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Abstract. In this paper we show how DAC and MAC security policies can be 
specified, implemented and validated through mutation testing using a generic 
approach. This work is based on a generic security framework originally 
designed to support RBAC and OrBAC security policies and their 
implementation in Java applications.  
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1 Introduction 

Security is becoming a critical aspect of most software systems. Modern 
programming languages, coding guidelines and source code analysis techniques are 
able to detect and avoid low-level vulnerabilities such as buffer overflow and code 
injection. However, for higher-level vulnerabilities, related for example to access 
control, because the security code is sprayed across the application, code analysis 
cannot provide a complete solution. To deal with this issue, a number of security 
languages (such as DAC [1], MAC [2, 3], RBAC [4] or OrBAC [5]) have been 
defined. They allow the specification of security policies early in the development 
cycle. These specifications are used to verify the security policies and to generate a 
significant part of the security code of the final application. Systematic code 
generation avoids a large range of mistakes in the implementation of the security 
mechanisms. Unfortunately not all of the security code can be generated in such an 
automated way. For instance, the points in the application code where the security 
code has to be integrated can only be defined manually by the application developer. 
The security of the application thus needs to be validated after this step in order to 
check that the final implementation matches the initial security model. This is 
especially critical since when dealing with security, any minor defect is likely to 
compromise the security of the whole application. 

In previous work [6], we propose a generic approach for modeling security policies 
and using mutation analysis in order to validate that the final implementation of a 
system conforms its security model. Mutation analysis consists of creating faulty 
versions of the reference application (called mutants). The efficiency of the security 
test cases is estimated with the percentage of seeded security faults they are able to 
detect. The security fault model is defined in terms of mutation operators, each of 
them specifying how to modify a security mechanism (access control rights for 



example).  The approach is based on a generic security meta-model and on mutation 
operators defined for this meta-model. The meta-model is generic in the sense that it 
allows dealing with security policies expressed in different languages. The originality 
of a meta-modeling based approach is to have the same principles (captured by the 
meta-model and the associated fault model) to test security mechanisms, whatever the 
access control model is. Initially the approach was validated using RBAC and OrBAC 
security policies.  

This paper shows how the approach can be extended to security policies expressed 
using DAC and MAC formalisms. The contribution of the paper is twofold. First it 
defines how DAC and MAC policies can be mapped to the generic security meta-
model. And second it discusses which of the generic mutation operator have to be 
used in order to properly validate the final implementation of the security policies.  

The paper is organized as follows. Section 2 summarizes the motivations and the 
approach presented in [6]. Section 3 presents the generic security meta-model. Section 
4 details how MAC security policies can be represented and mutated. Section 5 
details how DAC security policies can be represented and mutated.. Finally, section 7 
discusses some related work and conclusion. 

2 Context and Motivations  

Figure 1 summarizes the approach presented in [6]. The two goals of this approach 
are to ensure quality by construction whenever possible and to provide systematic 
testing techniques for the rest. To ensure quality by construction the idea is to use a 
security modeling language in order to formalize security policies early in the 
development cycle and model-driven techniques to check the security policy and 
generate security code. For testing the final security code and its integration with the 
application code the idea is to use a security specific test criterion based on the 
mutation of the security model. 

The first step of the approach (1) is to build the security model for the application. 
The security model is a platform independent model which captures the access control 
policies defined in the requirements of the system. This model is based on a generic 
meta-model which allows expressing any type of rule-based access-control policy. In 
practice, the meta-model allows modeling the type of rules to be used as well as the 
rules themselves. In previous work [6], we have shown how the generic meta-model 
can be used with RBAC and OrBAC policies and in this paper we detail how it can 
also support DAC and MAC security policies. 

After the platform independent security model has been validated, automated 
transformations are used to produce platform specific security code such as the PDP –
Policy Decision Point (2). A critical remaining step for implementing the security of 
the application is to connect the platform specific security code with the functional 
code of the application (3). To reduce the risk of mistake, we use AOP to make the 
security PEP introduction systematic (4). 

In the proposed approach, the validation is done by testing the final running code 
with security specific test cases. To properly validate the security of the application, 
these test cases have to cover all security features of the application. The test criteria 



we use are based on the mutation of the security model. Mutation testing is a test 
qualification techniques introduced in [7] which has been recently adapted to security 
testing [8, 9]. 

 

 
Figure 1 - Overview of the approach 

The intuition behind mutation testing applied to security is that the security tests 
are qualified if there are able to detect any elementary modification in the security 
policy of the application (mutants). The originality of the proposed approach is to 
perform mutations on the platform independent security model using generic mutation 
operators. Since the transformation and weaving of the security policy in the 
application are fully automated, the tests can be automatically executed on the 
mutants of the application. If the tests are not able to catch a mutant then new test 
cases should be added to exercise the part of the security policy which has been 
modified to create this mutant. In practice the undetected mutants provide valuable 
information to create new tests and cover all the security policies. 

In [6], a set of generic mutation operator are described and applied to RBAC and 
OrBAC security policies. In this paper we show how the same operators can be used 
to test security code based on DAC or MAC policies.  

Overall, the main benefit of the approach is to allow validating the security policy 
using verification on the security model and testing that the policy implemented in the 
application conforms to the security model. Because the testing is performed on the 
final running code it allows validation both that the PDP is according to the model but 
also that the PEP, i.e. the integration with the rest of the application, is correct. The 
following sections detail the main steps of the approach. 

Requirements

Functional
code

Platform independent
Security Model

Operational
Mapping (PEP)

Platform specific
Security code (PDP)

Running Code

Weaving

Produced using
regular Software

Engineering
techniques

• Using a P.I. security DSL
• Manageable by domain experts
• Separated from other requirements
• Supports consistency checks
• Supports security policy mutation 

• Specified by a developer
• Validated using mutation testing

Reusable
transformations

And code
generators

Automated
Weaving using

AOP techniques

Ex. XACML

Security Tests

• Produced from the requirements
and security model

• Improved and validated trough 
security mutation

(1)

(2) (3)

(4)
(5)



3 A generic framework for security policies  

The metamodel in Figure 2, displays the generic concepts for the definition of a 
security formalism and a security policy according to this formalism.  
• The POLICYTYPE, ELEMENTTYPE and RULETYPE classes are used to define a 

formalism. A POLICYTYPE defines a set of element types (ELEMENTTYPE) and a 
set of rule types (RULETYPE).  

• Based on a security formalism, it is possible to define a policy using the classes 
POLICY, RULE and PARAMETER. A POLICY is typed by a POLICYTYPE. The type of 
a policy constrains the types of parameters and rules it can contain. If the 
hierarchy property of the parameter type is true, then the parameter can contain 
children of the same type as itself. Each rule has a type that belongs to the policy 
type and a set of parameters. 

These two parts of the metamodel have to be instantiated sequentially: first define 
a formalism, then define a policies according to this formalism.  
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Figure 2 - The meta-model for rule-based security formalisms 

3.1 Instantiating the metamodel 

The two parts of the metamodel are instantiated at different moments. The classes 
that capture the concepts for a security formalism have to be instantiated first and 
define a modeling language that can be used to model a security policy for a particular 
system. The classes that capture the concepts to define a policy can only be 
instantiated if a formalism has been modeled.  

3.2 Mutation testing for security  

This section presents the fault models that we have defined at the meta-level and 
that can be executed to inject errors into security policies.  

Mutation analysis involves qualifying a set of test cases for a program under test 
(PUT) according to the rate of injected errors they can detect. The assumption is that 
if test cases can detect errors that have been injected on purpose, they will be able to 
detect actual errors in the PUT. The validity of mutation analysis greatly depends on 
the relevance of faults that are injected. Faults are modeled as mutation operators that 
reflect typical faults that developers make in a particular language or domain. Several 
works (Xie et al. [8], Le Traon et al. [9]) have proposed mutation operators to validate 
test cases for security policy.  



In this paper, we define five mutation operators for security policy testing, shown 
in Table 1. These operators are defined only in terms of the concepts present in the 
security metamodel, which means that they are independent of a specific security 
formalism. Thus, these operators can be applied to inject errors into any policy 
expressed with any formalism defined as an instance of our metamodel. The 
definition of mutation operators at this meta-level is critical for us since it allows the 
qualification of test cases with the same standard, whatever the formalism used to 
define the policy. 

Table 1- The mutation operators 

Operator Name Definition 
RTT Rule type is replaced with another one 
PPR Replaces one rule parameter with a different one 
ANR Adds a new rule 
RER Removes an existing rule 
PPD Replaces a parameter with one of its descending parameters 
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Figure 6. The mutation operator classes 

Figure 6 shows the operator classes. The mutate() method is implemented in 
Kermeta. What is important to notice in this method is that it is defined only using 
concepts defined in the metamodel. Thus, this method can generate a set of mutated 
policies, completely independently of the formalism they are defined with. We apply 
it to MAC and DAC in the next section.  

4 Applying the generic metamodel to DAC and MAC  

This section is the core contribution of the paper. We present the DAC and MAC 
models and study how adapted is the meta-model to specify these two access control 
languages. 

4.1 Generic metamodel applied to DAC 

We first detail DAC (Discretional Access Control) main concepts and show how 
our metamodel can be used for modeling this language. Finally we present examples 
of mutants we obtain when applying our mutation operators. 

 
a) Definition 
The definition of DAC (according to [10]) : 



“A means of restricting access to objects based on the identity of `subjects and/or 
groups to which they belong. The controls are ’discretionary’ in the sense that a 
subject with a certain access permission is capable of passing that permission 
(perhaps indirectly) on `to any other subject.” 

A DAC policy expresses a set of Subjects and Objects and access types. A rule is 
the combination of one Subject, one object and one access type.  In this paper, we 
consider DAC as used for file systems. Objects include files, directories or ports (or 
others) and Subjects include users or processes. The policy can be seen as a matrix 
where the values are access types. Access types include three access types (r: read, w: 
write and x: execute) and two special ones, which are control and control with 
passing ability. The control access type enables its holder to modify the users’ access 
types to that object. In addition to this, the control with passing ability enables the 
user to pass this control ability to other users. 

The access types of the DAC: 
- r : permission to read the object 
- w: permission to write 
- x:  permission to execute 
- c: control permission, the ability to modify ’r w x’ permission for this 

object. 
- cp: control and the passing ability of control. 

 
b) Modeling the DAC language 
 
Figure 5 shows the DAC modeled using our generic metamodel of Figure 2. There 

is only one type of rule. This rule contains a Subject, an access type (r,w,x,c or cp) 
and a object (a file or a port etc.). 

 
Figure 5 - The DAC formalism 

c) Mutating DAC policies 
To illustrate mutation results, we use a simple example of policy. The policy 

defines two subjects (Tim and Admin). Tim can read or execute file1, while admin 
has the right to read, write and execute the file in addition to the control and passing 
ability. 

 
  POLICY systemDAC (DAC) 
  R1 -> DACRule(Tim r file1) 
  R2 -> DACRule(Tim x file1) 
  R3 -> DACRule(Admin cp file1) 
  R4 -> DACRule(Admin r file1) 
  R5 -> DACRule(Admin w file1) 
  R6 -> DACRule(Admin x file1) 



 
Some mutation operators cannot be applied to DAC policies. In fact, the RTT and 

PPD operator cannot be used since there is only one type of rule, and no hierarchy.  
It is interesting to study the impact of the three mutation operators. For instance the 

RER operator will remove R1 resulting in a mutant policy that implies that Tim will 
no longer have the right to read “file1”. RER operator will produce 5 mutant policies, 
as there are 5 rules. The PPR operator will replace one of the rule parameter with a 
different one. One example of its mutant policies will be the one containing R1’: 

DACRule(Tim w File1) 
The mutant policy enables Tim to write in “File1” but denies him reading this file. 
The ANR operator will produce mutants by adding one new rule to policy. One 
possible mutant is the one containing this new rule: 

DACRule(Tim cp File1) 
This will result in granting Tim the control and the passing ability. 

4.2 Generic metamodel applied to MAC 

We start with presenting MAC (Mandatory Access Control) and show how it can 
be modeled using our metamodel. We then study the mutants obtained based on the 
mutation operators defined at meta-level. 

a) Definition 
In this paper, we consider MAC policies as they are used in multi-level systems 
(MLS) [11]. Next the definition of MAC (Taken from Trusted computer System 
Evaluation Criteria) : 
“A means of restricting access to objects based on the sensitivity (as represented by 
a label) of the information contained in the objects and the formal authorization 
(i.e., clearance) of subjects to access information of such sensitivity”. 
MAC entities are Subjects, Objects and Clearances. Subjects are usually Processes 
or threads (executing user commands), and Objects can be files, ports, etc. MAC 
policies express the access of subjects to objects according to their clearance and to 
classification of objects. Subjects with a high clearance are able to read all kinds of 
objects. but they are not allowed to write in objects that can be accessed by low 
clearance subjects.  A classification of clearance determines if the access is granted 
or denied. For example, if Subject S1 having clearance C1 requests reading Object 
O2 having clearance C2, then access if granted if C1 >= C2. Otherwise, if C2 > 
C1, access is denied. 

 
Figure 6 - The MAC formalism 

 
b) Modeling MAC language 
Figure 6 displays the MAC metamodel which is also conformant to the Figure 2. 
There are two types of rules: 



SubjClearance: An association between a subject and a clearance. 
 ObjClearance: An association between an Object and a clearance respectively. 
There is a static classification of clearance. According to this classification, access 

is granted to subjects (to read or write). We consider two access types: read and write. 
 
c) Mutating MAC 
 
We will use the following policy to show examples of mutants produced by the 

mutation operators. The policy defines two users and two objects and the rules specify 
their clearances. 

 
  POLICY systemMAC (MAC) 
  R1 -> SubClearance(process1 low) 
  R2 -> SubClearance (process2 high) 
  R3 -> ObjClearance (report1 low) 
  R4 -> ObjClearance (report2 high) 
 
As for DAC policies, the mutation operators PPD and RTT cannot be applied in 

this case. The RER operator is not relevant either because it would create undefined 
policy responses. For instance, if R1 is removed, the subject ‘process1’ clearance will 
be unknown, resulting in undefined policy decision. 

The relevant operators are PPR and ANR. The PPR operator will for example 
replace R1 second parameter with another one, which will produce this rule instead of 
R1:    R1’ -> SubClearance(process1 high) 
This implies process1 having a high clearance. This simulates a flaw in the security 
policy. 
The ANR operator adds for example this new rule: 

   R5 -> SubClearance(report1  high) 
This new rule is with conflict with the R3. So, the result depends on the 
implementation of the security mechanism, on the way it handles conflicts. If priority 
is given to most restrictive rule, then this implies report1 having high clearance.  

4.3 Towards a unified validation framework for security policies 

With these two examples of access control languages (DAC and MAC), we have 
shown that the metamodel we proposed is expressive enough to describe the most 
classical access control languages (DAC, MAC, RBAC, OrBAC). The interesting 
issue concerns the definition of a common validation scheme at metamodel level, 
which can be systematically applied, whatever the access control language is. It is 
especially useful when testing the security mechanisms in a heterogeneous 
environment, in which several systems with their own access control policies 
(expressed in different languages) interoperate. For example, this case occurs when 
Information Systems of several organizations are merged and when an overall 
security policy has to be built on the existing ones. More generally, the fact the 
mutation analysis allows faults models (mutation operators) to be described 
independently from the language is very promising. The intrinsic difficulty behind 
these approaches is related to the distance which separates the metamodel and the 
family of languages which can be modeled with it. In the case of access control 



policies, the family of languages manipulates a same subset of concepts. 
Metamodeling this family is thus feasible, and has been illustrated in this paper. It is 
less obvious to determine whether a common core of verification and validation can 
be defined at metamodel level in a relevant way. The problem is not new: you can 
metamodel everything but the semantics you can attach to the resulting metamodel 
may be too poor for relevant manipulations. In our case, the manipulations we attach 
are related to the validation of security policies, using mutation. The study presented 
in this paper shows that some mutation operators which are meaningful for RBAC 
and OrBAC access control policies cannot be instantiated for DAC or for MAC. The 
common definition of security faults in terms of mutation operators thus produces 
concrete faults which are very different from one access control language to another. 
To make the study complete, it would be necessary: 

1- to model “equivalent” access control policies with OrBAC, RBAC, MAC 
and DAC languages, 

2- to generate all the mutants versions for each policy 
3- to compare whether a same test cases set is able to kill the same amount of 

mutants for each policy. 
By applying such an empirical protocol, it will be possible to determine the quality of 
the faults which are seeded from a metamodel definition. In [12, 13], we already 
showed that the generated faults were relevant for OrBAC security policies. It has to 
be proven for the other languages. This study is the next step for empirically 
validating the metamodeling validation and verification environment we propose. It 
corresponds to the future work we will investigate. The empirical studies should allow 
concluding whether it is possible to obtain a unified validation environment for access 
control policies. 

5 Conclusion  

Guido Wimmel et al. proposed to use mutation to system specification in order to 
generate test suite for security-critical systems [14]. Faults are injected into the 
security requirement. Their approach does not handle well the scalability issue as it 
was not applied to large systems. In addition, Lodderstedt et al. [15] proposed 
SecureUML which provides a security modeling language to define the access control 
model. The resulting security model is combined with the UML business model in 
order to automatically produce the access control infrastructure. 
This paper presented a step in the building of a unified framework for specifying, 
generating and validating a security policy. We studied how the metamodel we 
propose can be applied for the main access control languages. The metamodel has 
shown its ability to represent this family of languages. In parallel, we studied how the 
fault model attached to this metamodel could be used for applying mutation analysis 
on DAC and MAC access control policies. The first studies suggest that there are 
generic mutation operators that can apply to all security formalisms but also more 
specific operators that can still be expressed generically but apply only to a sub-set of 
access control formalisms. 
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