
Strathprints Institutional Repository

Stephen, Bruce and Isleifsson, Fridrik and Galloway, Stuart and Burt, 

Graeme and Bindner, Henrik (2014) Online AMR domestic load profile 

characteristic change monitor to support ancillary demand services. 

IEEE Transactions on Smart Grid, 5 (2). pp. 888-895. ISSN 1949-3053 , 

http://dx.doi.org/10.1109/TSG.2013.2286698

This version is available at http://strathprints.strath.ac.uk/45200/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (http://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any  correspondence  concerning  this  service  should  be  sent  to  Strathprints  administrator: 

strathprints@strath.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/18429501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk


???? 1

Abstract— With conventional generation capacity being

constrained on environmental grounds and renewable

alternatives carrying capacity uncertainties, increasingly accurate

forecasts of demand are likely to be required in future power

systems: highly distributed renewable generation penetrating low

voltage networks must be matched to small dynamic loads, while

spinning reserves of conventional generation that are required to

maintain security of supply, must be reduced to more efficient

margins. Domestic loads, likely to form significant proportions of

the loads on islanded power systems such as those in remote rural

communities, are currently modeled with homogenous and coarse

load profiles developed from aggregated data. An objective of

AMR deployment is to clarify the nature and variability of the

residential LV customer. In this paper, an algorithm for tracking

the consistency of the behavior of small loads is presented. This

would allow them to be assessed for their availability to provide

demand services to the grid. In the method presented, significant

changes in behavior are detected using Bayesian changepoint

analysis which tracks a multivariate Gaussian representation of a

residential load profile on a day to day basis. A hypothetical

single phase feeder, representative of an islanded rural power

system, is used to illustrate the detected heterogeneity of load

behavior consistency.

Index Terms— Automatic meter reading (AMR), LV Network,

Demand Characterization, Bayesian Statistics

I. INTRODUCTION

OMESTIC loads can be subject to environmental and

lifestyle induced variability which can make modeling

loads on the LV network difficult. The currently used

assumption of multiples of a homogenous load profile on a LV

feeder can result in spare capacity being wrongly estimated –

for example, [1] notes that the base load for identical domestic

properties can vary by as much as 300-400%. Current practice

is to generate load profiles at the macroscopic or national level

from exemplar or trial data and employ averaging. For

example, the UK uses a profile class system, a set of 9

exemplar load profiles, of which domestic customers comprise

the first two [2]. Rather than continue to assume a single,

Manuscript received June X, 2012.

Dr. B. Stephen is a Senior Research Fellow in the Advanced Electrical

Systems Research Group, Institute of Energy and Environment, University of

Strathclyde, Glasgow, G1 1XW (phone: +44 (0)141 548 5864, e-mail:

bruce.stephen@ strath.ac.uk)

highly averaged load profile, the introduction of Automated

Meter Reading (AMR) has the potential to permit load profiles

to be generated dynamically from recorded load. The

availability of higher resolution load data through AMR

deployment opens up the possibility of data driven profiles to

be created according to typical customer behavior which can

be updated as that behavior changes. Small power systems

such as islanded low voltage networks [3, 4] will have smaller

numbers of loads to serve lacking the population size to

average out anomalies and behavioral artifacts [5] in energy

use as can be done at the national scale. Although AMR

provides the means to measure this, detecting such a change in

the presence of variability in daily routine presents a challenge

both to the choice of load profile representation and the

generalization capabilities encoded within it.

A model to assess the consistency of residential loads is

presented in this paper as a means of assessing availability to

provide ancillary demand services. Characterizing

predictability of behavior allows lump load availability to be

better assessed for demand or frequency response purposes.

This could be of benefit either in an islanded power system or

on a smaller scale, a single phase rural feeder with high

renewable penetrations where upgrades are not feasible for

economic or access reasons. Notable practical examples are

given in [6, 7] where economic necessity drove innovative

solutions to addressing security of supply. In other cases, it is

renewable obligation that drives the need for network

investment; [8] notes that in a German case study, three main

issues stemmed from increased PV installation: the reverse

power flow scenario, the additional power flows that may

result and the voltage and frequency control issues (that can

result from imbalance generation and load). Automated or

online tap changers (OLTC) can deal with the bidirectional

power flows that result from demand failing to absorb PV

generation, but as [9] notes, the least costly route would be –

in planning upgrades to a power system with increasing

penetrations of renewable generation such as PV, costs can be

lowered if there is self consumption; correct identification of

the likelihood of this would prevent needless expenditure.

Assessing the potential characteristics of a given load has been

difficult up until now owing to the dearth of metering on LV

networks; AMR or Smart Metering has been seen as the key

technology in addressing this [10], but these are specified

primarily for retail business purposes and owing to the
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granularity of AMR data, at best, 30 minute advances (the

amount of energy by which the meter reading ‘advances’ over

the given period), the ancillary service provision can only be

addressed for supplemental reserve and load shaping. To be

able to plan on the invocation of ancillary services from

anticipation of demand, it is desirable to have an indication of

the consistency of either consumers with a particular load

profile or consumers in a specific part of the network.

Frequency excursions could, for example, be addressed by

suitably sized loads [11] and the indication of the availability

of such loads to do this would be valuable for the reliable

operation of the power system. Section II reviews the ancillary

services that may be available to a network operator at the LV

level. Section III reviews previous work on modeling

disaggregated LV network load profiles from AMR data in a

way that encodes their variability and expected values

throughout a day; Section IV reviews Bayesian change point

analysis, a technique for incrementally building statistical

models from observed data and detecting when observational

changes necessitate the creation of a new rather than an update

of an existing, model. Section V shows how AMR data is used

to profile individual residential customers and how this model

is embedded into the changepoint detector. Section VI gives an

overview of the network model used to test the algorithms.

Section VII demonstrates how customers can be identified to

fulfill particular demand service requirements.

II. ANCILLARY SERVICES FOR SMART GRID

High penetration of renewable generation in a power system

depletes the traditional demand services provided by

conventional generation plant. The output variability of

renewables can make demand services all the more vital to

robust operation of the system if network investments, such as

installation of Onload Tap Changers (OLTC) to distribution

transformers, are to be avoided [9]. Load or demand cannot be

realistically considered as negative generation as it has

significantly different operating dynamics [12]: loads are not

tailored to the power system at design time, ‘ownership’ is

across several different ‘operators’ and in the case of domestic

loads, the effect is fragmented and reliant on participation.

Definition of the ancillary services that relate to demand are

identified by [13] can be summarized as:

- Voltage control services require a response time in the

order of 1 to 10 minutes; these are used to when

changes in consumption or embedded generation cause

fluctuations in local voltage.

- Spinning reserve services require a response time of from

less than 1 second to 10 minutes; while not a generating

unit, reduction of demand can be used to stabilize

system frequency for example in the event of the loss of

a generating unit. Because of the immediacy of such

events, a shorter term response is preferred to the

functionally equivalent service that balances power.

- Load shaping services respond in 30/60 to 120 minutes

and are used either to mitigate network congestion or to

reduce the load factor; speed of response is not a

primary concern, rather the flexibility of the load to

have its operation time moved by up to several hours.

- Power balancing services respond in 1 to 10 minutes and

can be used to address mismatch between power

generation and demand during normal operating

conditions with deferral times being in the order of tens

of minutes.

Reducing the load factor or decongesting the network by

reshaping load profiles can be addressed over as much as a 2

hour window so with both services, identifying suitable

customers on the LV/Residential network who will be willing

and consistent participants is a prerequisite to robust operation

of the service. The identification process would necessitate

examination of typical usage habits, which smart metering data

could provide.

For operators of LV networks or islanded power systems,

tracking the behavior changes of load profiles or parts of load

profiles from specific (e.g. weekend) days to the next and what

aspect of them changes such as magnitude, time of use, and

variability will assist in informing system management  and

upgrade activities. Seasonal variation will play some part in

this as certain loads such as lighting or heating will gain or

lose flexibility according to weather effects. Detection of this

cannot be assessed solely through outdoor conditions as

variations in building fabric and behavioral routine will also

influence the effect these have on the occupant.

III. MODELING LOADS FROM AMR DATA

While metering only reports the aggregated load at the

premises level, the levels of variability throughout the day can

be used to infer non-critical or time shift-able loads. Capturing

how much of this is variability is prone to significant changes

is more of a challenge. In [14], a stratification of load profiles

is proposed to abstract usage levels on a daily basis;

occurrences of bandings of load levels or stratifications were

accumulated over a day thus reducing profiles to collections of

counts; disappearances of different strata populations and

supplanted strata was often invoked by seasonal change. This

idea was extended to a multivariate case to incorporate time of

use in [15], with advance times modeled as separate variables;

this approach differed from earlier MV network customer

profiling by [16] for example in that it incorporated temporal

variance. Communications methods proposed or already in

place for Smart Meters do not permit real time relaying of load

data so these will be of most use retrospectively generating

advice for selecting participants and quantifying the

consumption for demand response.

Residential LV network loads are noted for their variability

[1, 14, 15]; residential customers have a greater deal of

flexibility in the way they carry out their day to day tasks

compared with the industrial customers connected to the MV

network [16, 17]. This variability can stem from occupancy,

building characteristics, heat sources as well as the aggregated

combinations of appliance usage. A representation used to

accommodate this variability in behavior adopted in [15]

entailed a multivariate Gaussian mixture distribution: each

dimension corresponded to one of the 48 half hourly meter
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advance times throughout the day in terms of its mean and

variance. Owing to the non-stationary and distinctly non-

Gaussian nature of loads of this size [18], a mixture of

Gaussian distributions that accommodates these features as

multimodality was also used. This assumption of several

underlying modes of behavior is a key part in capturing how

consistently loads behave. Differences in the expected value of

a load, represented by the Gaussian mean, and the confidence

with which it can be expressed, represented by the variance

parameters, will represent different, or changes in, domestic

routine. The mixture distribution uses this to abstract a daily

load into a single label that is indicative of the mean and

variability of the load profile advances – but how long a

customer retains that label is not captured by this model which

would have implications on how well this customer would

serve a demand reduction program or a load shifting one.

IV. BAYESIAN CHANGE-POINT DETECTION

Detecting abrupt changes in an observed measurement or

tracking its evolution can be achieved by modeling how it is

statistically distributed; the Kalman filter [19] is an example of

this for continuous real valued observations. The act of

inferring the distribution of a measurement is more robust to

noise than say thresholding its observations which would be

prone to changes incurred by outliers. The Kalman filter has its

limitations, in particular Gaussianity and the assumed linear

relation between successive observations. In situations where

this cannot be assumed it is preferable to adopt no assumption

as to the form of the dependency. The approach to changepoint

detection proposed in [20] amounted to an online estimation of

a predictive distribution over the number of observations for

which that distribution was valid (the ‘run length’). A further

desirable property is the online operation of the algorithm,

which alleviates the need for storing operational examples for

training or selecting model cardinality such as the number of

clusters.

Fig 1 Change-point analysis over a time series for a hypothetical variable x: x

is distributed differently at various points in the sequence, with the

parameterization of the running estimate of its distribution reflecting this.

As illustrated in Figure 1, over a sequence of observations of

variable x of length T, there will be a set of I changepoints for

which the i
th

distribution will be valid at a given time. The

number of observations over which an observation distribution

P(x) remains valid is its run length r, as the series progresses

the run length increases until a changepoint is encountered at

which point it is truncated to zero. Observations, x are drawn

from some distribution with parameter set η , which is used in

two competing measures, the first is the run length growth

probability:
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that the run length is zero:
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A change is detected if (2) is greater than (1). At time t there

will be a run length rt estimated from observations x1:t, from

which the posterior distribution of the current run length can

be calculated as:
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(3)

This relies on the observation likelihood, sometimes referred

to as the ‘evidence’ which can be obtained by marginalizing

over the joint likelihood of run length and observation:

tr

ttt xrPxP :1:1 ,
(4)

This requires only a sum over the current run length and not all

observed data points, thus removing the need to store a

monotonically increasing sized archive of data points. The

changepoint prior distribution, P(rt|rt-1), can have a hazard

function encoded into it to make certain run lengths unfeasibly

long or short. Where there is no prior knowledge in this

regard, [20] proposed this be left constant. For the observation

distribution, an exponential family distribution is assumed and

can be expressed in the following form, known as its natural

parameterization:

ηηη AxUxhxP
Texp (5)

Where:

• η is the natural parameter

• U is the sufficient statistic

• A is the log partition function or normalization constant

• h is the non-negative base measure which can be constant

Members of the exponential family of distributions include the
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Gaussian, Gamma, Poisson, Dirichlet, Beta, Multinomial and

Bernoulli distributions. A useful property of these distributions

is that they exhibit what is known as conjugacy; that is, the

posterior distribution takes the same form as the prior

distribution [21, 22]. Bayesian statistics differs from its

Frequentist counterpart in that it expresses model uncertainty

entirely through probability distributions [23, 24]. Where a

Frequentist would seek to estimate likelihood from whatever

data was available, a Bayesian would infer a posterior

distribution from the evidence (the distribution of variables)

and assumptions available. This results in greater capabilities

for generalization [25]. For example, a Gaussian distribution

has a Gaussian prior over its mean and a Gamma prior over its

precision (precision is the inverse variance) which leads to a

Gaussian-Gamma prior distribution over the hyper-parameters

and also a posterior distribution in the form of a Gaussian-

Gamma. An exponential distribution parameterized by η can

be expressed generally in the form:

χνηηχνχνη
ν T

gfP exp,, (6)

The variables χ and ν are hyperparameters, known as the

sufficient statistics that describe η . This, through conjugacy,

permits a posterior distribution over an observation x of the

form:
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This conveniently allows the sufficient statistics to be updated

as each observation is received as follows:

1νν (8)

txuχχ (9)

In the case that the run length is reset, then these are reset to

their prior values assigned at the start of the sequence. These

will be updated for the observation distribution as new data is

received unless the run length is reset. In order to lessen the

computational requirements of this procedure, a zero run

length results in the whole sequence being truncated thus

allowing a smaller memory footprint.

V. LOAD CHARACTERISTIC CHANGE MODELING

To specialize the changepoint detector to the load model, an

observation distribution must be chosen to represent the

evolving load profile; this in turn dictates the formulation of

the distribution parameter updates. Following the approach

used in [15], a multivariate Gaussian distributed load profile is

assumed. This captures not only the implied mean usage for

every advance time but also the variability attached to it and

the relationship between the advance sizes in terms of their

correlation. This latter feature implies the time variation in

adjacent advance periods. The multivariate Gaussian has a

vector mean μ and a covariance matrix Σ . Assuming conjugacy

[22], the covariance matrix has a prior distribution over all

plausible values that takes the form of an inverse Wishart

distribution:

1
2

1
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Z
SiW
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The mean µ is assumed to be Gaussian distributed and so has a

prior of this form.

µτµτµ mmmN
T 1

2

1
exp

2

1
,; (11)

The covariance scale parameter can be integrated over; leaving

a distribution that is a function only of its hyperparameters:

0
,, duSuiWuSxNxP tttt νµ (12)

Integrating reduces this to the form of the multivariate Student-

t distribution [26, 27]:
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The Gamma function is given by Γ and the dimension of the

distribution is d. The Student-t distribution can then be

parameterized as:

1

1

1
,,1; t

t

tt

tt

d
dxP

τ

ντ
µν (14)

The sufficient statistics that correspond to (8) & (9) are as

follows:

11tt νν (15)

11

11

t

ttt

t

x

τ

µτ
µ (16)

To update the covariance, the scatter matrix S must be
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evaluated at each time step as well and the precision (inverse

covariance) Λ updated as follows:

T

tttttt xxSS µµ1
(17)

T

tttttt xx
N

N
µµ

1
1 (18)

11tt ττ (19)

These are returned to a set of default values whenever the

run length is reset. Default values are assumed to be the

equivalent of a standard multivariate Gaussian distribution

with zero mean and an identity matrix for the covariance

matrix. To summarize, the algorithm proceeds as follows:

1. Set µ , ν , S, Λ and τ to represent a multivariate

standard Normal distribution

2. do

3. Accept load profile xt for day t

4. Update load profile distribution parameters

using expressions (15)-(19)

5. Evaluate (1) and (2)

6. while expression (1) > expression (2)

7. Changepoint detected: reset the distribution by

returning to step 1

In [15] entire daily load profiles are modeled which posed

computational problems that stemmed from the sparseness of

48 dimensional data: as the number of dimensions increases,

more data points are required to support the relations and

variability in the covariance matrix [28]. For ancillary

services, this is less of a problem as only short periods,

possibly around peaks, are likely to see demand services

invoked. Considering a short period of advances rather than an

entire day, the dimensionality of the load profile of interest can

be reduced. For example, peak times may require demand

responses to be invoked between 16:30 and 19:30 which

covers 6 half hourly advance periods. With the resolution of

advances and variation in people’s routines, tasks may overlap

advance periods which will in turn be captured in the Gaussian

covariance matrix as a correlation between variables

representing each time period.

VI. TEST LV FEEDER CIRCUIT

There are very few fully metered LV circuit data sets which

motivates the synthesis of a LV feeder from actual Smart

Meter data being used to populate hypothetical properties on a

single phase feeder. Load flow calculations are employed to

evaluate the thermal and capacity constraints throughout the

section of network including that at the substation. This model

is shown in Figure 2 and comprises a single feeder with 32

customers attached by short lengths of cable. The cables are of

three different types, reducing in capacity with distance from

the substation. Each customer is represented by a point load at

separate nodes in the network and the load magnitude is

provided by a time series of actual residential AMR data. UK

AMR typically measure 30 minute advances [10] which results

in a load profile with 48 point resolution. No assumptions are

made regarding the similarity of the dwellings in terms of size,

utilization, construction or occupancy – this is a relevant

assumption especially for networks in rural areas in the UK

where properties tend to be heterogeneous in their size, age

and palette of construction materials.

Fig. 2. Simulation network used with the models presented.

VII. SERVICE VIABILITY ANALYSIS

Providing ancillary services requires participant consistency to

be effective. To evaluate this, the test network is run for a

period of T=180 days, which takes in quarter 1 and quarter 2

for the year, concluding in early July. There are 32 customers
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on the network, each is metered half hourly for the duration of

the test and each is given its own dedicated changepoint

analyzers: for morning weekday, evening weekday morning

weekend and evening weekend usage. Peak periods are the

most critical operating times for all networks; in the UK and

much of northern Europe, there are two of these in the daily

load profile: one in the morning and one in the evening. At the

end of each day, load profiles are formed by time ordering the

meter readings for each customer into a 48-dimensional vector.

To account for variability in the start times of household

routines, 7-dimensional sub-profiles centered on the 08:00 and

18:30 peak times are extracted from the 48-dimensional daily

load profile vector.

Fig 3 Run length estimates demonstrating change-points as discontinuities for

weekday peak time distributions over the whole 32 node network for the 6

month duration.

Weekends and weekdays will invoke distinctly different

behaviors, so separate run length estimators are employed

accordingly. These load profiles are fed into their respective

changepoint analyzer at the end of each day which will yield a

distribution of the load profile and an indication of whether or

not a changepoint has taken place for each residential

customer. At the end of the 180 day period, each customer will

have a list of when changepoints occurred in their load profile

distributions from each of their changepoint analyzers.

Statistics are then calculated at the end of the monitoring

period for illustrative purposes. Figure 3 shows the resulting

run lengths over the trial period for the evening peak time

distribution for all 32 participants. The visualization of this

data allows the variability of residential load behavior to

become clear: some loads remain in effectively the same

distribution for the entire trial, while others can change as

often as every week (run lengths of approximately 5 days) and

some remain for greater than a month’s worth of week days

indicating possible seasonal influence. Table I summarizes the

temporal characteristics of the loads on the test network and

shows that in terms of consistency, weekday morning peak

behavior is fairly consistent with no run length truncations

seen until 90 days into the trial and a total of only 24 peak load

profile distribution changes seen throughout the trial. In

recognizing this sort of consistency of behavior, a useful

participant in demand response would have been identified.

Weekend morning peaks are more consistent still, with only 5

changes in peak load profile distribution and an average run

length of 41 days (equivalent to 20 weeks since only weekend

behavior is taken into account here). Evening peak load

profiles show greater variability, with a reset in run length

observed 4-5 weeks from the start of the trial. Some residential

loads, as elaborated upon in Fig 3, exhibit almost a weekly

change in their load profile distribution while there are others

that maintain the same load profile shape for the entire trial

period. For this latter case, the time period over which groups

of demand response households participated would be shorter,

and those households forming the group reselected more often.

Fig 4 Node 31 weekday behavior over the monitoring time period in terms of

advances (a - upper) and (detail of Fig 3) overall load profile probability

distribution run length (b - lower).

A total of 154 run length resets are observed over the entire

trial with an average run length of 97 days; run lengths range

from 4 to 180 days, highlighting how the variability of

behavior has skewed this average. To consider this in more

detail, Figures 4, 5 and 6 show an example household over the

trial period. Figure 4a shows the 7 advances of periods 34 to

TABLE I

CHANGEPOINT STATISTICS FOR 32 CUSTOMERS OVER 180 DAYS

Case
Load

Model

Number of

Changes

Average

Run Length

Earliest

Reset

Latest

Reset

Morning

Peak

Weekday 24 122 90 180

Weekend 5 41 31 52

Evening

Peak

Weekday 154 97 4 180

Weekend 35 31 5 52
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40 (i.e. the load profile between 17:00 to 20:00 inclusive) over

the whole trial period while Figure 4b shows the run length of

the multivariate distribution that corresponds to this. The

various resets are temporally aligned with the advance time

series. Periods 36 and 37 in particular can be seen from Figure

4a as having very changeable variances – large up to day 60,

then varying again after day 80, although to a lesser extent.

After day 120, both periods 36 and 37 exhibit less variance

with only intermittent peaks. Summarizing the delineations in

this multivariate time series, the associated mean load profiles

and covariance matrices captured prior to each reset are those

shown in figures 5 and 6 respectively.

Fig 5 Means of the load profile distributions captured over each run length at

network node 31 for weekday evening peak-time profiles. These are presented

left to right, top to bottom as they evolve over time.

The Gaussian distribution captures the evolution of the load

profile over time through its mean parameter µ: Figure 5

shows the movement of a peak towards later in the evening for

the first three run lengths, then moving back earlier in the day

for the next four. Figure 6 shows the Gaussian covariance

matrix parameter ∑ evolving with the means in figure 5, which

attaches a level of certainty to the magnitudes of the expected

peak loads indicated by the means. The first distribution

(Figure 5, top left) can be seen to have relatively low variance

around the peak of the load profile at advance 37-38

representing a confident prediction of the time of the peak.

The advances shouldering this peak have greater variability as

indicated by the change in color of the cell towards red. The

off diagonal elements of the matrix represent the covariance or

the linear dependence between advance times. Large, positive

covariances mean that when a particular advance period load

increases in magnitude, its corresponding advance load in the

matrix does as well; covariances tending towards uniformity

would result in the preservation of load profile shape with the

increase in energy used, a change which could result from the

increase in usage of electric space heating, for example. The

final reset shows very low covariance for all advance pairs

representing little or no dependency between times of use.

Fig 6 Covariance matrices of the load profile distributions captured over each

run length at network node 31 for weekday evening peak-times. Dark areas

represent small variance/covariance. These are presented left to right, top to

bottom as they evolve over time.

The practical benefit from this understanding is in the

realization of a consistent aggregated demand resource that

could supplant the need for an artificial or industrial load on a

small power system, Recognizing when particular loads are of

a particular form could be a future function of substation

computing devices which in turn could identify potential for

seasonal or event driven reverse power flows in the presence

of high penetrations of distributed generation.

VIII. CONCLUSIONS

This paper has shown how basic AMR meter readings can be

used in conjunction with a novel but computationally simple

changepoint detection algorithm to assess behavioral

consistency in domestic loads. Behavioral consistency is

critical to achieving desired demand response from groups of

small loads: identifying the load sources that are the least

unpredictable will be the best candidates for participation in

demand response schemes. The algorithm has been shown to

identify particular behaviors as probabilistic representations of

load profiles and their variability over selected periods of

interest, and durations in time over which these representations

are valid. In algorithmic terms, the next stage of this work is to

retain distributions after their run length has reset and identify

their future recurrence. This way, sets of behaviors for a given

load can be accrued over time allowing more advanced, higher

level models to utilize these for future grid services and

possibly control. In [15], finer grained residential load

profiling was compared to an averaged load profile in line

voltage and current calculations with performance benefits
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being demonstrated in several cases. Network operators can

use tools employing this algorithm to assess customer

suitability for providing ancillary services and can plan

microgeneration integration and capacity requirements with

greater accuracy.
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