
Context-Aware Service Selection Using
Graph Matching

M. Kirsch-Pinheiro1, Yves Vanrompay2, Y. Berbers2

1 Centre de Recherche en Informatique, Université Paris 1 Panthéon-Sorbonne
90 rue de Tolbiac, 75013 Paris, France

2 Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium

Manuele.Kirsch-Pinheiro@univ-paris1.fr, Yves.Vanrompay@cs.kuleuven.be,

Yolande.Berbers@cs.kuleuven.be

Abstract. The current evolution of Ubiquitous Computing and of Service-
Oriented Computing is leading to the development of context-aware services.
Context-aware services are services whose description is enriched with context
information related to the service execution environment, adaptation
capabilities, etc. This information is often used for discovery and adaptation
purposes. However, context information is naturally dynamic and incomplete,
which represents an important issue when comparing service description and
user requirements. Actually, uncertainty of context information may lead to
inexact matching between provided and required service capabilities, and
consequently to the non-selection of services. In order to handle incomplete
context information, we propose in this paper a graph-based algorithm for
matching contextual service descriptions using similarity measures, allowing
inexact matches. Service description and requirements are compared using two
kinds of similarity measures: local measures, which compare individually
required and provided properties (represented as graph nodes), and global
measures, which take into account the context description as a whole, by
comparing two graphs corresponding to two context descriptions.

1 Introduction

The term Ubiquitous Computing, introduced by Weiser [22], refers to the seamless
integration of devices into users’ everyday life [1]. This term represents an emerging
trend towards environments composed by numerous computing devices that are
frequently mobile or embedded and that are connected to a network infrastructure
composed of a wired core and wireless edges [13]. In pervasive scenarios foreseen by
Ubiquitous Computing, context awareness plays a central role. Context can be defined
as any information that can be used to characterize the situation of an entity (a
person, place, or object considered as relevant to the interaction between a user and an
application) [5]. Context-aware systems are able to adapt their operations to the
current context, aiming at increasing usability and effectiveness by taking
environmental context into account [1].

The dynamicity of pervasive environments encourages the adoption of a Service
Oriented Architecture (SOA). Service-Oriented Computing (SOC) is the computing
paradigm that utilizes services as fundamental elements for developing applications
[15]. The key feature of SOA is that services are independent entities, with well-
defined interfaces, that can be invoked in a standard way, without requiring the client
to have knowledge about how the service actually performs its tasks [8]. Such loose
coupling fits the requirements of high dynamic pervasive environments, in which
entities are often mobile, entering and leaving the environment at any moment.

The adoption of SOA in pervasive environments is leading to the development of
“context-aware” services. Context-awareness becomes a key feature necessary to
provide adaptable services, for instance when selecting the best-suited service
according to the relevant context information or when adapting the service during its
execution according to context changes [6]. As pointed out by Maamar et al. [11],
multiple aspects related to the users (level of expertise, location, etc.) and to the
computer resources (on fixed and mobile devices), among others aspects, can be
considered in the development of context-aware services. Thus, context-aware
services can be defined as services which description is associated with contextual
(notably non-functional) properties, i.e., services whose description is enriched with
context information indicating the situations to which the service is adapted to.

According to Suraci et al. [18], in order to provide context-aware services, one has
to consider context inputs, besides functional inputs, and outputs, which may also
depend on contextual information. Several authors, such as Suraci et al. [18], Tonielli
et al. [21] and Ben Mokhatar et al. [2], propose to increase service description with
context information. This information is normally used for adaptation purposes: for
adapting service composition; for indicating an execution environment (device
capabilities, user’s location, etc.) to which the service is designed for; for indicating
adaptation capabilities (mainly content adaptation) of the service, etc. This context
information needs to be compared to the real user’s or execution context before
starting to use the service.

However, in ubiquitous environments, context information is naturally dynamic
and incomplete. Dynamic context changes and incomplete context information may
prevent perfect matches between required and provided properties, which may lead to
the non-selection of one (or all) service(s). Service selection mechanisms have to cope
with these issues: if some needed context information is missing, service selection
still has to proceed and choose a corresponding service that best matches the current
situation, even if context information is incomplete. In other words, when executing
in pervasive environments, service matching mechanisms have to deal with the
question: how to reduce problems related to mismatching between contextual
conditions related to the execution of a service and current context information?

In order to overcome this issue, we propose in this paper a graph-based algorithm
for matching context-aware services. The proposed service selection mechanism
assumes that suitable services exist. This means our approach is employed only after
the question whether suitable services are available has been answered positively. The
proposed algorithm matches contextual non-functional descriptions of context-aware
services using similarity measures, allowing inexact matches. Service description and
the current context are interpreted as graphs, in which properties correspond to graph
nodes and the edges represent the relations between these properties. Through this

graph representation, service description and requirements are compared using two
kinds of similarity measures: local measures, which compare individually required
and provided properties (represented as graph nodes), and global measures, which
take into account the context description as a whole, by comparing two graphs
corresponding to two context descriptions. Moreover, we consider here only non-
functional and context-related aspects of context-aware services. Even if functional
aspects are the most relevant, once all services whose capabilities match functional
requirements have been discovered, one has to select what service, among all the
possible services, is the most suitable one, considering non-functional properties
related to each service. Our graph-based service selection algorithm aims at selecting
among available compatible services the most appropriate one considering the current
context and taking into account the incompleteness of context information.

This paper is organized as follow: Section 2 presents an overview on related work.
Section 3 introduces our approach of service selection. Section 4 presents the
proposed matching algorithm and similarity measures. We conclude in Section 5.

2 Related work

A growing interest in context-aware services can be observed in the literature. For
instance, several European projects are focusing on Service-Oriented Computing [16],
and context-awareness appears as a crosscutting issue for these works. According to
Tonielli et al. [21], in pervasive scenarios, users require context-aware services that
are tailored to their needs, current position, execution environments, etc. According to
Suraci et al. [18] user and service entities have requirements on context information
they need in order to work properly. A user may have requirements on context of the
service he is looking for (availability, location…) and on the context provided by the
environment (wireless connection…). A service can require the user to provide
specific context information (location, terminal capabilities…) and the environment to
provide context information too (network QoS…).

The support for context-aware services depends on an improved semantic
modeling of services by using ontologies that support formal description and
reasoning [8]. Such a semantic modeling may contribute not only to handle problems
related to service interoperability, but also in order to take into account different
aspects of the environment in which the service is executed. Indeed, authors, such as
Zarras et al. [24], advocate that semantic matching is essential for pervasive systems.

In the literature, several works, such as Ben Mokhatar et al [2], propose the
semantic modeling and matching of services based on ontologies often expressed in
OWL-based languages for enriching service description. These authors [2] propose
the use of ontologies (in OWL-S) for the semantic description of functional and non-
functional features of services in order to automatically and unambiguously discover
such services. Klusch et al. [9] propose a service matching algorithm which combines
reasoning based on subsumption and similarity measures for comparing inputs and
outputs of service description and user request. Reiff-Marganic et al. [18] propose a
method for automatic selection of services based on non-functional properties and

context. However, inexact matching caused by incomplete or uncertain context
information is not taken into account.

Other authors such as Suraci et al. [18] and Yau & Liu [23] propose to improve
service modeling with context information. Suraci et al. [18] propose a semantic
modeling of services in which service profile description in OWL-S is enriched with a
“context” element pointing to this required context information. Yau & Liu [23]
propose to enrich service description with specific external pre- (and post-) conditions
expressed in the OWL-S service description denoting contextual conditions for using
a given service.

Tonielli et al. [21] propose a framework for personalized semantic-based service
discovery. This framework aims at integrating semantic data representation and
match-making support with context management and context-based service filtering.
In such framework, services, users and devices are modeled through a set of profiles.
describing capabilities and requirements of the corresponding service. The integration
is then performed in a middleware using a matching algorithm based mainly on
subsumption reasoning.

The majority of research cited above concentrates the semantic matching on
solving ambiguity problems related to service inputs and outputs. Such works focus
mainly on functional aspects, using semantic descriptions to enrich input and output
description of services. Most works related to context-aware services, as those cited
above, do not consider the natural uncertainty of context information. Context
information is naturally dynamic and uncertain: it may contain errors, be out-of-date
or even incomplete. Uncertainty in context information is traditionally handled by
appropriate models, such as Chalmers et al. [4], who represent context values by
intervals or sets of symbolic values. In these models, incompleteness of context
information is seldom considered. However, semantic matching of context-aware
services should take this into account. When considering context-aware services,
matching algorithms have to consider the fact that some context information can be
simply missing. Such incomplete information may lead to an inexact match between
service description and requirements related to the user’s current context.

In this paper, we focus particularly on this issue: how to deal with incompleteness
of context information when selecting context-aware services. We propose a graph-
based approach, in which service descriptions and requests are interpreted as graphs
whose nodes and overall structure are compared by using similarity measures. The
use of similarity measures in Computer Science is not new, as testifies the work of
Liao et al. [10]. However, unlike Liao et al. [10], our work does not focus on
proposing such measures. Our focus is to handle incompleteness of context
information on service selection by using similarity measures. Such measures, in our
case and unlike those proposed by Klush et al. [9], focus on non-functional and
context-related aspects of context-aware services, and not on functional input and
output of such services. In this sense, our approach is similar to the one proposed by
Bottaro et al. [3], who propose ranking services according to context models
evaluating the interests of a service in a composition. However, contrary to these
authors, we are not particularly focusing on service composition, but on service
selection in general.

3 Graph-based service selection

3.1 Proposal overview

The graph-based service selection approach proposed in this paper is part of a larger
initiative, the MUSIC Project. The MUSIC Project [14] is a focused initiative aiming
at the development of context-aware self-adapting applications. The main target is to
support both the development and run-time management of software systems that are
capable of being adapted to highly dynamic user and execution context, and to
maintain a high level of usefulness across context changes. MUSIC adopts a
component-based architecture, on which modeling languages allow the specification
of context dependencies and adaptation capabilities. Such adaptation capabilities are
based on the specification, at design time, of multiple variations (implementations) for
each component. The selection of the most appropriate variation is performed by the
MUSIC middleware, during run-time execution, based on the context dependencies
associated with each variant and based on the current execution context.

In addition to MUSIC components, the MUSIC project aims at exploiting SOA by
allowing MUSIC applications to use external services (i.e. services that are executing
on non-MUSIC nodes). When considering those external services, we are interested in
exploiting variability and non-functional properties of context-aware services in a
similar way we consider for native MUSIC components. In other words, we consider
that several service implementations can supply the same functional capabilities (with
a similar syntax), but with different non-functional context-related properties.

The graph-based service selection approach proposed here contributes to the
service selection mechanism used by the MUSIC Middleware for selecting the most
suitable service among discovered and compatible services. Using this approach, the
MUSIC Middleware compares context-aware service descriptions and current
execution context in order to select most suitable service, considering current
situation. The proposed service selection mechanism assumes that suitable services
exist. It is part of a two-step process in which the first step selects all services whose
functional properties match the functional requirements that are needed. This means
our approach (the second step), dealing with non-functional requirements, is
employed only after suitable services are discovered. So the proposal premises is the
following: if there are several discovered services able to satisfy a request formulated
by a user, one has to select the service that suits best the current execution context.
Such service selection should take into account the fact that context information is
naturally dynamic and incomplete.

We focus our approach on non-functional context-related aspects of service
description. Indeed, we do not investigate functional aspects (inputs and outputs) of a
service, but only non-functional contextual conditions related to the execution
environment of a service. We consider that functional aspects of a service have the
priority, since mismatching on service input or output may have negative (even
disastrous) effects on the running application. Incompleteness on service input or
output entries (missing input or output) can lead to severe exceptions (or errors),
which may affect correctness and execution flow on both service and calling
application. Thus, we decide to focus on non-functional aspects of context-aware

services, assuming a selection process for meeting functional requirements already
took place.

We consider that each context-aware service describes a set of “contextual”
conditions (non-functional properties) describing context elements needed for using it
appropriately (in the best conditions). For instance, considering a content sharing
service (e.g. a photo sharing), several variations of this service can be proposed using
different implementations (e.g. implementations focusing a given user profile, a
particular location, etc.). These contextual conditions refer potentially to any observed
context element and they can be expressed using the MUSIC context model [17].

Fig. 1. Local and global measures comparing two graphs.
In order to perform service selection based on a “contextual” matching, service

descriptions are enriched with non-functional context-aware properties related to the
execution environment most suited for the service. Such requirements are included in
the service profile description, using OWL-S. Such contextual description is analyzed
as a graph, in which objects represent concepts and properties and edges represent the
relations connecting such concepts. The same analysis is performed on the description
of the current execution context, which is represented based on an OWL-ontology,
and which acts like a “request” (requested execution environment) for the service.
This allows us to compare both based on similarity measures between graphs. The
proposed service selection algorithm then ranks the available services, indicating to
the MUSIC middleware (our user) the services that best match the current context.
In order to compare the graphs built using service description and current context
description, we propose local and global similarity measures. Local measures
compare two nodes individually, considering only the concept it represents and its
properties. Global measures take into account the graph as a whole, evaluating, for
instance, the proportion of similar elements in both graphs. By using such measures,
our approach allows dealing with incomplete context information and inexact
matching between conditions expressed in the service description and current context
description, since missing information on the latter will not block the analysis and the
ranking of the former. This means that the selection looks for the service that matches
the best the contextual conditions, but is not necessarily a perfect match. Fig. 1
illustrates these measures. It shows a local measure comparing two individual

concepts labeled conceptA, and a global measure comparing the graphs formed by
these concepts (highlighted in Fig.1). Moreover, this approach assumes that several
measures can be considered in order to evaluate local values. These local measures
are associated to particular context scopes defined in the MUSIC ontology, taking into
account the semantic aspects represented in the ontology.

3.2 Describing context-aware services

Service descriptions are expressed in OWL-S. According to Suraci et al. [18], “for
describing the semantics of services, the latest research in service-oriented computing
recommends the use of the Web Ontology Language for Services (OWL-S).” These
authors consider that, even if OWL-S is tailored for Web Services, it is rich and
general enough to describe any service. We consider to enrich this description with
context information describing the execution context for which the service is best
suited. For instance, let us consider a mobile content sharing platform that enables
users to browse, search for, and share multimedia content scattered on such devices in
different situations, such as conferences, shopping malls, football stadiums, etc. This
scenario foreseen by the MUSIC Project is called Instant Social [7] and it proposes to
explore cooperating multi-user applications hosted on mobile devices carried by
users. In this scenario, several content sharing services can be available on the
platform. Each service can indicate contextual conditions in which it runs
appropriately. For example, a given photo sharing service can be particularly designed
considering client devices with high screen resolution and memory capacities, a
second implementation of the same service can be designed considering a particular
location (a conference hall or a stadium), or a particular user profile (e.g. adult users).

Such contextual information can be considered as part of the service description,
since it indicates situations to which the service is better suited. A service description
in OWL-S includes three main parts [12]: (i) service profile; (ii) service model; and
(iii) service grounding. The service profile corresponds roughly to the service
description. The service model specifies the process executed by the service. The
service grounding indicates how the service can be accessed (like an API).

Thus, similarly to Suraci et al. [18], we propose to enrich the service profile with a
“context” element pointing to context description related to the service. This
description should be included in an external file (indicated in the “context” element)
and not directly in the OWL-S description. Context information is dynamic and
cannot be statically stored on the service profile. On the one hand, context properties
related to the execution of a service can evolve and vary according to the service
execution environment itself. For instance, the load of the device executing a service
may affect the service and consequently the context properties related to it. On the
other hand, the service profile is supposed to be a static description of the service in
the sense that it is not supposed to change in short intervals of time (as context
information does). An external file describing contextual non-functional requirements
and properties related to a service allows the service supplier to easily update such
context information related to the service without modifying the service description
itself. Fig. 2 presents an example of service profile including the “context” element.
This example illustrates the extended profile of a photo sharing service, like those

foreseen in MUSIC project scenario. This service returns, for a given request on
input, a list of interesting photos and a map locating them. As stated before, such a
service may have different implementations, considering particular contexts. The one
related to this particular implementation is given in Fig. 3.

Fig. 2. Example of service profile including the property "context".

Fig. 3 presents an example of a context description related to the service in Fig. 2.
This description follows the MUSIC Context Model described in Reichle et al. [17].
The MUSIC context modeling approach identifies three basic layers of abstraction
that correspond to the three main phases of context management: the conceptual layer,
the exchange layer and the functional layer.

The conceptual layer enables the representation of context information in terms of
context elements. The context elements provide context information about context
entities (the concrete subjects the context data refers to: a user, a device, etc.)
belonging to specific context scopes. Such context scopes are intended as semantic
concepts belonging to a specific ontology described in OWL. Moreover, the ontology
is used to describe relationships between entities, e.g. a user has a brother. The
exchange layer focuses on the interoperability between devices. Context data in this
layer is represented in XML and is used for communication between nodes. The
functional layer refers to the implementation of the context model internally to the
different nodes.

The description illustrated in Fig. 3 belongs to the exchange level, since it is used
for information exchange among different nodes. Thus, context information in Fig. 3
is described in XML by context elements, which refer to a given entity and scope, and
a set of context values, which also refer to a given scope. It is worth noting that Fig. 3
supplies two separate context descriptions: (i) a first description (under the element
“condition”) supplying the conditions under which this service adapts the best (i.e. the
contextual situation in which it is most appropriate to call this service); and (ii) a
second description referring to the current state of the service execution context
(under which conditions this service is running on the service supplier). Thus, through
the condition element in Fig. 3, the service supplier indicates that the content supplied
by this service implementation (whose profile is represented in Fig. 2) is proper to
tourist users (who are familiar with the city they are visiting) and that this service
disposes of a detailed database for the city of Paris, which makes it better adapted to
being used when in this location. The next section describes how the proposed graph-
based matching algorithm considers and handles these descriptions.

Fig. 3. Example of context description associated to a service.

4 Graph-based matching

4.1 From description to graphs

The first step for performing the graph-based matching is to analyze the context
description associated with the available service. Based on the context description
presented above, we propose a graph-based approach for ranking and selecting
services. In this approach, non-functional context-related properties of the services
represented in the context description file described previously are interpreted as a
graph. In this graph, nodes represent the context elements indicated in this
description, and the edges represent the relations that can exist between these
elements. The same interpretation is used when analyzing the current execution
context. The MUSIC middleware is responsible for service selection and for
collecting and managing context information related to the user. It keeps this

information in context elements expressing their current values. These context
elements are seen as graph nodes, whereas relations between such elements are seen
as graph edges. Thus, a graph G is defined as follow:

• G = < N, E > where:
o N = { CEi } i>0 : set of context elements CEi ;
o E = { < CEi, CEj > } : set of relations between context elements

CEi and CEj.

Thus, comparing two graphs representing two different context descriptions
corresponds, with regard to the MUSIC Context Model, to comparing two sets of
context elements and their relations.

4.2 Matching algorithm

Once all available services have been analyzed and their corresponding graphs are
created, the matching based algorithm may proceed. The goal of this matching
algorithm is to rank the available services based on their contextual non-functional
properties. It compares the graph generated by each proposed service to the graph
created based on the current execution context information. This matching starts by
comparing nodes from both graphs (from the context description of the service and
from the current context) individually, using local similarity measures. Based on the
results of these measures, the matching algorithm compares the graphs globally, using
global similarity measures that also consider the edges connecting the nodes. The
results of such global measures are used to rank the services corresponding to the
compared graphs. Next sections present both local and global similarity measures.

4.2.1 Comparing graph nodes: local similarity measures
When comparing two nodes from two graphs defined in Section 4.1, we are
comparing two context elements representing context information about a given entity
and referring a given scope. By considering these elements individually, we focus on
how similar their context values are. In order to perform this comparison, we consider
local similarity measures Siml (CEi, CEj) that compares two context elements CEi and
CEj locally (i.e. without considering their position in the corresponding graphs). This
measure can be defined as follows:

• Siml (CEi, CEj) = x, where x∈ℝ, x ∈ [0, 1]

Ideally, the similarity measure Siml (CEi, CEj) depends on the context scope. If the

context elements being compared do not belong to compatible context scopes, their
similarity is by definition zero. For example, we cannot compare context elements
referring to the user’s age or preferences with context elements referring to the user’s
location because both elements belong to context scopes that are incompatible.
Similarity measure Siml (CEi, CEj) has to consider the representation associated with
the context elements. In the MUSIC context modeling approach each context element
is associated with a corresponding representation. For instance, considering location
information, this can be represented using geographical coordinates like latitude and
longitude (e.g. 48°49'38" N, 2°21'02" E), as well as using a representative name (e.g.

Paris, France). Each measure Siml (CEi, CEj) is proposed considering a given set of
possible representations, which it may handle. Only context elements that correspond
to the context scope and representation supported by the giving measure can be
compared using it. The MUSIC middleware keeps then a library with all knows
similarity measures Siml (CEi, CEj). Before comparing two nodes, it looks for the
appropriate measure in its library.

Once the appropriate similarity measure Siml (CEi, CEj) is chosen, the matching
starts by taking each node in the graph corresponding to the context description of the
service and comparing it to the nodes with a compatible scope and representation
from the graph corresponding to the current execution context. For each node, it keeps
tracks of the best-ranked node, in order to use this value in the global similarity
measures (Section 4.2.2). Thus, being GSk = < NSk, ESk > the graph corresponding to
the service Sk and GC = < NC, EC > the graph corresponding to the current context, we
compare each node CEi from GSk to all nodes C’Ei in GC for which CEi.scope and
C’Ei.scope and CEi.representation and C’Ei.representation are compatible, keeping in
memory the best-ranked C’Ei. For example, considering the graph generated by the
context description in Fig. 3, the node referring to the user’s profile is compared to all
nodes having the same scope (user profile) in the graph corresponding to current
user’s context.

4.2.2 Comparing graphs: global measures
The main goal of global similarity measures is to compare overall composition of two
graphs, taking into account both nodes and edges composing each graph. We define
such measures as follow:

• Simg (GSk , GC) = x, x∈ ℝ, where
o GSk corresponds to the graph determined by the context

description of the service;
o GC corresponds to the graph determined based on the current

execution context.

Several global measures Simg (GSk , GC) are possible for comparing two graphs.
These measures can be based on different well-know algorithms such as subgraphing
matching or graph isomorphism. The most important aspect for us is that the global
similarity measure Simg (GSk , GC) must support incompleteness of context
information represented in these graphs. This means that the Simg (GSk , GC) should
not stop processing if some context information is missing. For instance, if the
context description of a service refers to a given context element for which there is no
corresponding element with a compatible context scope in the current context
description, the similarity measure Simg (GSk , GC) should continue the processing,
arriving in a valuable result that takes into account this fact.

In the MUSIC middleware, we consider a single yet powerful similarity measure
Simg (GSk , GC) defined based on the proportion of nodes and edges belonging to the
context description of the service that have a similar correspondence in the current
context description. For this, the similarity measure considers the results obtained by
the local similarity measures. For each pair <CEi , C’Ei>, with C’Ei ∈ GSk and C’Ei ∈
GC and C’Ei being the node of GC with the greatest value for d(CEi , C’Ei), the
proposed measure Simg (GSk , GC) analyses the similarity among the edges connecting

these nodes to their neighbors. The similarity between two edges is calculated based
on the similarity of their corresponding labels (or weights), if the edges are labeled,
and the similarity between the objects forming the edges. Similarly to the local
measures, we consider in the global measure only the greatest value obtained when
comparing each edge connecting a node CEi. Then, we sum up both nodes and edges
best similarities measures and make the proportion taking into account the total
number of nodes and edges in graph defined by the context description of the service.
Fig. 4 shows the definition of the measure Simg (GSk , GC).

It is worth noting that, since the maximum value for Siml (a,b) is 1 (cf. Section
4.2.1), if the graph GSk is a subgraph of GC, for each node and edge, we will have a
corresponding node or edge for which the local similarity measure is 1. Thus, by
considering the proportion of the greatest values obtained for all individual nodes and
edges in the total size of the graph, this measure considers implicitly that some nodes
or edges may have no similar element (max(Siml (a,b))=0). This eventuality leads to a
reduction in the value of the global similarity measure Simg (GSk , GC), but it does not
prevent a valuable result. Even if the compared graphs have no element in common
(max(Siml (a,b))=0 for all a∈GSk and b∈GC), the measure Simg (GSk , GC) still returns
a value that can be used to rank the service. For instance, when considering the photo
sharing service represented Fig. 2, the measure Simg (GSk , GC) gives a valuable result
(x≥0) even if the current user’s context does not possess any context element referring
to the location scope (user’s device has no GPS or any location sensor available). This
resulting value is then used to rank this particular implementation of photo sharing
service. Incompleteness of context information is dealt with in this way.

Fig. 4. Definition of the global similarity measure Simg.

5 Conclusions

In this paper, we present a graph-based approach for service selecting in ubiquitous
computing. The main goal of this approach is to select the most adapted service for
the current situation. We compare contextual non-functional properties of context-
aware services to the current execution context in which they are called. Our approach

considers particularly the natural incompleteness of context information when
selecting a context-aware service among all available services. For this, our approach
is based on a graph-based analysis of both current context situation and context
description associated with the service. This analysis is the basis for a set of similarity
measures that compare graphs representing these descriptions. Such measures allow
us to compare graphs that represent context information by considering scope and
incompleteness of such information.

Currently, we are testing the proposed approach with the MUSIC middleware in
order to evaluate its performance in ubiquitous environments. We also intend to
compare our results with other libraries of similarity measure such as SimPack [20].

Acknowledgements. The authors would like to thank their partners in the MUSIC-IST project
and acknowledge the partial financial support given to this research by the European Union
(6th Framework Programme, contract number 35166).

References

[1] Baldauf, M.; Dustdar, S. & Rosenberg, F., A survey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing, vol. 2, n.4, 2007, 263–277

[2] Ben Mokhtar, S.; Kaul, A.; Georgantas, N. & Issarny, V., Efficient Semantic Service Discovery in
Pervasive Computing Environments, Proceedings of the ACM/IFIP/USENIX 7th International
Middleware Conference (Middleware'06), 2006

[3] Bottaro, A.; Gerodolle, A. & Lalanda, P., Pervasive service composition in the home network, 21st
International IEEE Conference on Advanced Information Networking and Applications
(AINDA'2007), 2007

[4] Chalmers, D.; Dulay, N. & Sloman, M., Towards Reasoning About Context in the Presence of
Uncertainty, 1st international workshop on advanced context modelling, reasoning and management,
Nottingham, UK, September 2004

[5] Dey, A., Understanding and using context. Personal and Ubiquitous Computing, vol. 5 n. 1, 2001, 4-
7.

[6] Eikerling, H.-J.; Mazzoleni, P.; Plaza, P.; Yankelevich, D. & Wallet, T., Services and mobility: the
PLASTIC answer to the Beyond 3G challenge. White Paper, PLASTIC Project, December 2007.
http://www-c.inria.fr/plastic/dissemination/plastic/dissemination

[7] Fraga, L.; Hallsteinsen S. & Scholz, U., InstantSocial – Implementing a Distributed Mobile Multi-
user Application with Adaptation Middleware, Communications of the EASST, vol. 11.
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/18.

[8] Issarny, V.; Caporuscio, M. & Georgantas, N., A Perspective on the Future of Middleware-based
Software Engineering. In: Briand, L. and Wolf, A. (Eds.), Future of Software Engineering 2007
(FOSE), ICSE (International Conference on Software Engineering), IEEE-CS Press. 2007

[9] Klusch, M.; Fries, B. & Sycara, K., Automated semantic web service discovery with OWLS-MX,
Proceedings of the 5th International joint conference on Autonomous agents and multiagent systems
(AAMAS '06), ACM, 2006, 915-922

[10] Liao, T.W.; Zhang, Z. & Mount, C.R., Applied Artificial Intelligence, Volume 12, Number 4, 1 June
1998 , Taylor & Francis, 267-288

[11] Maamar, Z.; Benslimane, D. & Narendra, N. C., What can context do for web services?,
Communication of the ACM, vol. 49, n° 12, Dec. 2006, 98-103

[12] Martin, D. (Ed.), OWL-S: Semantic Markup for Web Services, W3C Member Submission 22
November 2004, http://www.w3.org/Submission/OWL-S

[13] Moran, T. & Dourish, P., Introduction to this special issue on context-aware computing. Human-
Computer Interaction, vol. 16, n. 2-3, 2001, 87–95

[14] MUSIC Consortium, Self-Adapting Applications for Mobile Users in Ubiquitous Computing
Environments (MUSIC), Website: http://www.ist-music.eu/

[15] Papazoglou, M. P. & Georgakopoulos, D. Service-Oriented Computing, Communication of ACM,
vol. 46, n. 10, Oct. 2003, 24-28

[16] Patouni, E.; Alonistioti, N. & Polychronopoulos, C. (eds.), Service Adaptation over Heterogeneous
Infrastructures, White Paper, 2008. http://www.opuce.tid.es/Publications.htm

[17] Reichle, R.; Wagner, M.; Khan, M.U.; Geihs, K.; Lorenzo, L.; Valla, M.; Fra, C.; Paspallis, N. &
Papadopoulos G.A. A Comprehensive Context Modeling Framework for Pervasive Computing
Systems, 8th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS), 4-6 June, 2008, Oslo, Norway, Springer.

[18] Reiff-Marganiec, S., Qing Yu, H., Tilly, M., Service Selection based on Non-Functional Properties,
NFPSLA-SOC07 Workshop at The 5th International Conference on Service Oriented Computing
(ICSOC2007), Sept. 17 2007, Vienna, Austria.

[19] Suraci, V.; Mignanti, S. & Aiuto, A., Context-aware Semantic Service Discovery, 16th IST Mobile
and Wireless Communications Summit, 2007, 1-5

[20] SimPack Project Page, http://www.ifi.uzh.ch/ddis/research/semweb/simpack/
[21] Toninelli, A.; Corradi, A. & Montanari, R., Semantic-based discovery to support mobile context-

aware service access, Computer Communications, vol. 31, n° 5, March 2008, 935-949.
[22] Weiser, M. The computer for the 21st century, Scientific American, vol. 66, 1991.
[23] Yau, S. S. & Liu, J., Incorporating situation awareness in service specifications, In: Lee, S.;

Brinkschulte, U.; Thuraisingham, B. & Pettit, R. (Eds.), 9th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC 2006), 2006, 287-294

[24] Zarras, A.; Fredj, M.; Georgantas, N. & Issarny, V., Engineering reconfigurable distributed software
systems: issues arising for pervasive computing, In: Butler, M.; Jones, C.; Romanovsky, A. &
Troubitsyna, E. (Eds.), LNCS 4157, Rigorous Development of Complex Fault-Tolerant Systems,
Spring, 2006, 364-386

