Suggestions for OWL 3*

Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton, Ohio

Abstract. With OWL 2 about to be completed, it is the right time to
start discussions on possible future modifications of OWL. We present
here a number of suggestions in order to discuss them with the OWL
user community. They encompass expressive extensions on polynomial
OWL 2 profiles, a suggestion for an OWL Rules language, and expressive
extensions for OWL DL.

1 Introduction

The OWL community has grown with breathtaking speed in the last couple of
years. The improvements coming from the transition from OWL 1 [5] to OWL
2 [10] are an important contribution to keeping the language alive and in synch
with the users. While the standardization process for OWL 2 is currently coming
to a successful conclusion, it is important that the development process does not
stop, and that discussions on how to improve the language continue.

In this paper, we present a number of suggestions for improvements to OWL
DL,! which are based on some recent work. We consider it important that such
further development is done in alignment with the design principles of OWL,
and in particular with the description logic perspective which has governed its
creation. Indeed, this heritage has been respected in the development of OWL
2, and is bringing it to a fruitful conclusion. There is no apparent reason for
straying from this path.

In particular, the following general rationales should be adhered to, as has
happened for OWL 1 and OWL 2.

— Decidability of OWL DL should be retained.

— OWL DL semantics should be based on a first-order predicate logic semantics
(and as such should, in particular, be essentially open-world and monotonic).

— Analysis of computational complexities shall govern the selection of language
features in OWL DL.

Obviously, there are other important issues, like basic compatibility with
RDF, having an XML-based syntax, backward-compatibility, etc., but we take

* This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)
under the ReaSem project.

! OWL DL has always played a special role in defining OWL — it is the basis from
which OWL Full and other variants, like OWL Lite or the OWL 2 profiles, are
developed. So in this paper we focus on OWL DL.

Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

Rinke Hoekstra

these for granted and do not consider them to be major obstacles as long as
future extensions of OWL are developed along the inherited lines of thinking.

The suggestions which we present below indeed adhere to the design ra-
tionales just laid out. They concern different aspects of the language, and are
basically independent of each other, i.e. they can be discussed separately. At the
same time, however, they are also closely related and compatible, so that it is
reasonable to discuss them together.

In Section 2, we suggest a rule-based syntax for OWL. The syntax is actually
of a hybrid nature, and allows e.g. class descriptions inside the rules. Neverthe-
less, it captures OWL with a syntax which is essentially a rule-syntax.

In Section 3, we suggest the addition of Boolean role expressions to the arse-
nal of language constructs available in OWL. We also explain which cautionary
measures need to be taken when this is done, in order to not lose decidability
and complexity properties.

In Section 4, we suggest considerably extending OWL by including the DL-
safe variable fragment of SWRL [2] together with the DL-safe fragment [8] of
SWRL.

In Section 5, we propose a tractable profile, called ELP, which encompasses
OWL 2 EL, OWL 2 RL, most of OWL 2 QL, and some expressive means which
are not contained in OWL 2. It is currently the most expressive polynomial
language which extends OWL 2 EL and OWL 2 RL, and is still relatively easy
to implement.

In Section 6, we conclude.

Obviously, we do not have the space to define all these extensions in detail,
or to discuss all aspects of them exhaustively. We thus strive to convey the
main ideas and intuitions, and refer to the indicated literature for details. In the
definitions and discussions, we will sometimes drop details, or remain a bit vague
(and thus compromise completeness of our exhibition), in order to be better able
to focus on the main arguments. We believe that this serves the discussion better
than being entirely rigorous on the formal aspects.

2 An OWL Rules Language

The alignment of rule languages with OWL (and vice versa) has been a much
(and sometimes heatedly) discussed topic. The OWL paradigm is quite different
in underlying intuition, modelling style, and expressivity than standard rule
language paradigms. Recent efforts involving OWL and rules attempt to merge
the paradigms in order to get the best of both worlds.

The advance from OWL 1 to OWL 2 indeed brings the two paradigms closer
together. In particular, a considerable variety of rules, understood as Datalog
rules with unary and binary predicates under a first-order predicate logic seman-
tics, can be translated with some effort directly into OWL 2 DL. This observation
paves the way for a rule-based syntax for OWL, which we will briefly present
below. The suggestions in this section are based on [3].

Man(z) A hasBrother(z, y) A hasChild(y, z

ThaiCurry(z

kills(z, ©

PersonCommittingSuicide(z

NutAllergic(z) A NutProduct(y

dislikes(z, z) A Dish(y) A contains™ (z,y

worksAt(z, y) A University(y) A

Asupervises(z, z) A PhDStudent(z) — professorOf(z, z)

Mouse(z) A FhasNose.TrunkLike(y) — smallerThan(z, y)

— Uncle(x)

— Jeontains.FishProduct(x)

— PersonCommittingSuicide(x)
— kills(z, x)

— dislikes(z, y)

NN N NN

— dislikes(z, y)

Fig.1. A SROZQ-Rules knowledge base.

Given any description logic D, a D-rule is a rule of the form
AN NA, — A

where A and A; are expressions of the form C(z) or R(x,y), where C are (possi-
bly non-atomic) concept expressions over D, R are role names (or role expressions
if allowed in D), and «, y are either variables or individal names (y may also be a
datatype value if this is allowed in D), and the following conditions are satisfied.

— The pattern of variables in the rule body forms a tree. This is to be under-
stood in the sense that whenever there is an expression R(z,y) with a role
R and two variables z,y in the rule body, then there is a directed edge from
z to y — hence each body gives rise to a directed graph, and the condition
states that this graph must be a tree. Note that individuals are not taken
into account when constructing the graph.? Note also that the rule body
must form a single tree.

— The first argument of A is the root of the just mentioned tree.

Semantically, SROZ Q-rules come with the straightforward meaning under a
first-order predicate logic reading, i.e., the implication arrow is read as first-order
implication, and the free variables are considered to be universally quantified.

A D-Rules knowledge base consists of a (finite) set of D-rules,® which satisfies
additional constraints, which depend on D. These constraints guarantee that
certain properties of D, e.g., decidability, are preserved.

For OWL 2 DL, these additional constraints specify regularity conditions and
restrictions on the use of non-simple roles, similarly to SROZQ(D) — we omit
the details. Examples for SROZ Q-rules are given in Figure 1.

The beauty of SROZ Q-rules lies in the fact that any SROZ Q-Rules knowl-
edge base can be transformed into a SROZQ knowlege base — and that the trans-
formation algorithm is polynomial. This means that SROZ Q-rules are nothing

2 The exact definition is a bit more complicated; see [3].
3 Notice the difference in spelling: uppercase vs. lowercase.

J(testifiesAgainst M relativeOf). T C ~UnderOath
hasParent C hasFather LI hasMother
hasDaughter C hasChild M —hasSon

Fig. 2. Examples for Boolean role constructors

more or less than a sophisticated kind of syntactic sugar for SROZ Q. It is easy
to see that, in fact, any SROZQ-axiom can also be written as a SROZQ-rule,
so that modelling in SROZQ can be done entirely within the SROZQ-Rules
paradigm.

In order to be a useful language, it is certainly important to develop con-
venient web-enabled syntaxes. Such a syntax could be based on the Rule In-
terchange Format (RIF) [1], for example, which is currently in the final stages
of becoming a W3C Recommendation. A SROZQ-Rules syntax could also be
defined as a straightforward extension of the OWL 2 Functional Style Syntax
[7].

Proposal: OWL 3 should have a rule-based syntax based on Description Logic
Rules.

3 Boolean Role Constructors

Boolean role constructors, i.e., conjunction, disjunction, and negation for roles,
can be added to description logics around OWL under certain restrictions, with-
out compromising language complexity. Since they provide additional modelling
features which are clearly useful in the right circumstances (see Figure 2), there
is no strong reason why they shouldn’t be added to OWL. The following sum-
marizes results from [9].

All Boolean role constructors can be added to SROZQ without compromis-
ing its computational complexity, as long as the constructors involve only simple
roles — the resulting description logic is denoted by SROZQBs.

Likewise, OWL 2 EL can be extended with role conjunction without losing
polynomial complexity of the language. Regularity requirements coming from
SROIQ can be dropped (they are also not needed for polynomiality of the
description logic ££7", which is well-known). Likewise, the extension of OWL
2 RL with role conjunctions is still polynomial.

While the complexity results just given are favorable, it has to be noted that
suitable algorithms for reasoning with SROZQBg still need to be developed.
Algorithms for the respective extensions of OWL 2 EL and OWL 2 RL, however,
can easily be obtained by adjusting known algorithms for these languages — see
also Section 5.

Proposal: OWL 3 should allow the use of Boolean role constructors wherever
appropriate.

4 DL-safe Variable SWRL

SWRL [2] is a very natural extension for description logics with first-order pred-
icate logic rules. Despite being a W3C Member Submission rather than a W3C
Recommendation, it has achieved an extremely high visibility. However, in its
original form, SWRL is undecidable, i.e., it does not closely follow the design
guidelines we have listed in the introduction.

A remedy for the decidability issue is the restriction of SWRL rules to so-
called DL-safe rules [8]. Syntactically, DL-safe rules are rules of the form

AiN---NA, — A

as in Section 2, but without the requirements on tree-shapedness. Semantically,
however, they are read as first-order predicate logic rules, but with the restriction
that variables in the rules may bind only to individuals which are present in
the knowledge base.? In essence, this limits the usability of DL-safe SWRL to
applications which do not involve TBox reasoning.

It is now possible to generalize DL-safe SWRL without compromising decid-
ability. The underlying idea has been spelled out in a more limited setting in [4]
(see also Section 5), but it obviously carries over to SROZQ.

In order to understand the generalization, we need to return to SROZ Q-
rules as defined in Section 2. Recall that the tree-shapedness of the rule bodies
is essential, but that role expressions involving individuals are ignored when
checking for the tree structure.

The idea behind DL-safe variable SWRL is now to identify those variables in
rule bodies which violate the required tree structure, and to define the semantics
of the rules such that these variables may only bind to individuals present in
the knowledge base — these variables are called DL-safe variables. The other
variables are interpreted as usual under the first-order predicate logic semantics.

An alternative way to describe the same thing is to say that a rule quali-
fies as DL-safe variable SWRL if replacing all DL-safe variables in the rule by
individuals results in an allowed SROZ Q-rule.

As an example, consider the rule

C(x) A R(x,w) A S(z,y) A D(y) AT (y,w) — V(z,y),

which violates the requirement of tree-shapedness because there are two different
paths from z to w. Now, if we replace w by an individual, say o, then the resulting
rule

C(z) AN R(z,0) AN S(x,y) AN D(y) NT(y,0) — V(z,y)

4 The original definition is different, but equivalent. It required that each variable
occurred in an atom in the rule body, which is not an atom of the underlying de-
scription logic knowledge base. The usual way to achieve this is by introducing an
auxiliary class O which contains all known individuals, and adding O(x) to each rule
body, for each variable in the rule. Our definition instead employs a redefinition of
the semantics, which appears to be more natural in this case. Essentially, the two
formulations are equivalent.

is a SROZQ-rule.’? Hence, the rule
C(z) A R(z,ws) AS(z,y) AD(y) AT (y,ws) — V(z,y),

where w; is a DL-safe variable, is a DL-safe variabe SWRL rule. Note that the
other variables can still bind to elements whose existence is guaranteed by the
knowledge base but which are not present in the knowledge base as individuals,
which would not be possible if the rule were interpreted as DL-safe.

In principle, naive implementations of this language could work with multiple
instantiations of rules containing DL-safe variables, but no implementations yet
exist. In principle, they should not be much more difficult to deal with than
DL-safe SWRL rules.

Proposal: OWL 3 DL should incorporate DL-safe SWRL and DL-safe variable
SWRL.

5 Pushing The Tractable Profiles

The OWL 2 Profiles document [6] describes three designated profiles of OWL
2, known as OWL 2 EL, OWL 2 RL, and OWL 2 QL. These three languages
have been designed with different design principles in mind. They correspond
to different description logics, have different expressive features, and can be
implemented using different methods.

The three profiles have in common that they are all of polynomial complex-
ity, i.e., they are rather inexpressive languages, despite the fact that they have
already found applications. While having three polynomial profiles is fine due
to their fundamental differences, the question about maximal expressivity while
staying in polynomial time naturally comes into view.

The ELP language [4] is a language with polynomial complexity which prop-
erly contains both OWL EL and OWL RL. It also contains most of OWL QL.6
Furthermore, it still features rather simple algorithms for reasoning implemen-
tations.

More precisely, ELP has the following language features.

— It contains OWL 2 EL Rules, i.e. ££1 " -rules as defined in Section 2.7 Note
that L7 -rules cannot be converted to EL1T (i.e. OWL 2 EL) using the
algorithm which converts SROZ Q-rules to SROZQ.

5 This rule can be expressed in SROZQ by the knowledge base consisting of the three
statements
C M 3R{o} C 3R, .Self
D N 3T {o} C 3R,.Self and
Rl o S [e] RQ E V.
See [3].

5 Role inverses cannot be expressed in ELP.
T L7 rules are D-rules with D = ££1T,

NutAllergic(xz) A NutProduct(y) — dislikes(z, y)
Vegetarian(x) A FishProduct(y) — dislikes(z, y)
orderedDish(z, y) A dislikes(z, y) — Unhappy(x)
dislikes(x, vs) A Dish(y) A contains(y, vs) — dislikes(z, y)
orderedDish(z, y) — Dish(y)
ThaiCurry(z) — contains(z, peanutOil)
ThaiCurry(z) — Jcontains.FishProduct(x)
— NutProduct(peanutOil)
— NutAllergic(sebastian)
— JorderedDish.ThaiCurry(sebastian)
— Vegetarian(markus)
— JorderedDish. ThaiCurry (markus)

Fig. 3. A simple example ELP rule base about food preferences. The variable v, is
assumed to be DL-safe.

— It allows role conjunctions for simple roles.
— It allows the use of DL-safe variable SWRL rules, in the sense that replace-
ment of the safe variables by individuals in a rule must result in a valid

ELT T rule.
— General DL-safe Datalog® rules are allowed.

The last point — allowing general DL-safe Datalog rules — is a bit tricky. As
stated, it destroys polynomial complexity. However, if there is a global bound on
the number of variables allowed in Datalog rules, then polynomiality is retained.
Obviously, one would not want to enforce such a global bound; nevertheless
the result indicates that a careful and limited use of DL-safe Datalog rules in
conjunction with a polynomial description logic should not in general have a
major impact on reasoning efficiency.

Since ELP is fundamentally based on ££7 "-rules, it features rules-style mod-
elling in the sense in which SROZQ-rules provide a rules modelling paradigm
for SROIZQ. An example knowledge base can be found in Figure 3.

As for implementability, reasoning in ELP can be done by means of a poly-
nomial-time reduction to Datalog, using standard Datalog reasoners. Note that
TBox-reasoning can be emulated even if the Datalog reasoner has no native
support for this type of reasoning. The corresponding algorithm is given in [4].
An implementation is currently under way.

Proposal: OWL 3 should feature a designated polynomial profile which is as
large as possible, based on ELP.

6 Conclusions

Following the basic design principles for OWL, we made four suggestions for
OWL 3.

8 One could also simply allow DL-safe SWRL rules.

— OWL 3 should have a rule-based syntax based on Description Logic Rules.
— OWL 3 should allow the use of Boolean role constructors.

— OWL 3 should incorporate DL-safe SWRL and DL-safe variable SWRL.

— OWL 3 should feature a designated polynomial profile which is as large as

possible, based on ELP.

We are aware that these are only first suggestions, and that a few open

points remain to be addressed in research. We hope that this paper stimulates
discussion which will in the end lead to a favorable balance between application
needs and language development from first principles.

References

1.

2.

10.

H. Boley and M. Kifer, editors. RIF Framework for Logic Dialects. W3C Working
Draft, 30 July 2008. Available at http://www.w3.org/TR/rif-fld/.

I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language. W3C Member Submission, 21 May 2004.
Available at http://www.w3.org/Submission/SWRL/.

. M. Krétzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Malik Ghallab,

Constantine D. Spyropoulos, Nikos Fakotakis, and Nikos Avouris, editors, Proceed-
ings of the 18th European Conference on Artificial Intelligence, ECAI2008, pages
80-84. IOS Press, 2008.

. M. Krotzsch, S. Rudolph, and P. Hitzler. ELP: Tractable rules for OWL 2.

In A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin, and
K. Thirunarayan, editors, Proceedings of the 7th International Semantic Web Con-
ference (ISWC-08), volume 5318 of Lecture Notes in Computer Science, pages 649—
664. Springer, 2008.

. D.L. McGuinness and F. van Harmelen, editors. OWL Web Ontology Lan-

guage QOverview. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/ TR /owl-features/.

. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, edi-

tors. OWL 2 Web Ontology Language: Profiles. W3C Proposed Recommendation,
22 September 2009. Available at http://www.w3.org/TR/2009/PR-owl2-profiles-
20090922/

. B. Motik, P.F. Patel-Schneider, and B. Parsia, editors. OWL 2 Web Ontology Lan-

guage: Structural Specification and Functional-Style Syntar. W3C Candidate Rec-
ommendation, 22 September 2009. Available at http://www.w3.org/TR/2009/PR-
owl2-syntax-20090922/.

. B. Motik, U. Sattler, and R. Studer. Query-answering for OWL-DL with rules.

Journal of Web Semantics, 3(1):41-60, 2005.

. S. Rudolph, M. Krétzsch, and P. Hitzler. Cheap Boolean role constructors for

description logics. In S. Holldoble, C. Lutz, and H. Wansing, editors, Proceedings
of 11th European Conference on Logics in Artificial Intelligence (JELIA), volume
5293 of Lecture Notes in Artificial Intelligence, pages 362—374. Springer, 2008.
W3C OWL Working Group. OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Working Draft, 22 September 2009. Available at
http://www.w3.org/TR/2009/PR~owl2-overview-20090922/.

