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Abstract  

Although the GNSS/GPS had become the primary source for Positioning, Navigation and 

Timing (PNT) information in maritime applications, the ultimate performance of the system 

can strongly degrade due to space weather events, deliberate interference, shadowing, 

multipath and overall system failures. Within the presented work the development of an 

affordable integrated PNT unit for future on-board integrated systems is presented, where 

the GNSS information is fused both with inertial and Doppler Velocity Log (DVL) 

measurements. Here redundant and complementary information from different sensors 

serves to improve the system performance and reduce the position drift when the GNSS 

signals are not available. The nonlinearity of this advanced fusion problem is addressed by 

employing different forms of Sigma-Points Kalman Filter (SPKF) and further detailed 

analysis is presented in terms of the process and measurement models implemented. The 

results demonstrate that position drift can be significantly reduced by incorporating DVL 

measurements in IMU/GNSS system and that the proposed integrated navigation 

algorithm is feasible and efficient for GNSS outages of prolonged duration, where pure 

inertial GNSS outage bridging would be either inaccurate or would require too expensive 

IMUs. 

1. Introduction  

Nowadays the process of vessel navigation is supported by a variety of independent 

sources of navigational information. The Global Navigation Satellite Systems (GNSS), in 

particular the Global Positioning System (GPS) is considered to be the key component in 

maritime navigation for provision of an absolute position, velocity and precise time (PVT) 

information. However, the GNSS receiver is usually not fully integrated with other already 

existing on-board sensors (e.g. Velocity Doppler Log (DVL), gyrocompass, etc.). 

Navigators are responsible of choosing a system/sensor type, system settings and 

interpretation of each subsystem output as well as for monitoring the actual response of 

the vessel. In spite of all the efforts, 50% of all accidents in the Baltic Sea during 2011 

were caused by navigational errors including human factors, misinterpretation of 

navigational data or incorrect decision making [1]. In order to support the decision making 

and improve the safety of berth-to-berth navigation process, the International Maritime 

Organization (IMO) had started the e-Navigation initiative, where a resilient provision of 

Positioning, Navigation and Timing (PNT) data is considered as to be the key enabler. 

The recognized vulnerability of GNSS in certain environments introduces concerns to the 

provision of on-board reliable navigational data required in maritime safety-critical 
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operations. The IMO e-navigation strategic implementation plan aims to improve the 

reliability and resilience of on-board PNT information through both the enhancement of 

existing sensors and the augmentation with external information sources. The presented 

work addresses the limitations of GNSS-only systems by its integration with other on-

board navigation sensors like DVL and inertial sensors (Inertial Measurement Unit - IMU) 

within a special data processing unit [2]. Here the integration of multiple sensors with 

independent error patterns highly improves the overall system resilience against GNSS 

channel contamination and is crucial for providing high integrity PNT data. 

Although the benefits of integrated IMU/GNSS navigation system have been already 

demonstrated for marine applications [3], the scenarios with GNSS signal outages up to 5-

10 minutes still put too demanding requirements on the performance of inertial sensors. 

The presented paper demonstrates how the PNT performance during signal outages can 

be improved by augmenting the IMU/GNSS system with a DVL using Sigma Points 

Kalman Filtering (SPKF) framework with attitude quaternion parametrization [4]. Here we 

still follow a classical design approach where the inertial measurements are considered as 

a core sensing modality and provides a complete navigation solution (position, velocity and 

attitude), while both GNSS and DVL measurements are used as complementary aiding 

measurements in order to reduce the fast drift of a pure inertial solution. Clearly, adoption 

of the direct strapdown inertial mechanization allows us to avoid any explicit assumptions 

regarding the underlying models and even subtle vessel motions can be tracked using this 

classical approach. The work demonstrates that although a classical IMU/GNSS 

integration approach is able to provide horizontal position accuracy up to 10 meters for 

GNSS signal outages shorter than few minutes, the incorporation of DVL 2D velocity 

information extends the period of standalone navigation within accuracy requirements for 

longer than 5 minutes. Moreover, the performance becomes far less sensitive to IMU 

quality and lower cost inertial sensors such as Micro Electro Mechanical Systems 

(MEMS)-based ones can be adopted. This complements our previous findings in [5] and, 

although the main characteristics of MEMS sensors are still inferior of those of more 

expensive FOG-based systems, their accuracy is sufficient for certain application 

scenarios such as coasting GNSS outages of shorter duration, supporting Fault Detection 

and Exclusion (FDE) functionality as well as smoothing of GNSS navigation solutions. The 

main objective of this work is to demonstrate the feasibility of the integrated 

IMU/GNSS/DVL navigation solution using real measurement campaigns and to provide a 
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systematic analysis on the performance of proposed hybrid navigation solution including 

an analysis on chosen SPKF scheme, filter design and measurement model selection/  

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of 

the related work. Section 3 describes the relevant mathematical methods including the 

details on filter implementation and associated dynamical models. The section 4 

introduces the measurement setup with the results shown in Section 5. Finally, Section 6 

provides a concise discussion with the summary and outlook for future work given in 

Section 7. 

2. Related Work 

Among clear advantages of the inertial sensors one could mention that they are 

completely self-contained, immune to interference, highly dynamical, small size and often 

lightweight (especially MEMS-based). Unfortunately, the sensors provide only incremental 

information and the integration output drifts over time when no external reference is 

provided. However, inertial sensors have complementary properties to those of GNSS and 

both sensors are often integrated to improve navigation robustness resulting both in highly 

dynamical and drift-free system. IMU utilization allows to bridge short-term GNSS outages 

caused by signal blockage or antenna shadowing and even to support navigation in 

jammed environments if deep integration of GNSS raw data and inertial outputs is used. 

Finally, the accuracy of the combined system usually exceeds the specified accuracy of 

the GNSS alone and allows less than four satellites to play a role in the final navigation 

solution (in tightly-coupled architectures). 

Augmentation of GNSS with inertial sensors in order to mitigate intentional or unintentional 

GNSS signal interference has a fairly long history [6,7]. Such systems are able to deliver 

position and velocity information at rapid update rate while preserving a low noise content 

due to the smoothing behavior of inertial integration. Since recently it has been also 

accepted that at least for classical IMU/GNSS integration there is almost no difference 

between classical error-state Extended KF and full-state UKF except of situations with 

unrealistically large initial uncertainties or scenarios with extremely high dynamics [8]. 

Important is that although IMU/GNSS fusion is a well-established technique for numerous 

applications, the IMU is not contained in the list of mandatory on-board navigation 

equipment and their wider acceptance is strongly conditioned on the price. Obviously, high 

performance IMUs are still prohibitively expensive with the price often above 30 kEuro and 

the inertial MEMS sensors due their continuous improvement in performance, provide a 
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promising alternative especially when one considers the trade-off between bias in-run 

stability and the price. Increasingly, commercial systems [9] are becoming available which 

provide an integration of GNSS and MEMS IMUs. 

The navigation systems for maritime applications have also relatively long history of 

integration using Extended KF (EKF) such as system mentioned in [10], where early GPS, 

speed log and Loran-C have been combined. The seminal work [3] also tried to assess the 

possibility to replace the FOG IMU with lower cost MEMS IMU in hybrid navigation 

systems and assessed the performance of the system under presence of GNSS faults in 

maritime scenarios. In our recent work [5] we have evaluated the impact of inertial sensor 

quality on the performance of hybrid IMU/GNSS system in maritime applications. The 

obtained results confirmed that the quality of the inertial sensor mainly affects the GNSS 

outage bridging (both position and heading), while the performance of FDE functionality as 

well as the accuracy (smoothing of GNSS noise) remained almost not affected by the 

quality of IMU. 

A number of interesting works on IMU and DVL fusion can be found in the literature on 

Autonomous Underwater Vehicles (AUV) [11,12,13] as they are required to navigate over 

extended periods of time at the absence of absolute reference information and usually 

employing only IMU-aided velocity measurements (typically those provided by DVL). The 

systems were reported to deliver relatively low navigation errors with the main error 

contribution due to scaling factors of the DVL and heading errors from the gyroscope [14]. 

Note that differently from AUV survey applications we cannot perform the navigation of the 

vessel in the confined area in commercial applications, and, therefore, the most the errors 

such as those due to heading and DVL scaling factor cannot simply cancel out in our 

scenario as it happens for AUVs when proper exploration path planning is used. 

3. Methods 

The methods of Recursive Bayesian Estimation (RBE) deal with the problem of estimating 

the changing in time state of system using only noisy observations and some a priori 

information regarding the underlying system dynamics. There are numerous advantages of 

the probabilistic paradigm where the most important are the ability to accommodate 

inaccurate models as well as imperfect sensors, robustness in real-world applications and 

often being the best known approach to many challenging navigation problems [15]. 
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The RBE algorithms are used to estimate the state  of a system at the time  based on 

all measurements , … ,  up to that time. Then any recursive Bayesian estimation 

cycle is performed in two steps: 

Prediction: The a priori probability is calculated from the last a posteriori probability using 

the process model. 

Correction: The a posteriori probability is calculated from the a priori probability using the 

measurement model and the current measurements. 

Various implementations of RBE differ in the way the probabilities are represented and 

transformed in the process and measurement models. If the models are linear and the 

probabilities are Gaussian, the KF is an efficient and optimal solution in the least square 

sense. If the models are nonlinear (which is often the case in navigation systems), UKF or 

EKF [15] can be used. In EKF the models are linearized using Jacobian matrices, while in 

the UKF the probability distribution is approximated using a set of deterministically chosen 

(nonrandom sampling) points in the state space, which conserve the Gaussian properties 

of the distribution under nonlinear transformations [16]. The latter approach based on 

intuition that it is easier to approximate a probability distribution than to approximate an 

arbitrary nonlinear function or transformation. 

Although historically EKF was a method of choice for solving navigational problems, the 

approach requires the first two terms of the Taylor series expansion to dominate the 

remaining terms. For some stronger nonlinearity the approach could lead to instability if 

the linearization assumption is violated. Although higher order versions of EKF also exist, 

their computational complexity makes them often unfeasible for practical usage in real-

time applications and/or highly dimensional systems, and often a similar performance can 

be achieved with UKF. Note that the computational complexity of the UKF is of the same 

order as that of the EKF, but this only implies an asymptotic complexity and does not 

consider the scaling which can be significant in practical implementations. 

3.1.  Sigma-Point Kalman Filtering 

Although the UKF algorithm is well-known and the details can be found elsewhere [15,17], 

some non-trivial modifications are necessary for the presented IMU/GNSS/DVL filters. As 

we follow a full-state approach, an Augmented UKF configuration is employed, where the 

original state is augmented with noisy inertial sensor measurements in order to propagate 

them with the same accuracy as that of original variables of interest. A special care has to 
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be taken regarding the attitude parametrization as unit attitude quaternions are deprived of 

one degree of freedom due to unit norm constraint [4].  

The navigation filter is formulated as a nonlinear estimation problem for the system 

governed by the following stochastic models: 

 , , , (1) 
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where   1  is the quaternion inverse,   stands for the quaternion  multiplication and   \a q  
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with rotation angle  , ,
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Furthermore, the residuals for the quaternion part of the state are replaced simply by the 

vector part of the associated difference quaternion: 

  , ,
, 1:3

ˆ .q i
k k i kx q        (16) 

Finally, the state update of the quaternion is formulated as: 
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where  ˆ .q
k k k kK z z     The presented idea models the quaternion noise as a vector part 

of the quaternion which leads to the orientation uncertainty in the attitude. Then the noise 

vector is simply expanded into the quaternion parametrization using positive values of the 

scalar part of the quaternion. Clearly, as the quaternion process noise is a 3-dimensional 

noise vector, it is expanded into a 4D unit quaternion to apply the multiplicative quaternion 

error approach. 

The extension of the presented UKF approach to other SPKF strategies is rather 

straightforward. As the computational demand of the UKF is strongly dependent on the 
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Similar strategy can be applied to CDKF [23] with quaternion attitude parametrization, 

where the covariance calculation involves 2nd order differences of the associated -points. 

Finally, the results are presented for a recently presented so-called Cubature Kalman Filter 

[24]. In this filter each -point  , ,
1

a i
k


  is calculated using the prototype cubature points  

a

i
n :  

  
 

    
, ,

, 1 1
, , 1

\1 \ , ,\ , ,
1 11

ˆ
, 0, , 2 1.

ˆ
a

q i
i k k

a i k
a qk aia q aa q i

k k nk

q q
i n

x S





 
  

  
 

  
      
     





   (21) 

The prototype cubature points of the dimensionality  are defined as: 

      1 , 0, ., 2 1,
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n a a a xn
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For example, a set of points for 2  is         1 0 , 0 1 , 1 0 , 0 1
T T T T   with the 

generator point  1 0
T

. 

A clear advantage of the SPKF schemes is that direct process and measurement models 

can be used and no intricate Jacobians have to be calculated. Finally, the SPKFs are able 

to preserve higher order statistical information compared to de facto engineering standard 

EKF and have shown superior performance for some highly nonlinear problems. 

3.2.  Dynamical Models 

As a process model we employ a classical strapdown inertial mechanization with unit 

quaternion  1 2 3 4

T
q q q q q  for attitude representation, where the quaternion 

kinematics is obtained from: 

  1
,

2
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and cross product matrix    . The discrete equivalent is obtained using trapezoidal 

integration with: 

     ,
ˆ ˆ ,B B B

k k G k E k IEb C q        (24) 

where B
k  is the angular rate measured in body frame, ,Ĝ kb  is the estimate of the 

gyroscope bias, IE  is the Earth rotation rate with  ˆB
E kC q   being  the rotation matrix from 

ECEF to Body calculated from the quaternion estimate ˆkq . Similar bias compensation has 

to be performed for the accelerometer signal before strapdown inertial mechanization. The 
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rest of the process model implementation follows classical strapdown mechanization in 

ECEF frame. The state of the filter consists of the attitude quaternion, position and velocity 

(both in ECEF) as well as both gyroscope and accelerometer offsets. For tightly-coupled 

filters both GNSS receiver clock and clock offset rate have to be added to the filter state.   

There several options to constructing the measurement models depending on the 

configuration of the filter. For loosely-coupled approaches a snapshot least-square solution 

is used for both position and velocity [19] or corresponding RTK solution is taken (e.g. from 

RTKLIB [20]). Within the tightly-coupled schemes one assumes direct observation models 

for both code and Doppler shift measurement using essentially the same mathematics as 

adopted in corresponding snapshot solutions. Obviously, for both types of raw GNSS 

observations (C/A L1 pseudoranges and Doppler shifts) lever arm compensations have to 

be implemented, although for latter type of measurements the lever arm can be often 

ignored due to relatively low dynamics of a typical commercial vessel. 

The speed log measurement model (  velocity measured in vessel frame) can be 

written as follows: 

       , ˆ ˆ ˆ ,V V B E E B B
SL k B E k k B k k SLz C C q v C q r     (1) 

where V  is the DVL coordinate frame with B
SLr  being the lever arm with respect to IMU. 

Note that classical IMU/GNSS approach does not impose any non-holonomic constraints 

in XY plane (e.g. that vessel is able to move only in the direction of heading) or similar. 

The alternative is to employ the constraint along the body vertical axis of the vessel 

(velocity projection in the body frame) as one can assume the vertical velocity to be on 

average zero. The constraint can be implemented within the KF framework as so-called 

"pseudo-measurement" by extending the model from above for the third component and 

setting the measurement to zero with some associated modeling noise. Although this is 

able to decrease significantly the vertical position drift, the trick could introduce modeling 

errors and correlated measurement noise and, therefore, the validity of the approach has 

to be carefully investigated using real measurement data. 

Obviously, for lower-cost MEMS IMU the navigation performance is strongly degraded due 

to fast accumulation of the errors caused by sensor noises, biases, scale factor errors, etc. 

Moreover, for non-augmented IMU/GNSS system (e.g. a system without the 

magnetometer, gyrocompass or multiple GNSS antennas), the attitude and some of the 

inertial sensor errors become weakly observable and their observability is strongly 
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conditioned on the dynamics of the vessel. Due to these reasons it has been decided to 

incorporate the baseline observations (non-collinear vector observations) from available 

three spatially distributed GNSS antennas to ensure that the attitude drift is constrained 

when baseline measurements are available. The baseline observation is considered to 

valid if both antennas have RTK position fix and therefore from 0 (e.g. none) to 3 baseline 

observations can be incorporated into the measurement model on the rate of their 

availability. The advantage of direct baseline vector observation model is that heading 

becomes observable even with a single observation of non-vertical baseline.  

4. Setup 

In order to overcome the previously identified issues and to commit with the IMO 

requirements, the DLR has developed a PNT unit concept [2] and an operational prototype 

in order to confirm the PNT unit performance under real operational conditions. Here the 

core goals are the provision of redundancy by support of all on-board PNT relevant sensor 

data including Differential GNSS (DGNSS) and future possible backup systems (e.g., 

eLoran), the design and implementation of parallel processing chains (single-sensor and 

multi-sensor architectures) for robust PNT data provision and the development of both 

multi-sensor fusion and the associated integrity algorithms. 

 

Figure 1. Baltic Taucher II test vessel. Yellow circle represents the IMU placement and the red 

circles stand for GNSS antenna positions (3x). 

The sensor measurements were recorded using the multipurpose research and diving 

vessel Baltic Diver II (length 29 m, beam 6.7 m, draught 2.8 m, GT 146 t). The vessel was 

equipped with three dual frequency GNSS antennas (forming almost isosceles triangle 

with corresponding sides of 5.27 m, 5.17 m and 1.26 m and Antenna 1 being placed in 

front of the vessel with altitude 2.46 m higher, see Figure 1.) and receivers (Javad Delta), 

a fiber-optic gyroscope (FOG) IMU (iMar IVRU FCAI), gyrocompass, DVL and echo 
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sounder. Additionally a MEMS IMU module was developed based on tactical grade IMU 

(Analog Devices ADIS 16485) and commercial ARM-based embedded platform. Both FOG 

and MEMS IMUs are sampled at 200 Hz. For the velocity measurements Furuno Doppler 

Sonar DS-60 was employed. The sonar is fully compliant with IMO MSC.36(63), 

MSC.96(72), A.694(17) and A.824(19), required for the vessels of 50,000 GT and greater 

and is able to deliver the precise measurements suitable for berthing and docking 

maneuvers. 

 

Figure 2. The test trajectory (approx. 22 min) in the port of Rostock (overlaid with the image from 

Google Earth). Segment AB denotes the path where GNSS signals were disabled (5 minutes). 

The IALA (International Association of Marine Aids to Navigation and Lighthouse 

Authorities) beacon antenna and receiver were employed for the reception of the IALA 

DGNSS code corrections. The VHF modem was configured for the reception of RTK 

corrections data from Maritime Ground Based Augmentation System (MGBAS) station 

located in the port of Rostock. The MGBAS reference station provides GPS code and 

phase corrections with 2 Hz update rate for both L1 and L2 frequencies. These correction 

data are used for a highly accurate RTK positioning (reference) on board the vessel. All 

the relevant sensor measurements are provided either directly via Ethernet or via serial to 
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Ethernet adapter to a Box PC where the observations are processed in real-time and 

stored in a SQlite3 database. The described setup enables a record and replay 

functionality for further processing of the original sensor data. 

5. Results 

In order to evaluate the performance of the proposed hybrid navigation system we have 

used real measurements (see Figure 2.) from the operating vessel in the port of Rostock 

(Germany) and simulating the GNSS outage of 5 minutes by immediately disabling all the 

satellites including the GNSS compass functionality. Although more advanced scenarios 

could include the satellites disappearing one by one, this would make the analysis far 

more complicated as the performance of the navigation filter would depend on the order 

how the satellites are jammed and re-acquired. The initial data segment of approx. 13 

minutes is left undisturbed in order for the filter to converge. 

The filters were implemented assuming measurement noise of 5 meters for code 

measurement (pseudorange), Doppler velocity measurement noise of 0.2 m/s, RTK 

position solution noise of 0.05 m and RTK velocity solution noise of 0.1 m/s (circular 

covariance approximation). In order for the analysis to be fair, we have paid a special 

attention to the equivalent noise mapping between the corresponding loosely- and tightly-

coupled solutions. Clearly, the constant circular covariance model is often not a good 

approximation with respect to particular satellite geometry (matrix ) with effective 

measurement noise covariance of the snapshot solution: 

 , (1) 
 

where  is the is the corresponding covariance of the pseudorange measurements, 

while still circular covariance of 1 cm/s was assumed for snapshot Doppler solution. The 

GNSS compass baseline noise was assumed to be 5 cm per component of the vector. The 

process noise values were correspondingly tuned to the specification of inertial sensors 

(ADIS16485 and iMar iIMU FCAI) with the clock process noise adjusted to the observed 

dynamics of the GNSS receiver. The DVL noise was set slightly higher than the datasheet 

specification in order to accommodate possible modeling errors such as DVL 

misalignment, scale factor errors etc. The measurement noise for both  and  axis was 

set to 30 cm/s, while the  axis pseudo-measurement noise was set to 1 m/s. Such large 

mismatch is caused by the fact that, in principle, the vessel is actually moving in vertical 

direction due to waves and this would result in violation of the noise assumptions due to 
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correlations in the residual statistics and the inflated measurement noise is the simplest 

approach to reduce the impact of such correlated noise on the estimated state. 

Table 1: HPE and VPE performance of different IMU/GNSS/DVL integration schemes for 5 minutes 

GNSS outage (LC – loosely-coupled, TC – tightly-coupled). 

 
IMU/GNSS 

DVL (2D + 1D) 

IMU/GNSS 

no DVL 

IMU/GNSS 

DVL (2D) 

IMU/GNSS 

DVL (1D) 

 HPE, [m] VPE, [m] HPE, [m] VPE, [m] HPE, [m] VPE, [m] HPE, [m] VPE, [m] 

LC IMU/GNSS/DVL: 
FOG + RTK 

19.55  5.26  431.60 10.97 19.55 65.29 299.73 8.40 

LC IMU/GNSS/DVL: 
FOG + SPP 

16.53 7.19  676.07 25.99 16.50 54.20 496.11 12.72 

TC IMU/GNSS/DVL: 
FOG 

17.27 7.34  679.51 11.33 17.19 52.98 494.75 13.17 

LC IMU/GNSS/DVL: 
MEMS + RTK 

17.26  8.03  2.92e+03 94.80 17.23 45.62 816.99 51.41 

LC IMU/GNSS/DVL: 
MEMS + SPP 

14.71  9.84  2.34e+03 72.36 14.75 47.02 951.57 56.08 

TC IMU/GNSS/DVL: 
MEMS 

17.72  9.92  2.35e+03 97.57 14.74 46.23 949.83 56.64 

 

Table 1 presents the results on bridging the GNSS outage of approx. 5 minutes using 

different measurement model configurations and filter structures (loosely-coupled with 

snapshot solution (SPP, both position and velocity), loosely-coupled with RTK (both 

position and velocity) solution and tightly-coupled approaches) and different quality of IMU 

(lower performance MEMS ADIS and higher performance FOG IMAR). The performance 

of the methods was assessed by considering correspondingly maximal horizontal position 

error (HPE) and vertical position error (VPE) during the GNSS outage with respect to the 

reference trajectory where no GNSS outage was imposed. In order to evaluate the benefit 

of using DVL for autonomous navigation we have considered a classical pure IMU/GNSS 

configuration (no DVL), IMU/GNSS with true 2D DVL measurements, IMU/GNSS with only 

1D  axis vertical velocity constraint and, finally, IMU/GNSS/DVL with both 2D real ,  

measurements and associated  axis motion constraint. All the filters employed GNSS 

compass baseline measurements (except of GNSS outage segment) as this is critical to 

ensure the attitude observability in the case of IMU/GNSS systems with reduced 

dynamics. The corresponding results for the time needed for the algorithm to accumulate 
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HPE of correspondingly 10 meters and 25 meters are shown in Table 2. An intuitive view 

of both HPE and VPE growth with time can be found correspondingly in Figure 3 for 

different filter architectures and in Figure 4 for different DVL measurement models. 

Table 2: Performance of different IMU/GNSS/DVL integration schemes in terms of time needed to 

reach 10 meter and 25 meter HPE (LC – loosely-coupled, TC – tightly-coupled). 

 
IMU/GNSS 

DVL (2D + 1D) 

IMU/GNSS 

no DVL 

IMU/GNSS 

DVL (2D) 

IMU/GNSS 

DVL (1D) 

 
Time to 

HPE 10m, 
[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

LC IMU/GNSS/DVL: 
FOG + RTK 

140 - 88 126 140 - 87 124 

LC IMU/GNSS/DVL: 
FOG + SPP 

137 - 72 107 137 - 72 106 

TC IMU/GNSS/DVL: 
FOG 

135 - 72 107 135 - 73 107 

LC IMU/GNSS/DVL: 
MEMS + RTK 

147 - 42 57 147 - 42 57 

LC IMU/GNSS/DVL: 
MEMS + SPP 

140 
- 

 
47 64 141 - 47 64 

TC IMU/GNSS/DVL: 
MEMS 

140 - 46 63 141 - 47 64 

  

The corresponding HPEs and VPEs for different SPKF schemes are shown in Table 3 with 

the associated time needed to reach the 10 meter and 25 meter HPE provided in Table 4. 

The time evolution of both HPE and VPE for tightly-coupled FOG-based IMU/GNSS/DVL 

and different SPKF schemes is presented in Figure 5. Note that in this case the tightly-

coupled architecture provides the most interesting behavior compared to simpler loosely-

coupled approaches, where all the SPKFs are performing relatively similarly as one can 

see in Tables 3 and 4. 

Finally, Table 5 provides a comparison between two different approaches of representing 

the attitude quaternion noise within a SPKF (in this case classical symmetric UKF). While 

the first approach adopts a strategy where the attitude noise is represented via an 

equivalent rotation vector calculated from the difference quaternion (attitude residual), the 

second approach assumes the attitude noise to be represented by the vector part of the 

corresponding difference quaternion [22]. 
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Figure 3. Horizontal position error (left) and vertical position error (right) during 5 minutes GNSS 

outage for different configurations of IMU/GNSS/DVL using complete (3D) DVL measurement 

model. 

 

Figure 4. Horizontal position error (left) and vertical position error (right) during 5 minutes GNSS 

outage for tightly-coupled IMU/GNSS/DVL integration using different DVL measurement models. 
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Figure 5. Horizontal position error (left) and vertical position error (right) during 5 minutes GNSS 

outage for tightly-coupled FOG-based IMU/GNSS/DVL integration using different SPKF schemes. 

 

Table 3: Performance of IMU/GNSS/DVL integration schemes using different SPKF 

methods in terms of HPE and VPE (LC – loosely-coupled, TC – tightly-coupled). 

 Unscented KF 
(UKF) 

Spherical Simplex 
Unscented KF 

(SUKF) 

Central-Difference 
KF (CDKF) 

Cubature KF (CKF) 

 HPE, [m] VPE, [m] HPE, [m] VPE, [m] HPE, [m] VPE, [m] HPE, [m] VPE, [m] 

LC IMU/GNSS/DVL: 
FOG + RTK 

19.55 5.26 21.01 5.97 20.10 5.41 19.35 5.52 

LC IMU/GNSS/DVL: 
FOG + SPP 

16.53 7.19 16.15 7.83 16.41 7.60 16.47 7.47 

TC IMU/GNSS/DVL: 
FOG 

17.27 7.34 631.12 17.64 81.84 11.67 18.44 7.31 

LC IMU/GNSS/DVL: 
MEMS + RTK 

17.26 8.03 34.51 8.72 17.17 8.36 17.36 8.17 

LC IMU/GNSS/DVL: 
MEMS + SPP 

14.71 9.84 33.06 12.42 16.69 10.02 14.79 10.00 

TC IMU/GNSS/DVL: 
MEMS 

17.72 9.92 582.29 8.90 94.20 12.95 14.80 10.10 
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Table 4: Performance of IMU/GNSS/DVL integration schemes in terms of time needed to reach 10 

meter and 25 meter HPE (LC – loosely-coupled, TC – tightly-coupled). 

 Unscented KF 
(UKF) 

Spherical Simplex 
Unscented KF 

(SUKF) 

Central-Difference 
KF (CDKF) 

Cubature KF (CKF) 

 
Time to 

HPE 10m, 
[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

Time to 
HPE 10m, 

[sec] 

Time to 
HPE 25m, 

[sec] 

LC IMU/GNSS/DVL: 
FOG + RTK 

140 - 135 - 139 - 141 - 

LC IMU/GNSS/DVL: 
FOG + SPP 

137 - 138 - 137 - 137 - 

TC IMU/GNSS/DVL: 
FOG 

135 - 132 141 137 233 131 - 

LC IMU/GNSS/DVL: 
MEMS + RTK 

147 - 137 272 149 - 147 - 

LC IMU/GNSS/DVL: 
MEMS + SPP 

140 - 133 284 140 - 140 - 

TC IMU/GNSS/DVL: 
MEMS 

140 - 138 148 144 239 140 - 

 

6. Discussion 

The results shown in Table I clearly indicate that all configurations of full IMU/GNSS/DVL 

solutions allow the system to navigate without GNSS for extended period of time with 

reasonable accuracy. Interestingly, the difference between systems based on MEMS and 

FOG IMU is rather marginal. In contrary, for pure IMU/GNSS system the GNSS outage of 

5 minutes can be considered too long for the required HPE less than 10 meters. Although 

the performance of the pure inertial bridging can be still somehow improved by setup 

calibration (e.g. GNSS compass geometry, IMU calibration, etc.) and corresponding filter 

parameter tuning, bridging of the GNSS outages with the duration longer than 10 minutes 

does not seem to be feasible, at least in foreseeable future and for IMUs of reasonable 

price. Still, for pure inertial bridging one clearly sees how the IMU performance affects the 

position errors as the errors of the FOG-system are significantly smaller compared to 

those of MEMS-based approach. Although the HPE performance of the 2D DVL 

measurement model is extremely similar to that of 3D, the vertical position error seems to 

be significantly larger even when compared to pure inertial approach. We believe that that 

could be explained by the modeling errors of the DVL which propagate to both the inertial 

sensor errors and vertical velocity. Finally, although the sole purpose of DVL 1D model 
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was to constraint the vertical position drift, one can still observe an improvement in terms 

of HPE. Note that the results of pure inertial integration for FOG IMU can be hardly 

considered representative (due to filter convergence, time, offset dynamics and setup 

errors) and should be analyzed only relative to those of DVL-augmented systems as all the 

numbers would improve with better sensor calibration and finely tuned filters. 

Table 5: Performance of UKF IMU/GNSS/DVL integration schemes for different attitude noise 

parameterization: rotation vector vs. quaternion vector part (LC – loosely-coupled, TC – tightly-

coupled). 

 
Quaternion Unscented KF (UKF) 

with Rotation Vector Attitude Noise 
Parameterization 

Quaternion Unscented KF (UKF) 
with Quaternion Vector Part 

Attitude Noise Parameterization 

 HPE, [m] VPE, [m] HPE, [m] VPE, [m] 

LC IMU/GNSS/DVL: FOG + RTK 19.55 5.26 19.32 5.49 

LC IMU/GNSS/DVL: FOG + SPP 16.53 7.19 16.30 7.45 

TC IMU/GNSS/DVL: FOG 17.27 7.34 16.43 6.16 

LC IMU/GNSS/DVL: MEMS + RTK 17.26 8.03 17.29 8.18 

LC IMU/GNSS/DVL: MEMS + SPP 14.71 9.84 14.72 10.02 

TC IMU/GNSS/DVL: MEMS 17.72 9.92 14.72 10.12 

 

Figure 3 confirms that for all filter configurations and complete 3D DVL measurement 

model the position drift (both in terms of HPE and VPE) becomes close to linear in time, 

while pure inertial mechanization shows cubit time dependence (see Figure 4.). This can 

be easily explained by the fact, that within the INS mechanization (chain of several 

integrators) the DVL observation (velocity) is placed closer to the position output compared 

to the inertial measurements. Therefore, in DVL-augmented system the quality of the IMU 

plays a dominating role only in determining the associated attitude of the system, but 

because even MEMS IMU has a bias stability of 6 deg/hour, longer GNSS outages could 

be necessary in order see the impact of attitude accuracy on the estimated position. Here 

the combined IMU/GNSS/DVL system reduces requirements to the quality of the inertial 

sensors which is an important step for wider adoption of the proposed navigation strategy. 

Although there seems to be fairly minor difference between filter configurations (loosely- 

vs. tightly-) if the DVL measurements are available on a regular basis, one could still prefer 
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to work with tightly-coupled KFs due to other advantages such as ability to work with direct 

observations, navigation with less than four satellites etc. 

One should also notice a failure of 2D DVL model in terms of VPE as shown in Figure 4 

(right). This interesting behavior along an unobserved direction, probably, again comes 

from DVL modeling errors. This is an unfortunate result bearing in mind that far better 

performance is demonstrated using just a pure inertial integration. The results in Table 2 

confirm that fully augmented systems need between 2 and 2.5 minutes to accumulate 10 

meter errors and can bridge 5 minutes GNSS outages without reaching HPE of 25 meters. 

Similar performance is obtained when comparing UKF to alternative SPKF schemes as 

shown in Tables 3 and 4. Both UKF and CKF perform rather similarly, while SUKF and 

CDKF fail for the most demanding tightly-coupled approaches. As the mathematical 

models for the process dynamics are identical in all the filters, the only reason for SUKF 

and CDKF failure is a higher dimensionality of the tightly-coupled configurations as the 

original system state is augmented with both pseudorange and Doppler shift 

measurements. Therefore the augmented state could easily reach 50, which could be 

too demanding, especially when one considers numerical issues associated with many 

orders of magnitude differences in numerical values of the estimated variables and 

nonlinearities including those due to lever arm compensation and DVL measurements. 

Although the SUKF and CDKF fail in their basic configuration (we use scaled SUKF), the 

filters could probably perform fine under additive (non-augmented) noise approach. Still, 

the obtained results indicate that by stressing the filtering schemes to the limit one can 

reveal the differences in filter performance which are often not observed in simulated 

nonlinear “toy” problems. Although the square-root implementation of both CDKF and 

SUKF could solve some of the issues, one should probably avoid using these two SPKF 

schemes in highly-dimensional problems such as that presented above. Moreover, the 

square-root formulations as suggested in [23] for UKF and CDKF, seem to be only quasi 

square-root filters as the Cholesky update functions could fail for the filter configurations 

with negative weights [24]. A true square-root CKF implementation had been presented in 

[24] and seems to be promising candidate for the filters like those discussed in this work 

both with relatively high dimensionality and measurements of strongly varying quality. 

Finally, Table 5 confirms that in practice any of the two attitude noise representations can 

be used as long as the implementations are consistent and special care is taken to ensure 
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that vector part approach does not fail due too large initial convergence as the approach 

implies the noise to be not larger than the quaternion norm 1. 

Differently from numerous other authors, we have evaluated the algorithm performance 

using only real measurement data. As the quality of the estimation is often affected by both 

the nonlinearity and the mismatched models, the presented approach allows us to address 

both these issues and provides results which are far more representative for real world 

applications. Although it is not easy to decouple the influence of both these effects, the 

modeling and sensor errors seem to play far larger role in limiting the performance of the 

presented system as so-called Iterated UKF (IUKF) [21] did not show any improvement in 

HPE figures. What is even more interesting, the IUKF was sometimes performing even 

worse compared to non-iterative scheme. This could be, probably, explained both by the 

fact that IMU/GNSS/DVL fusion does not possess any severe nonlinearity and by 

presence of the modeling errors in the measurement (e.g. DVL’s -axis pseudo-

measurement and GNSS compass geometry errors). Further improvement is expected if 

special maneuvers are applied in order to improve the observability of some instrument 

errors and to speed up the filter convergence. Although the preliminary results are 

promising, the system performance is strongly dependent on observability of some sensor 

errors and is conditioned by the dynamics of the vessel exactly before and during the 

GNSS outage. Here the richness of the associated dynamics could have an extreme 

influence on the final performance of this multi-sensor system. The presented approach is 

consistent with the development of the e-Navigation strategy and results in an affordable 

setup due to lower costs with a promising potential for both performance and robustness 

improvement due to constantly increasing quality of inertial MEMS sensors. 

7. Summary and Outlook 

This work had presented an integrated navigation algorithm for maritime applications using 

SPKF-based nonlinear filtering framework. The proposed algorithms solve the multi-sensor 

fusion problem for a hybrid navigation system using inertial, GNSS and DVL 

measurements. While employing real sensor measurements recorded during typical vessel 

operations we were able to demonstrate the proposed system successfully bridging the 

GNSS outages of prolonged duration. The results clearly indicate that the addition of DVL 

to classical IMU/GNSS solution significantly reduces the position drift when GNSS data is 

not available and the performance of the methods is consistent for both loosely- and 

tightly-coupled systems with inertial sensors of different accuracy classes. CKF-based 

approaches seem to be the best option due to its robust performance (similarly to that 
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shown by UKF), but with existing efficient true square-root implementation compared to 

quasi square-root version of UKF. Still, similarity of UKF and CKF performance should be 

not surprising as CKF can be shown to be particular case of UKF with 1, 0 and 

0. 

Future work will focus on extending the proposed hybrid system for GNSS phase 

measurements and implementation of the associated integrity monitoring algorithms. 

Some further research is also planned in improving the sensor models with proper 

treatment of correlated noises, sensor misalignments and scale factor errors as well as 

incorporation of GBAS correction data. Special attention should be paid to the 

performance of the DVL both in deeper water (when measuring speed through water) and 

during the berthing situation when the wake under the keel could result in reduced 

performance of the sensor. 
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