
Using Criticalities as a Heuristic for Answer Set
Programming

Orkunt Sabuncu
�
, Ferda N. Alpaslan

�
, and Varol Akman

�

�
Department of Computer Engineering
Middle East Technical University,

06531 Ankara, Turkey�
orkunt, alpaslan � @ceng.metu.edu.tr�

Department of Computer Engineering
Bilkent University,

06800 Ankara, Turkey
akman@cs.bilkent.edu.tr

Abstract. Answer Set Programming is a new paradigm based on logic program-
ming. The main component of answer set programming is a system that finds
the answer sets of logic programs. Generally, systems utilize some heuristics to
choose new literals at the choice points. The heuristic used in this process is one
of the key factors for the performance of the system.
A new heuristic for answer set programming has been developed. This heuristic
is inspired by hierarchical planning. The notion of criticality, which was intro-
duced for generating abstraction hierarchies in hierarchical planning, is used in
this heuristic. The resulting system (CSMODELS) uses this new heuristic and
is based on the system SMODELS. The experimental results show that this new
heuristic is promising for answer set programming. CSMODELS generally takes
less time than SMODELS to find an answer set.

1 Introduction

Answer Set Programming is a new programming paradigm. It is based on logic pro-
gramming but solutions of a problem are not extracted from a proof session [1]. It is a
model-theoretic approach. One writes a logic program for the problem at hand in such
a way that the intended models of the program correspond to the solutions of the prob-
lem. The semantics used for selecting the intended models in answer set programming
is stable model semantics. The models found by the semantics are called stable models
or answer sets and each of the models correspond to a solution of the problem.

The main component of answer set programming is the system that finds the answer
sets. These systems can be seen as the implementations of stable model semantics.

The main algorithm of finding an answer set is common to almost all systems. The
idea is a simple generate-and-test cycle [2]. In the generation phase, a candidate model
is formed for the input logic program. The aim is to transform this candidate model into
an answer set. The system regularly checks whether the model at hand is an answer set
in the test phase.

At choice points (see Sect. 3) the system chooses an uncovered atom and assigns it
true or false as an interpretation to augment the candidate model. Some choices cause



212 Orkunt Sabuncu et al.

the system find an answer set very quickly, but some cause it to enter an incorrect search
path and consume lots of time before it backtracks. So, heuristics are usually used for
choosing an uncovered atom. They greatly affect the performance of the system.

Working on new heuristics is important for developing better systems for answer set
programming [2]. In this work, a new system called CSMODELS3 (Criticality SMOD-
ELS), which is based on SMODELS [3], is developed. CSMODELS uses a new heuris-
tic whose foundation is criticality. Criticality notion has been used in hierarchical plan-
ning [4].

Hierarchical planning is a way to deal with search space complexity of planning
problems. Hierarchical planners attack the problem at different levels of detail. Ab-
straction hierarchy is used to define these levels.

There are successful abstraction hierarchies that improve the performance of the
hierarchical planner, but there are also poor ones which cause a lot of backtracking be-
tween levels. In a good abstraction hierarchy, the upper levels (the most abstract ones)
should deal with the hardest part of the planning problem so the planner tries to solve
them first. This property will limit the number of backtracking between the levels during
the plan finding process [5]. The notion of criticality was introduced in [4] for automat-
ically generating abstraction hierarchies based on this property. Criticality of a literal
in a planning problem is a numerical value and approximates the difficulty of finding a
plan that achieves this literal.

There is also a difficulty of finding a literal in an answer set. Selecting the ‘hardest’
literals at the first choice points can limit backtracking and can help the system find
an answer set quickly as in the case of hierarchical planning. This is the main moti-
vation of our work. In CSMODELS, criticalities of the literals of a logic program are
calculated to approximate the difficulty of finding them in an answer set. Then, these
values are used as a heuristic at the choice points. It is not trivial to calculate the criti-
calities this time because the original method was for planning problems, not for logic
programs. A method for applying criticality calculation for answer set programming is
also developed.

The experimental results obtained with CSMODELS are encouraging. Generally,
CSMODELS finds an answer set of a program more efficiently than SMODELS. This
increase in the performance of search time is significant for especially large problems.

Background information about criticalities and how to calculate them are given in
the next section. Section 3 describes the main algorithm of SMODELS. The main con-
tribution of this work, which is applying the notion of criticality to answer set program-
ming, is presented in Section 4. Section 5 describes CSMODELS. Section 6 includes
the experimental results of it. In the final section, conclusions can be found.

2 Criticalities

Criticalities are used for generating abstraction hierarchies for planners. Planners use
abstraction to reduce the complexity of the planning problem [6, 7]. ABSTRIPS, ABTWEAK,
ALPINE, and RESISTOR are some hierarchical planners [6].

3 http://www.ceng.metu.edu.tr/˜orkunt/csmodels/ .



Using Criticalities as a Heuristic for Answer Set Programming 213

Hierarchical planners use an abstraction hierarchy for the planning problem to gen-
erate and solve subproblems. An abstraction hierarchy divides the whole problem into
pieces. A hierarchy level indicates which parts of the problem should be neglected or
taken into account to form a subproblem corresponding to that level. After finding an
abstract plan, the next step is to go one level below and find a plan for that level. The in-
formation that is neglected in the higher level is considered now as part of the problem.
This is called refinement. This process continues level by level until the ground level
(i.e., the lowest level) is reached.

Results of using abstraction in planning are generally encouraging. In some prob-
lems it can lead to exponential reduction in the search space, improving the efficiency
of plan finding [8].

There are also discouraging results [9, 10]. The main cause of inefficiency is trash-
ing [5] between levels of abstraction hierarchy. During refinement, if no plan can be
found in a level, backtracking to a more abstract level (the upper one) to search for
another abstract plan is inevitable. There may be many possible abstract plans which
cannot be refined. This will cause numerous backtrackings, leading to trashing. A good
abstraction hierarchy should avoid trashing. To limit trashing, a system should try to
solve a subproblem which constitutes the hardest part of the original problem first [5].

Bundy, Giunchiglia, Sebastini, and Walsh [4] provide a method for generating good
hierarchies and provide details of an implementation called RESISTOR. It sorts the
precondition literals of a planning problem according to their difficulties to achieve (i.e.,
their costs). So, it partitions the problem into parts in terms of difficulty to generate a
good abstraction hierarchy.

The method discussed in [4] uses a numerical simulation of the plan finding process.
This method has introduced the notion of criticality. Criticality captures the cost of a
literal; criticality of a literal is an approximation of the cost of achieving it. Criticalities
have numerical values; smaller values correspond to easier-to-achieve literals, larger
values correspond to harder-to-achieve literals.

Criticalities are calculated in an iterative way. The criticality function ����������	 gives
the criticality value of literal � at the � -th iteration.4 There is an interpretation of ����������	
as the difficulty of finding a plan of length 
�� achieving � . This interpretation leads
to not only one but a group of criticality function definitions. Our work is based on
RESISTOR’s criticality functions.

RESISTOR’s definition of �����
����	 is inspired by electrical resistors. In calculating
the difficulty of achieving � , operators whose effect is � can be regarded as electrical
resistors connected in parallel. Fig. 1 shows this circuit. The more operators there are,
the more paths there will be for achieving � . Consequently, finding � becomes less
difficult. As in equation (1), ����������	 is calculated by parallel sum (total resistance of
parallel connected resistors) of the criticalities of operators whose effect is � and the
initial criticality �����
����	 (the difficulty of finding a plan of length 0).

�
����������	��

�
�����
����	

� �
������� � ����	

��������� �
��������� ����	 (1)

4 There are some properties a criticality function must have, like convergence, operator mono-
tonicity, and precondition monotonicity. Detailed information can be found in [4].



214 Orkunt Sabuncu et al.

Fig. 1. Criticality circuit for the precondition �

Equation (1) introduces the notion of criticality of an operator. ������������	 for an
operator ��� is defined to make calculations simple. It is interpreted as the difficulty of
finding a plan of length 1 to n which ends with the occurrence of operator op. For
calculating the criticality of an operator, preconditions of that operator can be regarded
as electrical resistors connected in series (Fig. 2).

Fig. 2. Criticality circuit for the operator ���

��� ���
����	 � ��������� � �����
� 	 � ����� � �����	�
��� �����

� 	 (2)

Since interpretation of ��� ���
����	 expects the occurrence of ��� at the � -th step, all
the preconditions must be achieved up to that point. This is why criticalities of precon-
ditions at the � ���

� 	 -th iteration are used in equation (2).

Using equations (1) and (2), criticalities of all the precondition literals are calculated
iteratively. Initial criticality values for every literal (i.e., ������� ��	 terms) are assigned
to 1. After some iterations, the limiting values of criticalities will lie in the interval
[0,1]. RESISTOR continues to iterate until no change occurs in the values (within some
predefined accuracy). This is a computationally practical way of terminating iterations.

Abstraction hierarchies are generated by sorting the final criticality values. How-
ever, what is important for our work is just how they are calculated.



Using Criticalities as a Heuristic for Answer Set Programming 215

3 SMODELS: An Answer Set Programming System

SMODELS has been developed at Helsinki University of Technology, and is now one of
the mostly used answer set programming systems. The system implements stable model
semantics [11] for logic programs. Reference [3] explains SMODELS’ philosophy and
implementation in detail.

Input to SMODELS is variable free logic programs. Programs with variables are
transformed to ground logic programs by a front-end system called LPARSE5 [12].
LPARSE uses a candidate model which is an empty set at the beginning. It tries to
augment this candidate model by adding literals deterministically according to the pro-
gram by using the properties of stable model semantics. This process of generating new
literals deterministically is equivalent to expanding the model at hand.

At an intermediate stage of the search process, an atom can take of three different
possible values [2]: true, false, or undefined. Atoms undefined for a particular model
are uncovered by it.

At the end of first expansion the candidate model corresponds to a well-founded
model [13] of the program. The aim is to expand the candidate model until it becomes
a stable model. The decision criterion for a candidate model to be a stable model is that
all the atoms of the program should be covered by it and there should be no conflicts. At
several stages during the whole search process there are uncovered atoms and SMOD-
ELS cannot deterministically assign values to these atoms (i.e., true or false). These
stages are called choice points. At choice points, SMODELS should just select one of
the uncovered atoms and give an interpretation as true or false. Then, the main algo-
rithm will again try to expand the newly generated candidate model with the addition
of the chosen atom.

Expanding a model at hand can cause situations in which both an atom and its
negation are in the model at the same time. This contradicting situation is called a
conflict. An incorrect choice at a previous choice point can be the reason for a conflict.
So, in case of a conflict SMODELS backtracks to the previous choice. Fig. 3 shows a
simplified version of SMODELS’ main algorithm [3].

SMODELS’ heuristic to choose an atom is based on minimizing the remaining
search space after a choice is made [3]. SMODELS selects every uncovered literal
temporarily and adds it to the candidate model at a choice point. It does so in order
to determine what happens if it chooses that uncovered literal actually. After expand-
ing the candidate model, there will possibly be newly generated literals. The number
of these new literals is the heuristic score of the chosen literal. If the chosen literal is
positive then the score of the literal is called positive score of that atom. Similarly, the
score of a negative literal of the same atom is negative score of that atom.

Given the minimum of positive and negative scores of each atom, SMODELS’
heuristic chooses the maximum one to guarantee that it reduces the search space maxi-
mally.

The heuristic of SMODELS is a dynamic heuristic [2]: at every choice point it
recomputes the scores.

5 Available at http://www.tcs.hut.fi/Software/smodels/ .



216 Orkunt Sabuncu et al.

function smodels ������� � ��� : Candidate Model ������ 	 expand �������
if conflict ������� then

return false
else if no atom is undefined in ��� then

return true
� ��� is a stable model �

else 
 � 	 Choose an uncovered atom
if smodels ������� � 
 �
� then

return true
else

return smodels ������� ���
�
� 
 ���

end if
end if

Fig. 3. Main algorithm of SMODELS

4 Applying Criticality Notion for Answer Set Programming

Criticalities make it possible to find hard-to-achieve literals and to work on them first
during hierarchical plan finding. This will reduce the amount backtracking between the
abstraction hierarchy levels.

The same idea can also be applied to answer set programming. During the answer
set finding process, choosing the hard-to-find literals at the early choice points can
reduce the backtracking and permits the system to find an answer set quickly. There
are costs of finding literals in an answer set similar to the costs of achieving literals in a
planning problem. Knowing the costs of literals of an input logic program can be useful
for a system at the choice points. This intuition is the main motivation for the heuristic
developed in our work.

If an atom is in a stable model, there must be at least one rule that has generated
it. Every positive literal in the stable model has to be grounded. The rules that have an
atom in the head are the generators of it. A constraint rule (rules that have false in the
head, so body of it must be false for a stable model) cannot be a generator for an atom,
since they do not have an atom in the head.

The only condition for a rule to generate the literal in its head is that its body must
be true. So, if we accept the rule’s body as a precondition we can transform a rule into
a planning operator (action).6 The effect of this planning operator is the head atom. Let
all the generator rules for literal � below form a portion of a logic program.

����� � � ����� � ����� � � 	 (3)

����� � � ��� � � 	 (4)

The corresponding planning operator for rule (3) is below.
6 Lin and Reiter [14] define logic rules as planning actions in the context of defining semantics

for logic programs using situation calculus.



Using Criticalities as a Heuristic for Answer Set Programming 217

����� � � � � ��� � �
�

�����
	���
���	��
� �

� 	��
����������
�������� � � � � �����!#" �
�$
%� �
When we consider the above rules as planning actions, equations (5–7) are used for

calculating the criticality of literal � . Note that the initial criticality of � , ����������	 , is set
to 1 like all the other literals’ initial criticalities.

��� ����� � � ����	 � ��� � �����
� 	 � ��� � ��� � ��� �

� 	 (5)

��� ����� � � ����	 � ��� � �����
� 	 (6)�

����������	 �
�

��� � � ��	
� �

��� ����� � � ����	
� �

��� ����� � � ����	 (7)

There is a term representing criticality value of a negative literal in Equation (5).
How can criticality of a non-atom be found? There are no rules that can generate a neg-
ative literal in the sense of generating positive ones. In fact negation-as-failure means
that if it is not possible to achieve an atom � , then � ��� � is assumed to be true. Consider-
ing the properties of stable model semantics, we can define the necessary conditions for
� ����� to be in the stable model as no generator rule will have a chance to generate � . The
bodies of all generator rules must be interpreted as false, so literal � ��� � is interpreted
as true. Here is the only rule generating � ��� � formed by taking all the generator rules
(3–4) of � into consideration:7

� ������� � � ��� �'& ��	 � � ����� � ����� �)(�*,+�- 	 (8)

Based on rule (8), the criticality of literal � ��� � is calculated using the following
equations:

��� ����� �)(�*,+�- ����	 � ����� � ��� �'& ��	 ��� �
� 	 � ��� � ��� � ��� �

� 	 (9)

�
��� � ��� � ����	 �

�
��� � ������� ��	

� �
��� ����� �.(�*,+�-�����	 (10)

Calculating criticality value of a negative literal is no different than calculating a
positive literal except the compound literals with disjunction. Achieving a compound
literal as a whole should be easier than achieving each one of the basic literals individ-
ually. Criticality values are monotonically decreasing and reside in the interval [0,1].8

Calculating the criticality of compound literal � � ��� �/& ��	 by the equation ����� � ��� �0&
��	 ����	 � ��� � ��� � ����	'1 ��� � ����	 is a meaningful approximation, since the multiplication
of two or more real numbers in the interval [0,1] is always smaller than each number or
equal to the smallest one at least.

7 Body of the rule (8) is the inverse of the completion of literal 2 [15]. We can see the inverse of
the completion of literal 3 as a generator rule for literal

�
� ��3 .

8 Actually, if the initial criticality value 254 is 1, then all the criticalities will be in this interval.



218 Orkunt Sabuncu et al.

Using the above equations, we can calculate criticalities of all the literals of a logic
program if all the rules in the program are normal. But SMODELS enlarges the syntax
and semantics of logic programs by extended rules [3]. These extended rules are choice,
cardinality, and weight rules. Our system, CSMODELS, supports choice rules, but not
cardinality or weight rules.

� ��� ��� � � ��� � (11)

Rule (11) is a choice rule. A choice rule’s head may not be true although its body is
satisfied by the model unlike normal rules. One can rewrite the choice rule using only
normal rules. But this translation introduces new atoms to the input program [3]. Choice
rule (11) can be rewritten as two rules:

��� � ��� � ��� � � � �����
� ��� � ������� � � � ����� (12)

The atom c a is a newly introduced atom. By treating choice rules as if two normal
rules of the form (12), we can handle choice rules for criticality calculations. In this way
we do not enlarge the program. Answer sets in the output do not contain the introduced
atoms, since they are only used for criticality calculations.

5 CSMODELS (Criticality SMODELS)

CSMODELS uses criticalities as a heuristic and is based on the SMODELS system. It
implements the method of applying criticality calculation to logic programs of SMOD-
ELS described in Sect. 4. Implementation details of CSMODELS can be found in [16].
The main algorithm is the same as that of SMODELS except the parts related to the
choice points.

CSMODELS calculates the criticality values at the first choice point. Unlike SMOD-
ELS, CSMODELS’ heuristic is not dynamic. So, the same heuristic scores calculated at
the first choice point are used at all the other choice points. At the first choice point, the
candidate model at hand corresponds to a well-founded model (WFM) of the program.
WFM covers some of the atoms of the input program, so there is no need to calculate
the criticality values of the already covered atoms. We set the criticality of a literal in
WFM to � , indicating that it is very easy to achieve that literal or the literal is already
achieved. Also, we set the criticality of the inverse of that literal to

�
indicating the

impossibility or difficulty of achieving the literal.9

����� ��
��
	�� � �	��

�	� �
� ����� 	 � �

��� � ��� � 	 �
�

After calculating criticality values of all uncovered literals, CSMODELS finds the
criticality heuristic scores to select a literal at the choice points. It temporarily se-
lects every uncovered literal one by one and adds them to the candidate model just
like SMODELS computes heuristic scores. Let � be an uncovered literal by the WFM,

9 Note that � is the maximum criticality that a literal can have.



Using Criticalities as a Heuristic for Answer Set Programming 219

the expansion of the model formed by adding � to WFM will probably generate new
literals that have been uncovered previously. Let these literals be

�
������� � � ��� ����� ��	 �

� ��� � � ����� � � ���
	 ��� ������� ����� � � (13)

CSMODELS finds the criticality heuristic score of literal � by the following equa-
tion:

� ������� � ��	 � ����� 	 � � � � ��� � ��� � 	�	 �
��� � 	 � � � � ��� � ��� ��	�	 � ����� �
��� � ����	 	 � � � � ���
	 	�	 �
��� � ��� ��	 � � � � ����� 	�	 �������

(14)

The purpose of the score of a literal is to approximate the difficulty of choosing that
literal at a choice point. Knowing that choosing � generates literal � , the system faces
the cost of achieving � and avoiding the generation of � ��� � when choosing � . That
is why the terms ��� � 	 and

�
� ��� � ��� � 	 are added to the score. This is done for all

the literals in
�
������� � � � � ����� ��	 . Just like SMODELS, there are positive and negative

criticality heuristic scores of an atom.
In order to limit the number of backtracking, CSMODELS selects hard-to-choose

literals first. So, the system sorts the uncovered atoms according to their heuristic scores.
The sorting criterion affects the performance of the heuristic. The main sorting criterion
of CSMODELS, which is called maxmin sorting criterion, is the same as that of SMOD-
ELS. Atoms are sorted according to minimum of their positive and negative criticality
heuristic scores in descending order. Sorting atoms according to the sum of positive
and negative heuristic scores in descending order is another criterion named maxsum
sorting criterion. Experiments showed that using maxsum helped CSMODELS to find
an answer set in time less than using maxmin for problems having many answer sets.

Fortunately, using maxsum in problems that do not have many answer sets usually
leads to conflict at the first choice point. CSMODELS first uses the maxsum crite-
rion. If it ends up with an immediate conflict, it switches back to maxmin. This causes
CSMODELS to behave identically for all problems.

6 Experimental Results

CSMODELS has been tested to find out its performance. Test problems are taken
from common application domains of answer set programming. We compare results
of CSMODELS with those of SMODELS. Since both systems take the same ground
logic program for the experiments, grounding time is the same for both.

The main measure for the tests is the duration which states how long the search for
an answer set took in CPU seconds. Another measure for comparison is the number of
choice points. This number shows how many times a system used its heuristic to find
an answer.

Tests for planning problems have been performed on a 200 MHz Pentium computer
running Linux 2.4.5; for colorability and n-queens problems a 733 MHz Pentium III
computer running Linux 2.2.19 has been used.



220 Orkunt Sabuncu et al.

Several well-known planning problems are tested. These are Towers of Hanoi, sim-
ple robot-box domain, and blocks-world planning. In addition to planning problems,
several tests of colorability and n-queens problems have been performed. If the origi-
nal logic programs for these problems have cardinality rules, they are rewritten using
normal rules without affecting the answer sets. Tables 1, 2 and 3 report the results
of CSMODELS and SMODELS for all the problem instances. The results for choice
points are shown in parentheses in tables.

Towers of Hanoi problem with 4 disks has been tested. The logic program represent-
ing the simple robot–box domain is based on the reference [6].10 For the blocks-world
planning problem, two different domain representations have been tested. One represen-
tation is taken from the reference [17] where concurrency is allowed. Three different
problem instances with 15, 17, and 19 blocks from the reference [18] are tested (rows
BW 2 (15), BW 2 (17) and BW 2 (19)).11 Another representation is the one used in ref-
erence [19]. A problem instance with 11 blocks from the same reference has been used
(row BW 1 (11)).12 Unlike the first representation, this one does not allow concurrent
moves.

Table 1. A comparison of search time (CPU seconds) and number of choice points for planning
problems

SMODELS CSMODELS
Hanoi 4.630 (12) 5.540 (8)
Robot–Box 39.940 (11) 40.800 (8)
BW 1 (11) 73.400 (7) 57.040 (5)
BW 2 (15) 38.500 (29) 37.390 (7)
BW 2 (17) 77.330 (27) 61.550 (10)
BW 2 (19) 174.660 (4111) 90.620 (6)

The results show that for small size problems like Towers of Hanoi and simple
robot-box domains, CSMODELS’ performance is almost the same as SMODELS’ per-
formance. When the sizes of the problems become larger, criticality heuristic of CSMOD-
ELS helps the system solve the problems more efficiently. This claim is supported espe-
cially by the problem instances of the blocks-world representation BW 2. By increasing
the number of blocks from 15 to 19, the performance difference between CSMODELS
and SMODELS becomes obvious. Also the reduction in the number of choice points is
consistent with the performance gains.

10 This domain is about controlling a robot to move boxes between rooms.
11 They correspond to I. Niemela’s bw-large.c, bw-large.d and bw-large.e problems, respectively

[18].
12 This problem instance corresponds to E. Erdem’s P4 [19].



Using Criticalities as a Heuristic for Answer Set Programming 221

Other than the planning domain, colorability (4-colorability problem instances are
used in experiments) and n-queens problems have been used in testing. The logic pro-
grams for these problems are based on I. Niemela’s representations.13

Table 2. A comparison of search time (CPU seconds) and number of choice points for colorability
problem

p100 p300 p600 p1000 p3000
SMODELS 0.530 (32) 3.530 (89) 12.380 (177) 35.210 (310) 305.060 (860)

CSMODELS 0.540 (38) 3.050 (79) 10.080 (162) 26.070 (235) 230.370 (787)

Table 3. A comparison of search time (CPU seconds) and number of choice points for n-queens
problem

8 � 8 18 � 18 20 � 20 22 � 22
SMODELS 0.020 (3) 1.830 (302) 9.360 (1483) 117.730 (16156)

CSMODELS 0.030 (7) 1.530 (152) 5.490 (571) 31.170 (2401)

Several tests have been carried out ranging from small size problem instances to
large sized ones for colorability and n-queens. Results show that CSMODELS is more
efficient than SMODELS for colorability and n-queens problems. For larger sized prob-
lem instances, the performance gains obtained by CSMODELS are more significant.

7 Conclusion

Answer set programming systems utilize some heuristics to compute answer sets. Heuris-
tics affect the search path that the system explores within the entire search space. As
some paths lead to efficient solutions and some not, heuristics are one of the key ingre-
dients influencing the performance of a system.

In our work, a new heuristic for answer set programming has been developed. The
resulting system called CSMODELS uses this new heuristic. The main insight of the
heuristic comes from hierarchical planning. Criticality, which is introduced for generat-
ing abstraction hierarchies, is applied for answer set programming in the new heuristic.
The experimental results indicate that CSMODELS outperforms SMODELS in terms
of efficiency. The performance difference becomes more significant when the problem
size gets larger. Generally, the results show that this new heuristic is promising for an-
swer set programming.

13 The logic program for n-queens problem is actually from [17]. The one for colorability prob-
lem is adapted from [18] by rewriting choice rules.



222 Orkunt Sabuncu et al.

The choice rules from the extended rules of SMODELS’ new versions are supported
by CSMODELS. However, cardinality and weight rules are not supported. Rewriting
cardinality and weight rules using normal rules lead to an exponential growth in the
number of rules. Handling cardinality and weight rules in CSMODELS is a topic for
future work.

Heuristics for answer set programming are similar to the heuristics developed for
satisfiability solvers. Although there is a substantial amount of work done for the lat-
ter, there is not much for the former [2]. New heuristics will help systems to be more
efficient and make answer set programming more applicable.

References

1. V. Lifschitz. Answer set planning. In International Conference on Logic Programming,
pages 23–37, 1999.

2. W. Faber, N. Leone, and G. Pfeifer. A comparison of heuristics for answer set programming.
In Proc. of the 5th Dutch-German Workshop on Nonmonotonic Reasoning Techniques and
their Applications (DGNMR 2001), pages 64–75, 2001.

3. P. Simons. Extending and implementing the stable model semantics. Research Report 58,
Helsinki University of Technology, Helsinki, Finland, 2000.

4. A. Bundy, F. Giunchiglia, R. Sebastiani, and T. Walsh. Calculating criticalities. Artificial
Intelligence, 88(1-2):39–67, 1996.

5. F. Giunchiglia. Using ABSTRIPS abstractions – where do we stand? Technical Report
9607-10, IRST, Trento, Italy, 1996.

6. C. A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence,
68(2):243–302, 1994.

7. F. Giunchiglia, A. Villafiorita, and T. Walsh. Theories of abstraction. AI Communications,
10(3–4):167–176, 1997.

8. C. A. Knoblock. Abstracting the Tower of Hanoi. In Working Notes of AAAI-90 Workshop
on Automatic Generation of Approximations and Abstractions, pages 13–23, 1990.

9. D. E. Smith and M. A. Peot. A critical look at Knoblock’s hierarchy mechanism. In Proc. of
1st International conference Artificial Intelligence Planning Systems (AIPS-92), pages 307–
308, 1992.

10. C. Backstrom and P. Jonsson. Planning with abstraction hierarchies can be exponentially
less efficient. In Proc. of the 14th International Joint Conference on Artificial Intelligence,
pages 1599–1604, 1995.

11. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski and
K. Bowen, editors, Proceedings of the 5th International Conference on Logic Programming,
pages 1070–1080. The MIT Press, 1988.

12. T. Syrjanen. LPARSE 1.0 user’s manual. Available at
http://www.tcs.hut.fi/Software/smodels/lparse.ps.

13. A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic pro-
grams. Journal of the ACM, 38(3):620–650, 1991.

14. F. Lin and R. Reiter. Rules as actions: A situation calculus semantics for logic programs.
Journal of Logic Programming, 31(1-3):299–330, 1997.

15. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293–322. Plenum Press, 1978.

16. O. Sabuncu. Using criticalities as a heuristic for answer set programming. MS Thesis,
Middle East Technical University, Department of Computer Engineering, Ankara, Turkey,
2002.



Using Criticalities as a Heuristic for Answer Set Programming 223

17. I. Niemela and M. Trunszczynski. Answer-set programming: a declarative knowledge rep-
resentation paradigm. In Lecture notes of ESSLLI 2001 Summer School, 2001.

18. I. Niemela. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

19. E. Erdem. Applications of logic programming to planning: Computational experiments.
Unpublished draft, http://www.cs.utexas.edu/users/esra/papers.html, 1999.


