M. Hadji, W. Louati, and D. Zeghlache, “Constrained Pricing for Cloud
Resource Allocation,” in Proc. of IEEE International Symposium on
Network Computing and Applications, Aug. 2011.

[13] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[14] H. Li, W. Huang, C. W. abd Z. Li, and F. C. Lau, “Utility-Maximizing
Data Dissemination in Socially Selfish Cognitive Radio Networks,” in
Proc. of IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (IEEE MASS 2011), Oct 2011.

[15] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “eTime:
Energy-Efficient Transmission between Cloud and Mobile Devices,” in
Proc. of IEEE INFOCOM(Mini), Apr. 2013.

[16] W. Deng, F. Liu, H. Jin, and C. Wu, “SmartDPSS: Cost-Minimizing
Multi-source Power Supply for Datacenters with Arbitrary Demand,” in
Proc. of IEEE ICDCS, Jul. 2013.

[17] M. J. Neely, “Opportunistic Scheduling with Worst Case Delay Guaran-
tees in Single and Multi-Hop Networks,” in Proc. of IEEE INFOCOM,
Apr. 2011.

[18] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
Aware Server Provisioning and Load Dispatching for Connection-
Intensive Internet Services,” in Proc. of NSDI, Apr. 2008.

[19] B. Javadi, R. K. Thulasiram, and R. Buyya, “Statistical Modeling of
Spot Instance Prices in Public Cloud Environments,” in Proc. of IEEE
International Conference on Utility and Cloud Computing, Dec. 2011.

[20] X. Qiu, C. Wu, H. Li, Z. Li, and F. C. M. Lau, “Federated Private
Clouds via Brokers Marketplace: A Stackelberg-Game Perspective,”
http://www.cs.hku.hk/~xjqiu/federation-broker.pdf,
The University of Hong Kong, Tech. Rep., Jan. 2014.

[21] B. Colson, P. Marcotte, and G. Savard, “An Overview of Bilevel
Optimization,” Ann. of Oper. Res., vol. 153, pp. 235–256, 2007.

[22] S. Boyd, Convex Optimization. Cambridge University Press, 2004.
[23] M. J. Varnamkhasti, “Overview of the Algorithms for Solving the

Multidimensional Knapsack Problems,” Advanced Studies in Biology,
vol. 4, no. 1, pp. 37–47, 2012.

[24] Google Cluster Data, http://code.google.com/p/googleclusterdata/.
[25] United States Energy Information Administration, Dept. of Energy,

http://www.eia.doe.gov.

303303

