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Abstract 

This paper presents initial research into a 
framework (specification and execution model) 
for inference, prediction, and decision making 
with uncertain events in active systems. This 
work is motivated by the observation that in 
many cases, there is a gap between the reported 
events that are used as a direct input to an active 
system, and the actual events upon which an 
active system must act. This paper motivates the 
work, surveys other efforts in this area, and 
presents preliminary ideas for both specification 
and execution model. 

1. Introduction 
In recent years, there is an increased need for the use of 
active systems (e.g. active database systems, 
publish/subscribe, etc.) - systems that are required to act 
automatically based on events, i.e. changes in the 
environment. Such automatic actions can be either 
reactive (responding to past actual changes) or proactive 
(intended to prevent possible predicted changes).  

A central issue in active systems is the ability to 
bridge the gap between the events reported directly to the 
system (event notification) and all of the actual real-life 
events whose occurrence must either be predicted or 
inferred, based on these event notifications. Moreover, in 
cases where the occurrence of past events must be 
inferred, this inference cannot always be carried out in a 
deterministic manner. Some examples of this are shown in 
figure 1. 

There are a variety of tools that have been constructed 
to provide a work environment for event driven 
applications. However, most of these contemporary tools 
can react only to the occurrence of a single event, and 
therefore are based on the implicit assumptions that (a) for 

all events of interest, an event notification is generated, 
and (b) that these event notifications have no uncertainty 
associated with them. In many applications (including the 
examples shown in figure 1), it is necessary to be able to 
infer or predict the likelihood that a certain event has 
either occurred in the past, or will occur in the future. 
Moreover, this inference and prediction should be carried 
out based on a (possibly complex) pattern over the history 
of event notifications that have reached the system. 
Additionally, due to the uncertainty associated with the 
event occurrence, the decision of the active system 
whether to take an action cannot be based on a complete 
knowledge of whether the event has occurred or not, but 
must be based on the likelihood of the event occurrence. 
Thus, there is a gap between applications’ requirements 
and the capabilities of supporting tools, resulting in 
excessive work, or inaccurate results. 
• An active system intended to manage an eCommerce site 

must notify a CRM system whenever the event 
dissatisfiedCustomer has occurred, i.e., whether poor 
response times have caused the customer to become 
dissatisfied. However, the only event notifications 
generated are notifications regarding the response time the 
customer has received in each transaction. Therefore, the 
likelihood of a dissatisfiedCustomer event having occurred 
for a specific customer must be inferred based on the 
number, frequency and severity of events in which the 
response time for this customer was poor. 

• Continuing the previous case, it may be desirable to 
enhance the active system so as to prevent a customer from 
becoming dissatisfied. In order to carry this out, the active 
system must decide when to take some action to prevent 
future customer dissatisfaction. This requires that the 
likelihood of a future customerDissatisfied event will be 
calculated from the history of event notifications regarding 
the customer’s response times. 

Figure 1 – Uncertain event inference and prediction 
examples 
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Past efforts have partially bridged this gap by 
providing a mechanism for the definition of composite 
events. Such mechanisms allow the deterministic 
inference of events based on complex temporal predicates 
on event notification history. However, contemporary 
active systems offer little assistance in managing event 
uncertainty. In addition, to the best of our knowledge, 
there are no existing works that attempt to define a 
framework to enable the inference or prediction of events 
when uncertainty is involved, or to enable automatic 
decisions regarding actions based on uncertain inference 
or prediction. Such a framework would have to satisfy the 
following requirements: 
1. Backward compatibility: Satisfying all 

requirements of existing composite event 
systems, to allow both deterministic and 
uncertain inference of events to be carried out. 
These requirements include: the ability to treat 
an event as a complex data type, taking into 
account that inference of events may be of 
interest only in specific, pre-defined temporal 
intervals, and that inference must be based on 
complex temporal predicates. 

2. Inference mechanism: The ability to efficiently 
infer, at each point in time, the likelihood of 
event occurrence, based on the history of event 
notifications. This calculation has to take into 
account all relevant event notifications, the exact 
times in which these relevant events took place, 
and the data associated with these event 
notifications. 

3. Automatic decision making regarding past 
events: A framework for deciding efficiently 
whether to take reactive actions, i.e., the ability 
to decide whether the likelihood that an event 
has occurred justifies carrying out an action 
associated with this event. 

4. Prediction: The ability to predict events 
efficiently, i.e., decide the likelihood of a future 
event occurrence, as well as the time frame in 
which it will occur. This value must be 
constantly updated as a result of event 
notifications that reach the active system. 

5. Proactiveness: A framework for efficient 
decisions about the triggering of proactive 
actions, i.e., deciding on the best timing to take 
an action in order to prevent a future event from 
occurring.  

The purpose of the research presented in this paper, is 
to define such a general specification and execution 
model, both for the inference of uncertain events, and for 
automatically deciding whether to take an action based on 
this inference. In section 2, we review previous relevant 
work; in section 3, we outline the proposed solution and 
the results achieved so far. We conclude in section 4. 

 

2.   Related work 
As mentioned in the introduction, contemporary active 
systems offer little assistance for managing event 
uncertainty. However, there are two main types of works, 
which are relevant to this topic: composite event systems 
and temporal extensions of Bayesian nets. Composite 
event systems allow the deterministic inference of events 
based on event notification history, while Bayesian 
networks are the most widely accepted method for dealing 
with uncertain inference. Both types of works will be 
reviewed in this section. 

2.1   Composite Events 

In existing works, the term composite event has been 
defined as event for which a direct notification is not 
generated, but can be inferred in a deterministic manner 
whenever some combination of primitive or composite 
events occurs. The possible combinations are defined 
using a set of operators that constitute an event algebra. 

Works regarding composite events include both a 
meta-model for the specification of composite events in 
active databases [11], which defines three independent 
dimensions for the definition of composite event systems, 
and several specifications of composite event systems. 
Examples of composite event specifications include: ODE 
[5], an active object oriented database that supports the 
specification and detection of composite events and 
Snoop [4], an expressive event specification language for 
object oriented databases. However, the most expressive 
and general event specification model, to the best of our 
knowledge, is the Situation Manager Rule Language [1], 
which has the following features: A semantic event 
model, which defines a set of semantic relationships 
between events; a definition of a time interval, called 
lifespan, during which event composition is of interest; 
partitioning - a mechanism by which semantically related 
events are grouped together; and a situation – a definition 
of a composite event, which is composed of a lifespan, 
relevant event instances and a complex temporal predicate 
over these event instances. 

None of the existing specifications, except for the 
Situation Manager Rule Language, take into account the 
possibility that an uncertainty measure may be associated 
with an event. In the Situation Manager Rule Language, 
an event may indeed have an uncertainty measure 
associated with it. However, there is no specification of 
how this uncertainty is calculated or propagated, the 
semantics of this uncertainty measure are not defined, and 
there is no framework for deciding whether to carry out 
an action based on the uncertainty measure of an event. 

2.2   Bayesian networks and their temporal extensions 

The most widely used methods for uncertain inference are 
based on Bayesian Networks (BNs) [9]– which consist 
both of a graphical representation of the joint probability 



distribution on the random variables (RVs) upon which 
conclusions must be drawn, and an inference algorithm 
based on this representation. 

However, BNs were not designed to explicitly model 
temporal aspects. Therefore, several temporal extensions 
of Bayesian networks were defined. These include 
continuous temporal extensions (continuous time nets [6]), 
discrete temporal extensions (Dynamic belief networks [7], 
[8] and Modifiable Temporal Belief Networks [2]), and 
interval based temporal extensions (Temporal nodes 
Bayesian networks [3] and Probabilistic temporal 
networks [10]). 

In general, all the above extensions suffer from several 
shortcomings that render them unsuitable to be the sole 
means for the representation and inference of uncertain 
events: They are able to cope only with cases in which the 
Bayesian network is static; the predicate representation is 
implicit, rather than explicit, and therefore inefficient; 
they do not offer any formal results regarding 
expressiveness capabilities for complex temporal 
predicates; and each node in the graph is a simple 
variable, rather than a complex data type. 

3.   Proposed Solution 
The research goal is to define a language and an 
execution model both for the inference of uncertain 
events, and for automatically deciding whether to take an 
action based on this inference, which satisfies all of the 
requirements detailed in the introduction. The research 
methodology consists of the following: 
• Review several case studies of active systems (e.g. 

previous work, active applications) to identify 
requirements for the specification. 

• Define a set of languages for specifying a set of rules, 
which can be used for the probabilistic inference of 
events.  

• Define a specific language, belonging to the above 
set of languages. 

• Define an execution mechanism (pseudo-code 
algorithms) by which uncertain inference can be 
carried out, based on a set of statements expressed in 
the above language. 

• Define a decision making framework that can be used 
for deciding when to carry out reactive actions. 

• Extend the specification language, execution 
mechanism, and decision making framework to 
handle prediction. 

3.1 Case study – eTrading web site 

An eTrading web site is a web site in which customers 
can buy and sell stocks, check their portfolio and receive 
information regarding the current price of any stock. This 
site is required to react automatically to the occurrence of 
events such as usage of inside information (illegal trading 
events) and customers becoming dissatisfied (CRM 

related events), and therefore can be classified as an 
active system. 

The explicit event notifications the site receives are 
either generated as a result of customers’ web requests, or 
as a result of changes in the market (e.g. stock price 
changes).  The information contained in each such event 
notification is as follows:  
1. For each web request event, the associated event 

notification contains the following information: The 
ID of the customer for the request and the URL of the 
request. In addition, for each request that is either 
purchase or sale of stock, the purchase/sale amount 
associated with the request and the stock ticker are 
also included. 

2. For each change in stock price, the stock ticker and 
the new price are included in the event notification. 

An example showing the need for uncertain event 
inference in this system appears in Figure 2. 

An event that has to be recognized by this active system is 
the usage of inside information. Such an event cannot be 
determined to have occurred with absolute certainty from the 
explicit event notifications and their associated information. 
However, there is a high likelihood that such an event has 
occurred if a large purchase of a stock took place shortly 
before a significant price rise of the same stock. 
Figure 2 – Example of requirement for uncertain event 

inference 

3.2  Specification requirements from a general 
framework 

Any general framework for the inference of uncertain 
events must be able to take into account the number and 
specific occurrence of relevant event notifications. Event 
notifications relevant to a certain event class e are defined 
as the set of events  whose occurrence can serve 
as direct evidence to the occurrence of e. In addition, such 
a framework has to be able to take into account the data 
associated with each event notification, and the time 
points at which the events occurred, as well as the current 
point in time. 

1, , ne … e

One of the events which should be recognized in the 
eTrading site is the concentrated effort of a group of 
customers to drive up the stock price by rapid, high volume 
purchases of a specific stock. In order to decide whether it is 
likely that such an attempt is being made, the number of 
purchase events, the volume of purchases and the time frame 
in which the purchases were made must all be taken into 
account. Customers that purchased the suspected stocks at 
low volumes are probably not taking part in driving up the 
stock price. Also, many high volume purchases over a long 
period of time are most likely not an indication of illegal 
activities. 

Figure 3 – Requirements from a general framework example 



3.3    Format of a language for uncertain event 
inference 

The specific language for uncertain event inference 
belongs to a set of logic like languages. This set of 
languages contains all languages, L such that a statement 
in L is constructed from the following elements: 
•  – a set of logical statements defined over a 

set of event notification instances. 
LP

• AP  – a set of logical statements defined over the 
data associated with a set of event notification 
instances. 

•  – a set of logical statements defined over the 
time occurrences of a set of event notification 
instances. 

TP

•   - a set of functions over the attributes of a 
set of event notification instances. 

AF

•   - a set of functions over the time points of a 
set of event notification instances. 

tF

Let  be a set of event instances relevant to 
the inference of event e. A statement in such a language, 
enabling the inference of event , is specified by a 
function  defined as:  

if 
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 and being the time 
point in which the last (in chronological order) of the 
events  occurred. The semantics of is as 

follows: for each time point t,  is the conditional 
probability that event e is true at time t given that the 
event instances  occurred, and that the 

predicates 

1, , ne e…

L
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1, ,e …
p , Ap  and Tp  hold over these event 

instances. 
As the goal is to create a language that will have the 

capabilities of state of the art composite event systems, 
this language will be an extension of the Situation 
Manager Rule Language ([1]), and will have all the 
predicates and specification capabilities of that language. 
The exact temporal model handled by this language is yet 
to be defined, and will probably be based on a discrete 
temporal model. In addition, the definition of the 
language itself will be based on the following general 
attributes: 
1. The logical statements over the event instances, 

,  will include all the predicates defined in 
[1], and will be enhanced to enable predicates 
regarding the number of events of each type. An 
example of a possible statement is ‘The number 

of events of either type e  or e  is between 10 
to 15.’ 

LP

1 2

2. The logical statements over time points of 
event instances ( ) and event instances 

attributes (
TP

AP ) will enable the specification of 
logical statements regarding the possible 
ranges of values of some set of functions. 
Possible statements over the time points are: 
‘all the events happened within 20 seconds’, 
‘the time difference between two events is 
more than 30 minutes’, and ‘the time from the 
occurrence of the first event to the last event is 
exactly 20 milliseconds’. Similar statements 
can be defined on attributes. 

3. The function  is a step function, i.e., a 
finite piecewise constant function. 

( )eF t

A possible addition to this model is the concept of a 
state of knowledge regarding the inference of each 
individual event. This state may allow encapsulating more 
succinctly the knowledge regarding the event histories up 
to a certain point in time. 

3.4   Execution model for uncertain inference of past 
events 

The execution model for enabling the uncertain inference 
of events for the specific language defined in the previous 
section will be based on the following principles. 
1. A temporal extension of Bayesian networks (based 

on the extensions reviewed) will be chosen. 
Currently, the most promising approach seems to be 
the DBN extension, possibly enhanced to include 
interval-based temporal semantics. 

2. An algorithm transforming a set of sentences into 
this representation will be designed. 

3. Based on the above network creation algorithm, an 
efficient algorithm for recalculating the event 
probabilities as time passes and upon the arrival of 
event notifications will be designed. In order to carry 
this out, a temporally extended Bayesian network 
will be automatically created and dynamically 
updated according to the arrival of event 
notifications. 

4. The execution model will enable the calculation of 
the attribute values of the inferred event in addition 
to the probabilities of the occurrence of events. 

3.5 Action decision framework 

The most widely accepted paradigm for uncertainty-based 
decision making is utility theory. Therefore, we plan on 
using a utility theory based decision-making model. This 
model will be defined according to the following 
principles:  



1. With each event, a corrective action can be 
associated. 

2. For each action, the following important quantities 
must be measured: A quantity q1 detailing the 
damage if the action is not taken even though the 
event occurred, a quantity q2 detailing the cost if the 
action is taken, a quantity q3 detailing the damage if 
the action is taken but the event does not occur, a 
compensating quality q4, mitigating some of the 
damage caused by taking the action even though the 
event did not take place, and a quantity q5, which is 
the cost of taking the mitigating action. 

In the case of usage of inside information, introduced in 
Figure 2, a fine is to be paid if inside trading was carried out 
and the eTrading site did not intervene – this is q1. The 
action that should be carried out in case of the detection of 
inside information usage is to shut down the trading account 
of any customer engaged in inside trading. Taking this action 
has a cost associated with it – this is q2. It is possible that 
trading using inside information did not take place, yet the 
site decided to shut down the customer’s account. In this 
case, the site may be able to compensate by offering the 
customer special deals (q4), but this may still cause some 
bad faith and result in loss of income from this customer. 
The cost of carrying out this compensating action is q5. 
Figure 4 – Automatic decision making quantities example 

3.6    Extending the model for prediction 

We would like to enhance the framework for handling the 
prediction of uncertain events, and for taking proactive 
actions.  

For prediction, further rules are needed to specify how 
likely the occurrence of events in the past are to cause the 
occurrence of other events in the future. To allow for such 
an extension, we expect the action framework to be 
extended significantly. An example of a necessary 
extension is that for each action intended to prevent an 
event, a measure of how likely the action is to prevent the 
event from occurring will have to be added to the model. 
This measure of likelihood may also be time dependant. 

A customer has constantly received poor response times 
while using the eTrading site in the past week. The next 
time that she wishes to purchase stock will be next month. 
However, due to the poor response times, during this time, 
the customer may become dissatisfied and leave. 
One possibility is to upgrade the customer to a higher 
service level, guaranteeing better response times for the 
next interaction, at some expanse. However, the closer that 
this action is taken to the last interaction with the site, the 
higher the probability that this customer will remain at the 
site. Carrying out this action after the customer has moved 
to the competitor will probably have no effect. 

Figure 5 – Example of requirement for uncertain event 
inference 

4.   Conclusion 
In order to bridge the gap between events that are reported 
to an active system and the actual events upon which an 
active system must act, this research proposes a 
framework combining uncertain event inference, 
automatic decision making capabilities, and predictive 
and proactive capabilities. This framework is unique, for 
the following reasons: 
1. To the best of our knowledge, there are no works 

that combine the powerful semantics of 
contemporary composite event systems with 
uncertain event inference in the context of active 
systems, addressing formally the complex issues 
arising in these cases. 

2. The above unique combination will be further 
enhanced to include automatic decision making 
capabilities, and will also attempt to address the 
prediction of events and a decision framework 
for proactive actions in the context of active 
systems. 
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