
Rational Defeasible Subsumption in DLs with Nested
Quantifiers: the Case of ELI⊥ELI⊥ELI⊥
(Extended Abstract)

Igor de Camargo e Souza Câmara
1,∗

, Anni-Yasmin Turhan
2

1University of São Paulo, Brazil
2Dresden University of Technology, Germany

Abstract
Defeasible description logics (DDLs) support nonmonotonic reasoning by admitting defeasible concept inclusions in the

knowledge base. Early reasoning methods for subsumption did not always use defeasible information for objects in the scope

of nested quantifiers and thus neglected un-defeated information. The reasoning approach employing typicality models for

the DDL EL⊥ overcomes this effect for existentially quantified objects.

In this extended abstract we report on how to lift typicality model-based reasoning to the DDL ELI⊥ , which extends

EL⊥ with inverse roles. These can capture a form of universal quantification and extend expressivity of the DDL substantially.

Reasoning in DDLs often employs rational closure according to the propositional KLM postulates. We can show that the

proposed subsumption algorithm yields more entailments than rational propositional entailment.
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Description logics (DLs) are knowledge representation

formalisms that are designed to model terminological

knowledge. Important notions from an application do-

main are modeled by concepts, which are essentially

unary first-order logic predicates. Each DL offers a set of

concept constructors which can be used to build complex

concepts. The so-called roles correspond to binary rela-

tions and can be used in concept constructors to relate

members of one concept to members of another. The use

of roles and the quantification over the role-successors is

what sets DLs apart from propositional logic. Concepts

can be related to each other by so-called general concept
inclusions (GCIs), which state material implications for a

pair of (complex) concepts. A finite set of GCIS is called

a TBox T .

Reasoning in description logics is usually the classical,

monotone first-order reasoning. Two prominent reason-

ing problems are satisfiability of a concept w.r.t. an ontol-

ogy and to decide subsumption for two given concepts

w.r.t. an ontology. The latter is to test whether mem-

bership to the first concept implies membership to the

second w.r.t. to the GCIs in T and is a classical entailment
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relation. For certain applications monotone reasoning

can be a short-coming and variants of DLs with non-

monotonic reasoning have been investigated by the re-

search community. A popular nonmonotonic variant are

defeasible description logics (DDLs) which can express

knowledge that holds until it is defeated by contradictory

information. DDLs can express what properties typical

members of a concept fulfill by the use of defeasible con-
cept inclusions (DCIs) . A finite set of GCIS is a DBox D.

A defeasible knowledge base (DKB) is a pair of a TBox and

a DBox: K = (T ,D).
There are several proposals for semantics of defeasible

DLs in the literature, such as [1, 2, 3, 4, 5, 6]. Many of them

use a kind of preferential semantics that often relies on

a preference relation on the interpretation domain. An-

other well-investigated approach is supply the semantics

by materialization-based reasoning, where essentially the

information from the DCIs is used in conjunction with

the (potential) subsumee. This approach has the severe

short-coming of quantification neglect which means that

defeasible information is not used for all the elements

in the relational neighborhood of the subsumee. Thus

even un-defeated defeasible information can be omitted

when performing reasoning over existentially quantified

objects—as it was observed in [5] and later and indepen-

dently in [7, 6].

One approach that alleviates quantification neglect

and does not rely on a preference relation over the do-

main is defeasible reasoning by typicality models. These

models were introduced for the DL EL⊥ and provide a

supraclassical inference relation. The classical DL EL⊥
provides conjunction and a form of existential quantifica-
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tion called existential restrictions as concept constructors.

It can also state disjointness of concepts by the use of ⊥.

EL⊥ has the canonical model property, i.e. there always

exists a model that can be embedded into all other mod-

els. Thus testing whether α is entailed (i.e. holds in all

models) can be done by computing the canonical model

and test whether α is satisfied in it. Reasoning in EL⊥
can be done in polynomial time [8].

To compute the canonical model in classical EL⊥, the

ontology is normalized such that complex concepts get

assigned a name. The domain of the canonical model con-

sists of a representative for each of the named concepts.

The canonical models are a main building block of the

typicality model used for to characterize the semantics

of defeasible reasoning in EL⊥.

Typicality interpretations used for defeasible reason-

ing have 2-dimensional domains. One dimension is the

representative domain, which coincides with the domain

of the classical canonical model. The other dimension is

determined by which subsets of the DBox D are “applied”

to the elements. Each element of the typicality domain

for EL⊥ is a pair of a concept name and a subset of D.

Now, the use of different collections of subsets from

D induces different strengths of reasoning. The use

of a chain of subsets given by the exceptionality chain

computed according to [9] gives reasoning of rational

strength. This chain would always include the empty

set indicating that no defeasible information needs to

be satisfied. (To achieve reasoning of relevant strength

the whole lattice of subsets of D is used.) Besides the

parameter for strength of reasoning, the semantics is also

determined by the parameter of coverage. Coverage of

reasoning, which determines whether defeasible infor-

mation is only “applied” to the root object of a concept

(and not necessarily to the objects in its relational neigh-

borhood) or to all objects in the relational neighborhood

of a concept. The first is called propositional strength

and the latter is called nested strength. Different forms of

coverage of reasoning are induce by the relational struc-

ture on the domain, i.e. by forcing successors to be as

typical as possible or not forcing this.

Reasoning of propositional strength is mainly of inter-

est to us to be able to compare the resulting inference

relation to materialization-based reasoning. Reasoning

under nested coverage results in an inference relation

that does not cause quantification neglect.

The results presented in this extended abstract are

initial steps on a longer research path. We want to inves-

tigate defeasible reasoning by means of typicality models

for defeasible Horn-ALC . This DDL is fairly expressive,

as (non-Horn) ALC is propositionally complete and ad-

mits the use of both quantifiers. For all quantification

can be captured by the concept constructor called value

restriction. Horn-ALC restricts ALC to GCIs that are

Horn rules and Horn-ALC enjoys the canonical model

property. To lift the method for EL⊥ to Horn-ALC two

extensions of the logic need to be addressed:

• the more general form of negation and

• forall quantification

We address the latter by investigating ELI⊥, which ex-

tends EL⊥ by inverse roles which, in turn, can express

value restrictions as consequences.

The goal of this paper is to develop a characterization

of defeasible entailment (and thus of defeasible subsump-

tion) that alleviates quantification neglect and provides

reasoning of rational strength. To that end we proceed

as it was done in [6] for EL⊥. First we develop a char-

acterization of entailment under rational strength and

propositional coverage. From this we develop a char-

acterization of entailment under rational strength and

nested coverage.

Entailment under rational strength and proposi-
tional coverage in ELI⊥. The first step to lift the

technique from [6] to ELI⊥ is to adapt the typicality

domain. We use for the first dimension the representa-

tive domain for ELI⊥ . The classical canonical model for

ELI⊥ uses sets of concept names as domain elements,

since the combination of existential restrictions and value

restrictions can cause conjunctions for which no name

exists in the DKB. For instance, when ∃r.E and ∀r.F get

combined, there need not be a name for the concept E⊓ F
that the r-successor belongs to. This extended represen-

tative domain makes several of the technical construc-

tions for EL⊥ more involved for ELI⊥ . It also incurs an

increase of computational complexity from polynomial

time to ExpTime for reasoning already in for classical

reasoning [8].

The second dimension of the typicality domain for

ELI⊥ is—as before—the exceptionality chain computed

according to [9]. This gives the domain for rational

strength reasoning in ELI⊥ in general. It is the rela-

tional structure on the typicality domain that determines

the coverage of reasoning. In case of propositional cov-

erage, we extend the minimal typicality models for EL⊥
to the use of inverse roles.

In minimal typicality models, the root element belong-

ing to a named concept can have any degree of typicality

admitted by the domain, i.e. it can satisfy any subset of

DCIs available in the (second dimension of the) typicality

domain. The elements that are in the relational neighbor-

hood of this root element, however, do not need to satisfy

any of the defeasible information. Therefore every role

successor necessitated by existential restrictions for roles

or their inverse, are elements from the typicality domain,

where the second component is empty, i.e. where no DCI

needs to be satisfied.
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We show that defeasible subsumption w.r.t. a ELI⊥
DKB and under rational strength and propositional cov-

erage can be decided by testing satisfaction of it in the

rational minimal typicality model alone.

Entailment under rational strength and nested cov-
erage in ELI⊥. The characterization of nested ratio-

nal reasoning for EL⊥ is achieved by means of maximal

typicality models. The idea for this kind of models is that

not only the root element of a concept is as typical as it
gets, but that also all the elements that the root element

is connected to via (inverse) roles are. Maximal typicality

models use the same typicality domain as their minimal

counterparts. The generation of maximal typicality mod-

els is done by a fixed-point construction starting from the

minimal typicality model. It successively makes elements

that a role edge starts from or ends in more typical, i.e.

reconnects at an element in the typicality domain that

represents the same set of named concepts, but is coupled

with a bigger subset of D. The fixed-point construction

proceeds in two steps in every round:

1. identify an edge in the active set of models that

can be upgraded to a more typical successor or

predecessor and upgrade that edge

2. for the obtained interpretation, restore it to be a

model of the DKB again

This construction operates on a set of models, where

only the ones with elements that are maximally typical

are kept. From this set the maximal typicality model

is obtained as the one model capturing the information

common to all models in the set.

The major technical challenge for defining an upgrade

method for ELI⊥ is that here the element that causes an

edge in the model and the role predecessor of that edge

need no longer coincide as it is the case in EL⊥. This

required a much more elaborate technique for upgrading

the models.

Our main result is that defeasible subsumption w.r.t.

a ELI⊥ DKB and under rational strength and nested

coverage can be decided by testing satisfaction of it in

the rational maximal typicality model alone. This es-

tablishes the computation of rational maximal typicality

models as the main step in the decision procedure for

entailment (and subsumption) for ELI⊥ that does not

commit quantification neglect.

We also investigate the relationship between the

materialization-based semantics and the one given by

nested rational reasoning realized by maximal typicality

models. We show that the latter semantics indeed yields

consequences that are a superset of the consequences

obtained by the materialization-based semantics.

By these results we have provided a method to decide

entailment in DDLs that admit the use of both quantifiers

and that does not omit defeasible information unless a

contradiction is encountered.

Currently we are working on typicality models that can

achieve reasoning of relevant strength. We need to

see whether a mere change of the underlying typical-

ity domain—the full lattice P(D) instead of the excep-

tionality chain—is enough to for this or whether new

techniques in comparison to [6] are required. Also, a

comparison between the resulting inference relations for

ELI⊥ would be a asset to understand defeasible reason-

ing in DDLs better. In the long run, it is interesting to

extend these results to the DDL Horn-ALC .
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