
Modeling Adaptive Hypermedia
with an Object-Oriented Approach and XML

Mario Cannataro1, Alfredo Cuzzocrea1,2 Carlo Mastroianni1,
Riccardo Ortale1,2, and Andrea Pugliese1,2

1 ISI-CNR, Via P.Bucci, Rende, Italy
2 DEIS-Università della Calabria

Abstract. This work presents an Application Domain model for Adaptive Hypermedia Systems and
an architecture for its support. For the description of the high-level structure of the application domain
we propose an object-oriented model based on the class diagrams of the Unified Modeling Language,
extended with (i) a graph-based formalism for capturing navigational properties of the hypermedia
and (ii) a logic-based formalism for expressing further semantic properties of the domain. The model
makes use of XML for the description of metadata about basic information fragments and “neutral”
pages to be adapted. Moreover, we propose a three-dimensional approach to model different aspects
of the adaptation model, based on different user’s characteristics: an adaptive hypermedia is modeled
with respect to such dimensions, and a view over it corresponds to each potential position of the user
in the “adaptation space”. In particular, a rule-based method is used to determine the generation and
deliver process that best fits technological constraints.

1 Introduction

In hypertext-based multimedia systems, the personalization of presentations and contents (i.e.
their adaptation to user’s requirements and goals) is becoming a major requirement. Application
fields where content personalization is useful are manifold; they comprise on-line advertising, direct
web-marketing, electronic commerce, on-line learning and teaching, etc. The need for adaptation
arises from different aspects of the interaction between users and hypermedia systems. User classes
to be dealt with are increasingly heterogeneous due to different interests and goals, world-wide
deployment of information and services, etc. Furthermore, nowadays hypermedia systems must be
made accessible from different user’s terminals, through different kinds of networks and so on.

To face some of these problems, in the last years the concepts of user model-based adaptive
systems and hypermedia user interfaces have come together in the Adaptive Hypermedia (AH)
research theme [1, 5, 4]. The basic components of adaptive hypermedia systems are (i) the Appli-
cation Domain Model, used to describe the hypermedia basic contents and their organization to
depict more abstract concepts, (ii) the User Model, which attempts to describe some user’s char-
acteristics and his/her expectations in the browsing of hypermedia, and (iii) the Adaptation Model
that describes how to adapt contents, i.e. how to the manipulate basic information fragments and
the links. More recently, the capability to deliver a certain content to different kind of terminals,
i.e. the support of multi-channel accessible web systems, is becoming an important requirement.
To efficiently allow the realization of user-adaptable content and presentation, a modular and
scalable approach to describe and support the adaptation process must be adopted. A number
of interesting models, architectures and methodologies have been developed in the last years for
describing and supporting (adaptive) hypermedia systems [11, 10, 14, 2, 8, 13, 12, 9].

In this paper we present a model for Adaptive Hypermedia and a flexible architecture for its
support. Our work is specifically concerned with a complete and flexible data-centric support of
adaptation; the proposed model has in fact a pervasive orientation towards such issues, typically
not crucial in hypermedia models. We are intended to focus on (i) the description of the structure
and contents of an Adaptive Hypermedia in such a way it is possible to point out the components

35

on which to perform adaptation (the what), and our belief is that the most promising approach in
modeling the application domain is data-centric (in fact many recent researches employ well-known
database modeling techniques); (ii) a simple representation of the logic of the adaptation process,
distinguishing between adaptation driven by user needs and adaptation driven by technological
constraints (the how); (iii) the support of a wide range of adaptation sources.

The logical structure and contents of an adaptive hypermedia are described along two different
layers. The lower layer aim is to define the content of XML pages and the associated semantics
(using an object-oriented model) and navigational features of the hypermedia (with a directed
graph model). The upper layer describes the structure of the hypermedia as a set of views asso-
ciated to groups of users (i.e. stereotype profiles) and some semantic relationships among profiles
(using logical rules). Finally, the adaptation model is based on a multidimensional approach: each
part of the hypermedia is described along three different adaptivity dimensions, each related to
a different aspect of user’s characteristics (behavior, used technology and external environment).
A view over the Application Domain corresponds to each possible position of the user in the
adaptation space. The XML pages are independent from such position, and the final pages (e.g.
HTML, WML, etc.) to be delivered are obtained through a transformation that is carried out in
two distinct phases, the first one driven by the user’s profile and environmental conditions, and
the second one driven by technological aspects.

2 Adaptive Hypermedia Modeling

In our approach to the modeling of adaptive hypermedia we chose to adopt the classical Object-
Oriented paradigm, since it permits a complete high-level description of concepts. Furthermore,
we chose to adopt XML as the basic formalism due to its flexibility and data-centric orientation.
In fact, XML makes it possible to elegantly describe data access and dynamic data composition
functions, allowing the use of pre-existing multimedia basic data (e.g. stored in relational databases
and/or file systems) and the description of contents in a completely terminal-independent way.

We model the (heterogeneous) data sources by means of XML metadescriptions (Sec. 2.2). The
basic information fragments are extracted from data sources and used to compose descriptions of
pages which are “neutral” with respect to the user’s characteristics and preferences; such pages are
called Presentation Descriptions (PD). The PDs are organized in a directed graph for navigational
aspects, and in an object-oriented structure for semantic purposes in the Description Layer (Sec.
2.3), while knowledge-related concepts (topics) are associated to PDs and profiles in the Logical
Layer (Sec. 2.4). The transformation from the PDs to the delivered final pages is carried out on
the basis of the position of the user in an adaptation space (Sec. 2.1). The process is performed in
two phases: in the first phase the PD is instantiated with respect to the environmental and user
dimension and a “technological independent” PD is generated. In the second phase (Sec. 2.5) the
PD is instantiated with respect to the technology dimension.

2.1 Adaptation Space

In our proposal the application domain is modeled along three abstract orthogonal adaptivity
dimensions:

– User’s behavior (browsing activity, preferences, etc.);
– External environment (time-spatial location, language, socio-political issues, etc.);
– Technology (user’s terminal, client/server processing power, kind of network, etc).

The position of the user in the adaptation space can be denoted by a tuple of the form [B,E, T].
The B value captures the user’s profile; the E and T values respectively identify environmental

36

location and used technologies. The AHS monitors the different possible parameters that can
affect the position of the user in the adaptation space, collecting a set of values, called User,
Technological and External Variables. On the basis of such variables, the system identifies the
position of the user.

The user’s behavior and external environment dimensions mainly drive the generation of pages
content and links. Instead, the technology dimension mainly drives the adaptation of page layout
and the page generation process. For example, an e-commerce web site could show a class of
products that fits the user’s needs (deducted from his/her behavior), applying a time-dependent
price (e.g. night or day), formatting data with respect to the user terminal and sizing data with
respect to network bandwidth.

2.2 XML Metadata about Basic Information Fragments

Information fragments are the atomic elements used to build hypermedia contents; fragments are
extracted from data sources that, in the proposed model, are described by XML meta-descriptions.
The use of metadata is a key aspect for the support of multidimensional adaptation; for example,
an image could be represented using different detail levels, formats or points of view (shots),
whereas a text could be organized as a hierarchy of fragments or written in different languages.
Each fragment is associated to a different portion of the multidimensional adaptation space. By
means of meta-descriptions, data fragments of the same kind can be treated in an integrated way,
regardless of their actual sources; in the construction of pages the author refers to metadata, thus
avoiding too low-level access to fragments.

A number of XML meta-descriptions have been designed making use of XML Schemas [16].
They comprise descriptions of text (hierarchically organized), object-relational database tables,
queries versus object-relational data, queries versus XML data (expressed in XQuery [15]), video
sequences, images, XML documents and HTML documents. As an example, consider the following
meta-description of a query versus XML data, expressed in XQuery:

<xquery alias="authorsquery">

<statement>

<![CDATA[

<authors>

{for $b in document("...")/bib/book

where $b/subject = #key

return

<author>

{$b/author/name}

{$b/author/age}

</author>

}

</authors>

]]>

</statement>

<result-structure>

<value path-expression="/authors/author/name" alias="name"/>

<value path-expression="/authors/author/age" alias="age"/>

...

</result-structure>

</xquery>

In such meta-description the key elements are the statement (eventually with some parameters,
#key in the example) and a description of the resulting XML document. Specific parts of the
documents extracted by means of the above-shown query, could be described as follows:

37

<xdoc alias="book-author">

<instance alias="db" description="database authors"

location-type="xquery"

location="authorsquery(#key=databases).name"

schema="..."/>

<instance alias="comp" description="compression author"

location-type="xquery"

location="authorsquery(#key=compression).name"

schema="..."/>

</xdoc>

We emphasize that the meta-description of an XML document is abstracted with respect to
its actual source, referred by means of location attributes; furthermore, many instances of the
same document can be differentiated within the same meta-description (in the example above,
authors of books having different subjects). Complex meta-descriptions allow direct referencing
of single information fragments by means of aliases, dot-notation and parameters. For example,
book-author.db in the previous example refers to the db instance of the book-author fragment,
where db is in turn an alias for the query authorsquery(#key=database).name.

2.3 The Description Layer and the Presentation Descriptions

In the description layer the application domain is modelled as a directed graph, where nodes are
the presentation descriptions and arcs represent links. Furthermore, we apply the object-oriented
paradigm to capture the semantic relationships among the PDs: we define the PDs as objects
which are instances of predefined classes.

Presentation descriptions are composed of four sections:

– The OOStructureInfo section includes information concerning the object-oriented organiza-
tion of the domain. The interface of each class of PDs is composed of the set of ingoing and
outgoing links. Furthermore, a type is associated to each link to express its semantics, and
to define the compatibility among outgoing and ingoing links of different classes (e.g. a PD
A can be linked to another PD B if the PD A has an outgoing link whose type is the same
of the type of an ingoing link of the PD B). With regard to inheritance, a subclass inherits
the information fragments and the links of the parent classes. The OOStructureInfo section
is edited by means of a tool based on the Unified Modeling Language [17] (specifically on the
class diagram), that allows the author to design the overall PD hierarchy of the application
domain. Inside each PD, the tool automatically fills in the OOStructureInfo section, writing
the O-O relationships among the PDs.

– The AdapDimensionsInfo section contains information about the instantiation of PDs with
respect to the three adaptivity dimensions; this information describes how to extract frag-
ments on the basis of the user position in the adaptation space, and which XSL stylesheet to
apply in order to transform the PDs into the final pages to be delivered to the client. The
AdapDimensionsInfo section is generated by means of a simple XML editor, on the basis of
the author’s domain knowledge.

– The ContentLayout section contains references to the information fragments to be used to
compose the PDs.

– The AuxInfo section contains auxiliary information (e.g. data islands), which are not to be
processed by the system itself, but can be used by the client (for example, they can contain
embedded code for client applications), or by network lower layers.

In the following, we show the XML Schema structure of the OOStructureInfo section. It
includes the name of the PD class (entityName element), a set of parent classes (superEntityName

38

elements) and the set of links that define the PD interface (link elements, each with an associated
name and type).

<xs:element name = "entityName" type = "xs:string"/>

<xs:element name = "superEntityName" type = "xs:string"/>

<xs:element name = "linkName" type = "xs:string"/>

<xs:element name = "linkType" type = "xs:string"/>

<xs:attribute name = "direction" use = "required">

<xs:simpleType>

<xs:restriction base = "xs:string">

<xs:enumeration value = "in"/>

<xs:enumeration value = "out"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:element name = "link">

<xs:complexType>

<xs:sequence>

<xs:element ref = "linkName"/>

<xs:element ref = "linkType"/>

</xs:sequence>

<xs:attribute ref = "direction"/>

</xs:complexType>

</xs:element>

<xs:element name = "OOStructureInfo">

<xs:complexType>

<xs:sequence>

<xs:element ref = "entityName"/>

<xs:element ref = "superEntityName" minOccours = "0" maxOccours = "unbounded"/>

<xs:element ref = "link" minOccours = "1" maxOccours = "unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

2.4 The Logical Layer

The logical layer aim is to model the domain adaptivity with respect to stereotype user profiles.
The logical model is a set of Profile Views (PV), where each PV is a view of the overall hyperspace
domain associated to a user profile. The PV associated to the profile p includes all the PDs
accessible by the users belonging to profile p, therefore it represents the hypermedia domain and
the navigational space for that profile.

Following the two-layer definition of the application domain model, the model design is com-
posed of two design phases, operating at two different abstraction levels. The first phase is related
to the definition of the navigational directed graph: the author designs the presentation descrip-
tions and their relations as hyperlinks. In the second phase the author identifies the user profiles
and, on the basis of his/her domain knowledge, designs the PVs associated to each profile. The PV
design can be carried out incrementally: for each PD, the author determines all the user profiles
that can access it. At the end of the process, each PV is composed of all the PDs that have been
associated to the corresponding user profile.

Each PV (and consequently each associated profile) corresponds to a set of topics that repre-
sents the knowledge contained in the PV (knowledge description). More precisely, this correspon-
dence can be formally defined through a function κ(·), that can be applied to a single PD, or to
a user profile, and returns the corresponding set of topics:

– κ(·), applied to the presentation description PDi, returns the set of topics captured by PDi;

39

– κ(·), applied to the user profile p, returns the knowledge domain of p: κ(p) = ∪iκ(PDi) | PDi ∈
PVp, where PVp is the profile view associated to p.

The instantiation of a particular PD with respect to a given profile B and a given position
along the external environment dimension E can be seen as the application of a function δ that
transforms a given PD into a technology-independent XML page, called P̂D, which will be given
as input to the multichannel layer (Sec. 2.5):

δ : (PD, B,E) −→ P̂D.

Furthermore, we improve the logical description of the hypermedia structure by means of
a Semantic Precedence Operator, ←, which is used to define constrains about profile changes.
If applied to two knowledge domains, e.g. κ(p2) ← κ(p1), the operator points out that a user
cannot access topics related to the profile p2 until he/she has accessed some topics included in the
knowledge domain of p1 (i.e. until he accesses the PDs that capture those topics). This constraint
can be better specified by means of a semantic precedence matrix. This matrix has as many rows
as the topics of κ(p2) and as many columns as the topics of κ(p1). Each element (i, j) of the
matrix can assume a boolean value; true means that the user must visit a PD containing the
topic j of the domain κ(p1) before his/her profile can change form p1 to p2 and the topic i of
the domain κ(p2) can be accessed. So each row specifies which topic of κ(p1) a user belonging to
the profile p1 must know to change his profile to p2 by entering a particular topic of κ(p2). For
example, a semantic precedence matrix with all values equal to true means that, whatever is the
entry point to the profile p2, the user must have visited all the topics of κ(p1). An entry point of
a profile p2 is defined as a node (PD) that, when accessed through a hyperlink, allows the user to
change his profile to p2. The semantic precedence operator can be used in general logic rules; e.g.
κ(p1) ← κ(p2) ∧ (κ(p3) ∨ κ(p4)) is a rule that expresses a more complex relationship among the
profiles involved.

2.5 Adaptation Model for the Technological Dimension

The technology dimension drives the adaptation of the page layout to the client device (PC, hand-
held computer, WAP device, etc.), and the page generation method. The technology adaptation is
performed by means of a Multichannel Layer. In the following we will describe (i) the alternative
page generation methods, (ii) the technological variables, and (iii) the multichannel layer.

Page generation methods. The final pages displayed on the client device (written in HTML,
WML, etc.) are dynamically generated by performing a transformation of the P̂D using a XSL
document/program. Several XSL stylesheets can be used to transform the P̂Ds, depending on the
client device features. Moreover, three different page generation methods have been designed:

a. The page generation takes place entirely on the server. It picks out the Information Fragments,
applies the transformation using the appropriate XSL document, and then sends the page
(HTML, WML, etc.) to the client. The main drawback of this method is that the client cannot
access the XML content. As an example, if the client is an application, e.g. a workflow or a
distributed computing application, it could need to access and process the XML data.

b. Similar to the method (a), but the server sends to the client HTML (WML) pages that contain
XML data islands. These data are not processed by the server XSL processor, and are not
displayed on the client device, but can be accessed by client programs.

c. The page generation is performed entirely on the client: the server sends to the client both
the XML document and the XSL document that the client device will use to carry out the
transformation.

40

The technological variables. The technological variables are used by the multichannel layer
to adapt the presentation and the generation process to the client device. On our system we use
five groups of technological variables:

1. Variables related to the XML and XSL support on the client device;
2. Variables addressing the client device processing power (client-side XSL formatting may take

place only if the device can manage such a complex and time-consuming operation);
3. Variables related to the client device display features (resolution, dimensions, etc.);
4. Variables concerning the kind of client data usage (e.g., it is useful to know whether or not

clients need to access and process the “pure” XML data);
5. Variables related to the server processing workload.

The variables belonging to the first three groups are extracted from the device knowledge base
(shown in the next Section), while data usage variables are associated to the client (e.g. they can
be associated to the user profile), and group 5 variables are determined by the server.

The Multichannel Layer. The main components of the multichannel layer are the Device
Knowledge Base (DKB) and the Presentation Rules Executor (PRE).

The device knowledge base is a repository composed of a set of entries, each describing the
features of a specific client device. For each client request, the client device is determined according
to the data contained in the User Agent field of the request, and the corresponding device entry
is selected. Each entry is composed of variable-value pairs, where variables correspond to the
technology variables belonging to the first three groups.

The presentation rules executor determines the presentation layout and the page generation
method based on a set of rules that check the values assumed by the technological variables.
Rules are defined in an ad hoc XML syntax, and are modelled according to the well known event-
condition-action (ECA) paradigm. The following XML fragment shows a typical presentation
rule.

<rule id="1">

<conditions>

<technological-variable group="1" xml-support="yes"/>

<technological-variable group="2" processing-power="high"/>

<technological-variable group="3" display-area="small" res-value="medium"/>

<technological-variable group="4" xmldata-need="no"/>

</conditions>

<action>

<xsl-formatting value="clientside" method="c" stylesheet="AdHocStylesheet.xsl"/>

</action>

</rule>

The rule states that if the client does not need to elaborate the XML data content (xmldata-need
belonging to group 4), the client device fully supports XSL transformation (group 1 and 2 vari-
ables), and display features are appropriate for the data to visualize (group 3 variables), the
PRE chooses the page generation method c (client-side XSL formatting), and the XSL stylesheet
AdHocStylesheet.xsl.

Note that the above rule does not consider the server-side workload. Another presentation
rule may state that XSL formatting has to take place on the server side (even if the client device
supports XML and XSL) if the client does not need to access XML data, unless the server workload
exceeds a specified workload threshold.

Events of the ECA paradigm are implicitly managed by the adaptive system and correspond
to the user choice of a given PD. Conditions correspond to checks on the technological variable

41

values. Actions are performed when a logical expression (a presentation rule), composed of atomic
conditions, is evaluated. The above XML syntax can be used to compose complex presentation
rules, based on all the possible combinations of technological variable values. Actions mainly
consist of the choice of the page generation method and the choice of the most suitable XSL
stylesheet that will drive the XSL formatting.

Fig. 1. The multichannel layer.

Figure 1 shows the multichannel layer architecture. This is a logical layer that uses compo-
nents belonging to the three architectural tiers (see Section 3). The Request/Response Manager
processes client requests (coming either from a wired or a from a wireless device), and after the
generation of the P̂Ds passes both to the PRE. The PRE extracts the user-agent data from the
requests and accesses the device knowledge base to evaluate the technological variables. Then, the
PRE executes the presentation rules contained in the presentation rules repository, according to
the ECA paradigm.

The PRE chooses the page generation method and the XSL stylesheet (picking it out form the
Stylesheet Repository). In the case of client-side formatting (page generation method c), the PRE
passes both the XML data (the P̂D) and the selected stylesheet to the Request/Response manager,
which in turn sends them to the client. In the case of server-side formatting (page generation
methods a or b), the PRE activates the Data Formatting Module, which converts the XML data
according to the XSL directives, and then passes the formatted data to the Request/Response
Manager, which in turn sends it to the client.

3 An Architecture for the Support of the Proposed Model

We have designed and are currently implementing an architecture for the support of the proposed
model, comprising an authoring suite and a run-time system.

The main tasks of the authoring suite (named Java Adaptive Hypermedia Suite – JAHS) are the
following: (i) composition of the UML class diagrams; (ii) composition of the semantic precedence
logic rules; (iii) transformation of the class diagrams and semantic precedence rules into an XML
formalism; (iv) browsing of the data sources and composition of the XML metadescriptions; (v)
construction of the presentation descriptions; (vi) specification of the event-condition-action rules
for the instantiation of the PDs with respect to the technological dimension. For space reasons,
we do not further detail the authoring suite; the interested reader can refer to [6].

42

The run-time system has a three-tier architecture (Fig. 2), comprising the User, the Application
and the Data tiers. The user tier receives final pages to be presented and eventually scripts or
applets to be executed (e.g. for detecting local time, location, available bandwidth). The user’s
terminal and the terminal software (operating system, browser, etc.) are communicated by the
terminal User Agent (e.g. the browser).

Fig. 2. The run-time system architecture.

The User Modeling Component (UMC) maintains the most recent actions of the user and
evaluates them giving as a result the user’s profile. In this paper we do not address such issue,
demanding it to an external module; in our previous work we have proposed an approach in which
hypermedia links are mapped into graph edges weighted with the probability of following them,
and a probabilistic algorithm is used to estimate the user’s profile ([7]).

The Adaptive Hypermedia Application Server (AHAS) runs together with a Web Server. It
executes the following steps: (i) it communicates to the UMC the most recent choices of the user;
(ii) it extracts from the XML repository the PD to be instantiated; (iii) it extracts the basic
data fragments from the data sources on the basis of the user position; (iv) it interacts with the
modules of the multichannel layer in order to generate the final page.

The data tier comprises the Data Sources Level, the Repository Level and a Data Access
Module. The data sources level is an abstraction of the different kinds of data sources; each data
source Si is also accessed by a Wrapper software component, which generates the XML metadata
describing the data fragments stored in Si. The Repository Level is a common repository for
data provided by the Data Source Level or produced by the author. It stores (i) XML documents
including the Presentation Descriptions, metadata, Schemas, XSL stylesheets, and the active rules
shown in Sections 2 and 2.5; (ii) the UML class diagrams representing the logical structure of the
hypermedia. Finally, the data access module implements an abstract interface for accessing the
data sources and the repository levels.

43

4 Concluding Remarks

In this paper we presented a model for adaptive hypermedia systems using the object-oriented
paradigm and XML. An adaptive hypermedia is modeled considering a three-dimensional adapta-
tion space, including the user’s behavior, technology, and external environment dimensions. The
adaptation process is performed evaluating the proper position of the user in the adaptation space,
and transforming “neutral” XML pages according to that position.

We believe that the main contributions of this paper are:

– a new data-centric model to describe adaptive hypermedia specifically concerned with a flexible
and effective support of the adaptation process; the model integrates a graph-based description
of navigational properties and an object-oriented semantic description of the hypermedia, and
uses a logical formalism to model knowledge-related aspects;

– a flexible and modular architecture for the run-time support of adaptive hypermedia systems,
with particular regard to the adaptation with respect to technological aspects.

References

1. Adaptive Hypertext and Hypermedia Home Page, http://wwwis.win.tue.nl/ah/.
2. M. Bordegoni, G. Faconti, S. Feiner, M.T. Maybury, T. Rist, S. Ruggieri, P. Trahanias, and M. Wilson, “A Stan-

dard Reference Model for Intelligent Multimedia Presentation Systems”, in Computer Standards and Interfaces
18, 1997.

3. P. Brusilovsky, “Methods and techniques of adaptive hypermedia”, in User Modeling and User Adapted Interac-
tion, v.6, n.2-3, 1996.

4. P. Brusilovsky, A. Kobsa, J. Vassileva (eds.), Adaptive Hypertext and Hypermedia, Kluwer Academic Publishers,
1998.

5. P. Brusilovsky, O. Stock, C. Strapparava (eds.), Adaptive Hypermedia and Adaptive Web-Based Systems, Pro-
ceedings of the International Conference AH 2000, Trento, Italy, 2000.

6. M. Cannataro, A. Cuzzocrea, A. Pugliese, “A multidimensional approach for modelling and supporting adaptive
hypermedia systems”, Proceedings of the International Conference on Electronic Commerce and Web Technologies
(Ec-Web 2001), Munich, Germany, 2001. LNCS 2115, pp. 132-141, Springer Verlag, 2001.

7. M. Cannataro, A. Cuzzocrea, A. Pugliese, “A probabilistic approach to model adaptive hypermedia systems”,
International Workshop on Web Dynamics, in conjunction with the International Conference on Database Theory,
2001.

8. S. Ceri, P. Fraternali, A. Bongio, “Web Modelling Language (WebML): a modelling language for designing web
sites”, WWW9 Conference, 2000.

9. P. De Bra, G.J. Houben, H. Wu, “AHAM - A dexter-based reference model for adaptive hypermedia”, in Pro-
ceedings of the ACM Conference on Hypertext and Hypermedia, 1999.

10. F. Garzotto, D. Paolini, D. Schwabe, “HDM - A model-based approach to hypermedia application design”,
ACM Transactions on Information Systems, 1993.

11. F. Halasz, M. Schwartz, “The Dexter hypertext reference model”, CACM v. 37, n. 2, 1994.
12. M. F. Fernandez, D. Florescu, A. Y. Levy, D. Suciu, “Catching the boat with Strudel: experiences with a

web-site management system”, in Proceedings of SIGMOD’98, 1998.
13. G. Mecca, P. Atzeni, A. Masci, P. Merialdo, G. Sindoni, “The Araneus Web-Based Management System”, in

Exhibits Program of ACM SIGMOD ’98, 1998.
14. D. Schwabe, G. Rossi, “An object-oriented approach to Web-based applications design”, in Theory and Practice

of Object Systems, October 1998.
15. World Wide Web Consortium, The XML Query language, http://www.w3.org/XML/Query.
16. World Wide Web Consortium, The XML Schema definition language, http://www.w3.org/XML/Schema.
17. The Unified Modeling Language. http://www.uml.org.

44

