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Abstract

Knowledge graphs (KG) are an established method for heterogeneous data integration and have be-
gun powering complex software agents. However, it is important to understand where the data in the
knowledge graph originates, especially within the context of synthetic research agents and other trust-
worthy Al systems. In this paper, we propose an ontology design pattern for tracking the provenance
and context of computational observations, as well as a proposing a supporting, simplified conceptual
framework for modeling abstract and concrete versions of the same underlying notion.

1. Introduction

Knowledge graphs (KG) are an established way of integrating data from multiple, heterogeneous
sources [1]. Recently, they have begun powering complex software agents. However, as the
complexity — and pervasiveness — of these agents grows, it is important to understand where
the data in the knowledge graph originates. This is particular important within the context of
synthetic research agents and other trustworthy Al systems. When the Al agent is operating on
data of specious origin, it is important to propagate this downstream through all the downstream
actions.

In particular — and the focus of this paper — we want to track the provenance and lineage of
data produced from computational models. This requires that we understand both the models
themselves and the results that they produce — which we call “computational observations,” as
well as the context in which these models are executed,

However, the space of computational models is quite large. Building an entire domain ontology
would be very difficult and, not to mention, contentious. As such, we have opted to develop
an ontology design pattern [2] that represents, in a generalized case, the interplay between
computational models, executions, and observations. Such a pattern will enable downstream
ontology or knowledge engineers to quickly incorporate modeling best practices into their own
KG, and will enable them to easily align their KGs to other KGs that reuse the same pattern.

The primary contributions of this paper are:

1. a simplified framework for conceptually modeling abstract and concrete concepts repre-
senting the same underlying notion; and
2. a pattern for modeling computational observations.
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Figure 1: The schema diagram for the Data Transformation Ontology Design Pattern (ODP). Gold
boxes represent concepts that are central to the pattern. Blue boxes with dashed borders are interfaces
to other patterns or represent concepts with significant complexity, but outside the scope of this pattern.
Purple boxes represented controlled vocabularies, which simply means they are comprised of a finite
set of individuals. Black-filled arrows represent object or data properties; and open arrows represent
subclass relationships.

The remainder of the paper is organized as follows. In the next section, we discuss background
and related work. Section 3 provides a brief discussion on a basic, conceptual pattern for
modeling abstract and concrete concepts for the same notion. In Section 4 we present our
pattern and provide its formalization. Finally, in Section 5, we conclude with future work.

2. Related Work

There is some existing literature that focuses on how to capture the results of modeling and
simulation software. As far as the authors are aware, there is not directly corresponding work
for directly modeling computational observations. Below, we describe some tangential work
that could be used in a limited fashion, and how it relates to our pattern described in Section 4.

SOSA/SSN (The Sensors, Observations, Sampling, Actuators Ontology and Semantic Sensor
Network Ontology [3]) are W3C Recommendations for modeling how observations are gener-
ated from sensors. While the notion of a sensor, within these ontologies, is left intentionally
ambiguous and can, indeed, be used to represent a piece of software (e.g., for simulation or fore-
casting purposes), it is awkward to do so, due to requirements on phenomenon and result times
of observations — and whether or not a software producing a dataset is really an observation at
all. Secondly, SOSA/SSN does not provide a mechanism for modeling aspects of the software or
hardware, which this pattern provides.

ML-Schema [4] was proposed by the W3C Machine Learning Schema Community Group
to capture the provenance of machine learning data sets, algorithms, models, software imple-
mentations, and model runs for machine learning experiments. While ML-Schema captures
the computational workflow associated with an ML experiment, it does not conceptualize a
“model” as a surrogate for a real world phenomenon and is instead focused on capturing the
type of machine learning methodology as a model. Also, because it was developed primarily as
a schema for ML experiments, it lacks the generality of a ontology pattern based approach.

The Data Transformation Pattern [5] describes how data is transformed via different numerical
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Figure 2: A visual representation of the simplified Descriptions and Situations framework. The graph-
ical syntax is the same as in Figure 1.
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Figure 3: A visual representation of our Algorithm example. The graphical syntax is the same as in
Figure 1. Note the correspondences between it and the figure above.

operations (a schema diagram for the pattern is shown in Figure 1). This pattern focuses on
the dataset level, rather than the specific data within them, for tracking how the datasets were
transformed, what — or whom — performed those actions, and which datasets were used to
generate or derive the new dataset. The Computational Observation pattern, instead, focuses
on how computational models generate specific data (e.g., computational observations).

The Computational Environment pattern [6] is used to model the hardware and software
configurations where a particular piece of code may be implemented and executed. Its focus
is not on the metadata of the results of that execution, but instead on providing a human and
machine-interpretable way of exchanging (arbitrary) configuration information. Indeed, we
reference this concept in our own pattern.

3. Modeling Abstract and Concrete Concepts

It is frequently desirable to model a particular concept and its abstraction. That is, the difference
between an algorithm and the execution of that algorithm. The Descriptions and Situations (DnS)
[7] framework is one way to accomplish this. However, DnS can be quite challenging to approach,
especially for those without significant ontology engineering experience or foundations in logics.
It furthermore leverages DOLCE [8], a foundational ontology, which may not be compatible
with project needs. The following is an alternative, simplified framework by which one can
conceptually reason about the description and situation dynamic.

Figure 2 shows a schema diagram for a simplified conceptualization of the Description and
Situation dynamic. In summary, a Description exists outside of time - it is the abstraction of a
notion; a Situation is an instantiation of that Description that is anchored in space and time.

For example, consider the notion of an algorithm. Loosely speaking, an algorithm is a set of
steps that operate on an input to produce an output, for example: long division or, less trivially,
normalizing a series of data. Such algorithms, however, exist in the abstract; the executions
of them, do not. They are run in particular computational environments, on some hardware,



and according to some software implementation. Consider the graphical representation in
Figure 3: the Algorithm corresponds to the Description; the Execution corresponds to the
Situation; and we split the spatial and temporal aspects of a SpatiotemporalExtent to produce
a TemporalExtent and a ComputationalEnvironment. In a more complex scenario, one might
also consider an algorithm to have an input or parameter space, where the Execution would
have specific inputs and parameters.

3.1. Formalization of the Simplified Framework

We provide a brief formalization of this framework.
Description is the abstract representation of a particular concept or notion. This could, for
example, be an algorithm or a recipe. Intuitively, the Description is a template.

T C hasDescription.Description (1)

Situation is the concrete instantiation of a particular Description. This could, for example, be
the execution of an algorithm or the act of following a recipe. Intuitively, the Situation is a
template that has been “filled out.”

Situation C V occursOver.SpatiotemporalExtent (2)
Situation C =1 occursOver.SpatiotemporalExtent (3)
Situation C =1 hasDescription.Description (4)

4. A Pattern for Computational Observations

The Computational Observation ODP is driven by the interplay between the three core con-
cepts: ComputationalModel, ComputationalModelExecution (CME), and ComputationalOb-
servation. The first two correspond, respectively, to the Description and Situation from Figure 2.
That is, a ComputationalModel is an abstract representation of the space of all computational
models, and the CME is a concrete instance from that space (e.g., parameters and inputs have
been selected). The CME is then comprised of a set of generated outputs: the Computation-
alObservations.

The rest of the pattern is relevant metadata important to describing the entire process or
pipeline. ComputationalModels are implemented into a codebase (Implementation) and are
compiled into executables (Executable). An execution of the ComputationalModel requires that
we capture the temporal extent (i.e., when it was executed) and the computational environment
(i.e., where it was executed). Below, we provide further descriptions of each concept and its
relevant axioms (listed alphabetically).

ComputationalEnvironment is the encapsulation of hardware and software configurations
of the computer used to execute the ComputationalModelExecution. This interface may be
satisfied by the ODP of the same name, as in [6].

ComputationalModel (CM) is an abstract notion intended to connect the conceptual, math-
ematical and algorithmic models as surrogates for real world phenomena that is the intended
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Figure 4: The schema diagram for the Computational Observation ODP. It uses the same graphical
syntax as in Figure 1.

target of an observation. That is, we use it to represent the space of CMs. Every CM is a
Resource, which allows us to chain together CM input and outputs.

ComputationalModel C Resource (5)
ComputationalModel C >0 utilizes.Resource (6)

ComputationalModelExecution (CME) is the concrete notion of a ComputationalModel.
That is, it corresponds to the Situation in Figure 2. We directly link the CME to the Computa-
tionalModel via an exact cardinality restriction on the executesComputationalModel property.
This differs from the notion of an Executable (below) in that the Executable is the artifact that
can be executed many times, and the CME is the actual act of execution, and it thus exactly cor-
responds to that Executable. Furthermore, it will always have exactly one TemporalExtent, and
at least one ComputationalEnvironment.! Parameterlnstantiations are sometimes necessary
when complex CMEs generate their own parameters as part of the execution (more details are
provided below). Finally, CMEs generate ComputationalObservations, and they will always
generate at least one.

CME C V generatesOutput.ComputationalObservation (7)
CME C >0 generatesOutput.ComputationalObservation (8)
T C V hasTemporalExtent.Temporal Extent 9)

'We leave this only as an existential restriction as it is up to the user of this pattern — and the conceptualization of
the computational environment — whether or not distributed computing scenarios count as multiple computational
environments.



CME C =1 hasTemporalExtent.TemporalExtent (10)

T C V executedIn.ComputationalEnvironment (11)

CME C d executedIn.ComputationalEnvironment (12)

T C V hasParameterlnstantiation.Parameterlnstantiation (13)
Parameterlnstantiation C 3 hasParameterInstantiation” .CME (14)
CME C >0 hasParameterlnstantiation.ParameterInstantiation (15)

T C VisExecutionOf.Executable (16)

CME C =1 isExecutionOf.Executable (17)

CME C =1 executesComputationalModel.ComputationalModel  (18)

ComputationalObservation (CO) is the core concept of this pattern. Notably, we do not
mandate that the CO is an EntityWithProvenance, as it is already directly modeled via the
generatesOutput property. Indeed, we specify that it is inverse existential to state that any CO
must have been generated by a CME. We also do not specify any particular way to formulate
what the value of the CO is, as we want the pattern to be sufficiently generalized. Finally, we
realize that informedBy is a very informal term — we anticipate that the exact label for the
relationship be adapted to a particular use-case; we simply want to use a placeholder to indicate
that a relationship exists here.

ComputationalObservation C =1 informedBy.ComputationalModel (19)
ComputationalObservation C 3 generatesOutput™ .CME (20)

EntityWithProvenance is eponymous; it indicates that the entity in question has desirable
metadata, such as who generated the entity, when it may have been generated, and what was
used to derive the entity. We recommend using PROV-O [9] to satisfy this interface.

Executable is the artifact that can be executed, and is generally produced by a compiler. As
such, we indicate that it is an EntityWithProvenance so that this may be captured. We also
state that an Executable can only be compiled from exactly one Implementation.

Executable C EntityWithProvenance (21)
3 isCompiledFrom.Implementation C Executable (22)
Executable C V isCompiledFrom.Implementation (23)
Executable C =1 isCompiledFrom.Implementation (24)

Implementation is the formulation of the computational model into some codebase (e.g., the
hosting repository). In our axiomatization, we state that the Implementation is an EntityWith-
Provenance, allowing us to model, for example, contributors. Furthermore, we provide scoped
domain and range restrictions for the implements property, as well as state that an Imple-
mentation implements ComputationalModels. This axiom can be changed depending on the
requirements - it is foreseeable that one to many ComputationalModels can be implemented
in the same repository (existentiality), or only one (exact cardinality restriction of 1).

Implementation C EntityWithProvenance (25)



3 implements.ComputationalModel C Implementation (26)
Implementation C V implements.ComputationalModel (27)

Implementation C =1 implements.ComputationalModel (28)

ParameterInstantiation is the set of parameters the defines the, typically mathematical,
model space for an execution of a computational model. For instance, in Newton’s Law of
Cooling: Q = h % A(T(t) — Teny), the heat transfer coefficient h, objects surface area A,
and the temperature of an objects surrounding environment 7, would provide part of a
Parameterlnstantiation needed to understand the results of the execution of a computational
model. Additional details such as time step used in solving the mathematical model would also
be part of the ParameterInstantiation.

Resource is an arbitrary piece of data that the computational model will require in order to
run. These might be data sources or parameters. Note that a ComputationalModel is also a
Resource. This allows us to model how ComputationalModels might feed into each other.

TemporalExtent is a straightforward concept, representing the length of time that the Com-
putationalModelExecution would have run. It is, however, left as an interface in the pattern,
as we do not want to mandate a particular conceptualization of time. This interface could, for
example, be satisfied using xs:duration or the Time ontology [10] for more complex modeling,
depending on the needs of the use-case.

5. Conclusion

Modeling the process or pipeline by which computational observations are generated (i.e., the
results from executed numerical models or simulations) is an important aspect of trustworthy
data. For example, the adage “Garbage In, Garbage Out” comes to mind. How can we trust
operations on unknown data that is untrustworthy? The Computational Observation ODP is
an attempt to fill this space. By describing the entire generation pipeline, from the particular
resources used to implement a computational model, to the hardware, software, and param-
eter configurations used in the execution of said computational model we can more readily
understand how certain results were achieved in modeling and simulation scenarios.

We furthermore presented a simplified, conceptual framework for discussing abstract and
concrete notions of the same underlying concept. That is, the difference between, for example,
an algorithm and its execution; or a recipe and the act of cooking. In this way, a computational
model and its execution must be similarly modeled.

We have identified the following items as next steps in our work.

1. We intend to instantiate and connect it to instantiations of both the Data Transformation
and Computational Environment Patterns, to create a Modeling & Simulation Ontology.

2. The Computational Observation pattern will be added to the next version of MODL (The
modular ontology design pattern library — [11]).

3. Create a cross-walk from the Computational Observation pattern to the CodeMeta Project
[12].



Acknowledgement. Authors Shimizu and Hitzler wish to acknowledge funding for this work
under the National Science Foundation Grant No. 2033521: “KnowWhereGraph: Enriching and
Linking Cross-Domain Knowledge Graphs using Spatially-Explicit Al Technologies”. Author
Vardeman wishes to acknowledge funding for this work under the National Science Foundation
Grant No. PHY-1247316: “DASPOS: Data and Software Preservation for Open Science” and
Grant No. 2127548 “CI-Compass”. Any opinions expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation. The authors
would also like to acknowledge valuable discussion with David Carral, Gary Berg-Cross, and
Michelle Cheatham in the early stages of the pattern’s development.

References

(1]
(2]

C. Shimizu, K. Hammar, P. Hitzler, Modular ontology modeling, Semantic Web (2022). In
press.

A. Gangemi, V. Presutti, Ontology design patterns, in: S. Staab, R. Studer (Eds.),
Handbook on Ontologies, International Handbooks on Information Systems, Springer,
2009, pp. 221-243. URL: https://doi.org/10.1007/978-3-540-92673-3_10. doi:10.1007/
978-3-540-92673-3\_10.

K. Janowicz, A. Haller, S. Cox, M. Lefrancois, D. L. Phuoc, K. Taylor, Semantic Sensor Net-
work Ontology, W3C Recommendation, W3C, 2017. Https://www.w3.org/TR/2017/REC-
vocab-ssn-20171019/.

G. Correa Publio, D. Esteves, A. Lawrynowicz, P. Panov, L. Soldatova, T. Soru, J. Vanschoren,
H. Zafar, ML-Schema: Exposing the semantics of machine learning with schemas and
ontologies, arXiv e-prints (2018) arXiv:1807.05351.

C. Shimizu, R. M. McGranaghan, A. Eberhart, A. C. Kellerman, Towards a modular
ontology for space weather research, in: E. Blomqvist, T. Hahmann, K. Hammar, P. Hitzler,
R. Hoekstra, R. Mutharaju, M. Poveda-Villalon, C. Shimizu, M. G. Skjeeveland, M. Solanki,
V. Svatek, L. Zhou (Eds.), Advances in Pattern-Based Ontology Engineering, extended
versions of the papers published at the Workshop on Ontology Design and Patterns
(WOP), volume 51 of Studies on the Semantic Web, 10S Press, 2021, pp. 299-311. URL:
https://doi.org/10.3233/SSW210021. doi:10.3233/SSW210021.

D. Huo, J. Nabrzyski, C. F. V. II, An ontology design pattern towards preservation of
computational experiments, in: C. KeBler, J. Zhao, M. van Erp, T. Kauppinen, J. van
Ossenbruggen, W. R. van Hage (Eds.), Proceedings of the 5th Workshop on Linked Science
2015 - Best Practices and the Road Ahead (LISC 2015) co-located with 14th International
Semantic Web Conference (ISWC 2015), Bethlehem, Pennsylvania, USA, October 12, 2015,
volume 1572 of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 15-18. URL: http:
//ceur-ws.org/Vol-1572/paper3.pdf.

A. Gangemi, P. Mika, Understanding the semantic web through descriptions and situations,
in: R. Meersman, Z. Tari, D. C. Schmidt (Eds.), On The Move to Meaningful Internet Systems
2003: CooplS, DOA, and ODBASE - OTM Confederated International Conferences, CooplS,
DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003, volume 2888 of


https://doi.org/10.1007/978-3-540-92673-3_10
http://dx.doi.org/10.1007/978-3-540-92673-3_10
http://dx.doi.org/10.1007/978-3-540-92673-3_10
https://doi.org/10.3233/SSW210021
http://dx.doi.org/10.3233/SSW210021
http://ceur-ws.org/Vol-1572/paper3.pdf
http://ceur-ws.org/Vol-1572/paper3.pdf

Lecture Notes in Computer Science, Springer, 2003, pp. 689-706. URL: https://doi.org/10.
1007/978-3-540-39964-3 44. d0i:10.1007/978-3-540-39964-3\_44.

[8] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontolo-
gies with DOLCE, in: A. Gémez-Pérez, V. R. Benjamins (Eds.), Knowledge Engi-
neering and Knowledge Management. Ontologies and the Semantic Web, 13th Inter-
national Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings,
volume 2473 of Lecture Notes in Computer Science, Springer, 2002, pp. 166-181. URL:
https://doi.org/10.1007/3-540-45810-7_18. doi:10.1007/3-540-45810-7\_18.

[9] S. Sahoo, D. McGuinness, T. Lebo, PROV-O: The PROV Ontology, W3C Recommendation,
W3C, 2013. Http://www.w3.0rg/TR/2013/REC-prov-0-20130430/.

[10] C. Little, S. Cox, Time Ontology in OWL, W3C Recommendation, W3C, 2017.
Https://www.w3.0rg/TR/2017/REC-owl-time-20171019/.

[11] C. Shimizu, Q. Hirt, P. Hitzler, MODL: A modular ontology design library, in: K. Janowicz,
A. A. Krisnadhi, M. Poveda-Villalén, K. Hammar, C. Shimizu (Eds.), Proceedings of the 10th
Workshop on Ontology Design and Patterns (WOP 2019) co-located with 18th International
Semantic Web Conference (ISWC 2019), Auckland, New Zealand, October 27, 2019, volume
2459 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 47-58. URL: http://ceur-ws.
org/Vol-2459/paper4.pdf.

[12] codemeta, The CodeMeta Project, https://codemeta.github.io/, ????


https://doi.org/10.1007/978-3-540-39964-3_44
https://doi.org/10.1007/978-3-540-39964-3_44
http://dx.doi.org/10.1007/978-3-540-39964-3_44
https://doi.org/10.1007/3-540-45810-7_18
http://dx.doi.org/10.1007/3-540-45810-7_18
http://ceur-ws.org/Vol-2459/paper4.pdf
http://ceur-ws.org/Vol-2459/paper4.pdf

	1 Introduction
	2 Related Work
	3 Modeling Abstract and Concrete Concepts
	3.1 Formalization of the Simplified Framework

	4 A Pattern for Computational Observations
	5 Conclusion

