
Trust Graphs for Belief Revision: Framework and
Implementation
Aaron Hunter1,*, Sam Tadey1

1British Columbia Institute of Technology
Burnaby, Canada

Abstract
Trust plays a role in the process of belief revision. When information is reported by another agent, it should only be believed
if the reporting agent is trusted as an authority over some relevant domain. In practice, an agent will be trusted on a particular
topic if they have provided accurate information on that topic in the past. In this paper, we demonstrate how an agent can
construct a model of knowledge-based trust based on the accuracy of past reports. We then show how this model of trust can
be used in conjunction with Ordinal Conditional Functions to define two approaches to trust-influenced belief revision. In the
first approach, strength of trust and strength of belief are assumed to be incomparable as they are on different scales. In the
second approach, they are aggregated in a natural manner. We then describe a software tool for modelling and reasoning
about trust and belief change. Our software allows a trust graph to be updated incrementally by looking at the accuracy of
past reports. After constructing a trust graph, the software can then compute the result of AGM-style belief revision using
two different approaches to incorporating trust.

Keywords
belief revision, knowledge representation, trust

1. Introduction
Belief revision is concerned with the manner in which an
agent incorporates new information that may be incon-
sistent with their current beliefs. In general, the belief
revision literature assumes that new information is more
reliable than the initial beliefs; in this case, new informa-
tion must always be believed following belief revision.
However, in many practical situations this is not a rea-
sonable assumption. In practice, we need to take into
account the extent to which the source of the new infor-
mation is trusted. In this paper, we demonstrate how an
agent can actually build trust in a source, based on past
reports.1

Suppose that an agent believes 𝜑 to be true, and they
are being told by an agent𝑅 that𝜑 is not true. In this kind
of situation, we will use ranking functions to represent
both the initial strength of belief in 𝜑 as well as the level
of trust in 𝑅. Significantly, however, the trust in 𝑅 is not
uniform over all formulas. Each information source is
trusted to different degrees on different topics. The extent
to which 𝑅 is trusted on a particular topic is determined
by how frequently they have made accurate reports on

NMR 2022: 20th International Workshop on Non-Monotonic Reasoning,
August 07–09, 2022, Haifa, Israel
*Corresponding author.
$ aaronhunter@bcit.ca (A. Hunter); samtadey10@gmail.com
(S. Tadey)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1The content of sections 1-4 of this paper have previously been
published in [1]. The implementation discussed in section 5 is new,
and was not discussed in that paper.

that topic in the past.
In the rest of the paper, we proceed as follows. In

the next section, we give a motivating example that will
be used throughout the paper. We then review formal
preliminaries related to belief revision and trust. We
then introduce trust graphs, our formal model of trust.
We define a simple approach for building a trust graph
from past revisions, and prove some basic results. We
then demonstrate how trust rankings can influence belief
revision in two different ways. First, we consider the
naive case, where the strength of trust is independent
of the strength of belief. Second, we consider the more
complex case, where strength of trust is aggregated with
strength of belief.

Finally, we describe and implemented software tool
that automates this entire process. The software pre-
sented here is a useful addition to the relatively small
collection existing belief revision solvers, because it ex-
tends the class of practical problems that we can model
and solve. To the best of our knowledge, the software pre-
sented in this paper is the first implemented system that
incrementally builds a model of trust that is specifically
intended to inform the process of belief revision.

2. Preliminaries

2.1. Motivating Example
Consider a situation where there are two rooms 𝐴 and 𝐵
located inside a building. There are two agents, which we
call Absent and Present. Informally, Absent is not in the
building whereas Present is in the building. These agents

39

mailto:aaronhunter@bcit.ca
mailto:samtadey10@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

communicate about the status of the lights in each room.
For simplicity, we say that 𝐴 is true when the light is on
in room 𝐴 and we say 𝐵 is true when the light is on in
room 𝐵.

We focus on the beliefs of Absent, who initially thinks
that the light in room 𝐴 is on and the light in room 𝐵
is off. Now suppose that Present sends a message that
asserts the light is off in 𝐴 and the light is on in room 𝐵.
If Present is completely trusted, this is not a problem; the
report simply leads Absent to believe they were incorrect
about the lights.

But suppose that Present has given incorrect reports in
the past. We can collect these reports, and check to see
when they have been correct and when they have been
incorrect. For example, suppose that Present is always
correct about the light status in room 𝐴, whereas they
are often incorrect about the light status in room 𝐵. We
might draw the conclusion that they are normally physi-
cally in the room 𝐴, and that they are too lazy to walk
to a another room to check the lights.

Formally, Absent does not need a plausible story to ex-
plain the mistakes in the reports; they need some mecha-
nism for modelling trust over different propositions. By
looking at the accuracy of reports on different topics,
they build a model of trust that allows information re-
ported from Present to be incorporated appropriately. In
this paper, we develop formal machinery that is suitable
for capturing all facets of this seemingly simple example.

2.2. Belief Revision
We assume an underlying set V of propositional vari-
ables. A formula is a propositional combination of ele-
ments of V, using the usual connectives→,∧,∨,¬. We
will assume that V is finite in this paper, though that
need not be the case in general. A state is a propositional
interpretation over V, which assigns boolean values to
all variables. We will normally specify a state by giving
the set of variables that are true. A belief state is a set
of states, informally representing the set of states that
an agent considers possible. We let |𝜑| denote the set of
states where the formula 𝜑 is true.

The dominant approach to belief revision is the AGM
approach. A revision operator is a function * that maps
a belief state 𝐾 and a formula 𝜑 to a new belief state
𝐾 * 𝜑. An AGM revision operator is a revision operator
that satisfies the so-called AGM postulates. We refer the
reader to [2] for a complete introduction to the AGM
theory of belief revision.

Although we are concerned with AGM revision at
times, in this paper we actually define the beliefs of an
agent in terms of Ordinal Conditional Functions (OCFs)
[3], which are also called ranking functions. An OCF is
a function 𝜅 that maps every state 𝑠 to an ordinal 𝜅(𝑠).
Informally, if 𝜅(𝑠1) < 𝜅(𝑠2), this is understood to mean

that the agent considers it more likely that 𝑠1 is the actual
state, as opposed to 𝑠2. Note that 𝜅 defines a belief state
𝐵𝑒𝑙(𝜅) as follows:

𝐵𝑒𝑙(𝜅) = {𝑠 | 𝜅(𝑠) is minimal }.

We can also define a revision operator * associated with
𝜅 as follows:

𝐵𝑒𝑙(𝜅) * 𝜑 = min
𝜅

(|𝜑|).

The operator on belief states specified in this manner de-
fines an AGM belief revision operator, for any underlying
OCF.

2.3. Trust
The notion of trust plays an important role in many ap-
plications, including security [4, 5] and multi-agent sys-
tems [6, 7]. In this paper, we are concerned primarily
with knowledge-based trust. That is, we are concerned
with the extent to which one agent trusts another to have
the knowledge required to be trusted on particular state-
ments. This is distinct from trust related to honesty or
deception.

We refer occasionally to trust-senstive belief revision
operators [8]. Trust-sensitive belief revision operators
are defined with respect to a trust-partition over states.
The equivalence classes of a trust partition Π consist
of states that can not be distinguished by a particular
reporting agent. In our motivating example, we might
define a trust partition for Present that consists of two
equivalence classes: one that includes all states where
the light is on in room 𝐴, and one that includes all states
where the light is off in room 𝐴. In this case, Present is
informally trusted to be able to tell if the light in room 𝐴
is on or off. However, Present is not trusted to be able to
tell if the light in room 𝐵 is on or off.

A trust-sensitive revision operator *Π is defined with
respect to a given AGM revision operator * and a trust
partition Π. The operator *Π operates in two steps when
an agent is given a report 𝜑. First, we find the set Π(𝜑)
of all states that are related by Π to a model of 𝜑. Then
we perform regular AGM revision with this expanded
set of states as input. Hence, the model of trust is essen-
tially used to pre-process the formula for revision, by
expanding it to ignore distinctions that we do not trust
the reporter to be able to make.

2.4. Trust Rankings
We can also define trust in terms of a distance function be-
tween states. The notion of distance required is generally
an ultrametric.

Definition 1. An ultrametric is a binary function 𝑑 over
a set 𝑋 , such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 :

40

𝐴,𝐵 𝐴

𝐵∅

1

1

2 22 2

Figure 1: A Trust Graph

• 𝑑(𝑥, 𝑦) ≥ 0.
• 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.
• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).
• 𝑑(𝑥, 𝑧) ≤ max{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)}.

If we remove condition 2, then 𝑑 is a pseudo-ultrametric.

The following definition of a trust ranking is given in [9].

Definition 2. For any propositional vocabulary, a trust
ranking is a pseudo-ultrametric over the set 𝑆 of all states.

A trust ranking is intended to capture the degree to which
an agent is trusted to distinguish between states in a
graph. If 𝑑(𝑠1, 𝑠2) is large, this means the agent can be
trusted to distinguish the states 𝑠1 and 𝑠2. However, if
the distance is small, they can not be trusted to draw this
distinction.

3. Building Trust

3.1. Trust Graphs
We now turn to our main problem: building a notion
of trust from data. We assume throughout this paper a
fixed, finite vocabulary V. All states, belief states, and
formulas will be defined with respect to this underlying
vocabulary.

Definition 3. Let 𝑆 be the set of states over V. A trust
graph over 𝑆 is a pair ⟨𝑆,𝑤⟩, where 𝑤 : 𝑆 × 𝑆 → N.

Hence, a trust graph is just a complete weighted graph
along with a distance between states. Informally, a trust
graph represents the trust held in another agent. The
weight on the edge between two states 𝑠1 and 𝑠2 is an
indication of how strongly the agent is trusted to directly
distinguish between those states.

Example 1. Consider the motivating example, in the case
where Absent trusts Present more strongly to check if the
light in room 𝐴 is on as opposed to room 𝐵. This could
be captured by the trust graph in Figure 1, by having a
higher weight on edges that connect states that differ on the
value of 𝐴. Note that the minimax distance 𝑑 can easily
be calculated from this graph.

The edge weights represent how strongly a reporting
agent is trusted to distinguish between a pair of states.
If the weight is high, we interpret this to mean that the
agent is strongly trusted to distinguish between the states.
If the weight is low, then the reporting agent is not trusted
to distinguish the states.

In order to build a notion of trust in an agent, we
need to have a history of the past reports that agent
has provided. Our basic approach is to assume that we
start with a set of statements that a reporting agent has
made in the past, along with an indication of whether
the reports were correct or not.

Definition 4. A report is a pair (𝜑, 𝑖), where 𝜑 is a for-
mula and 𝑖 ∈ {0, 1}. A report history is a multi-set of
reports.

We let Φ, possibly with subscripts, range over report
histories. A report history Φ represents all of the claims
that an agent has truthfully or falsely claimed in the past.
Informally, if (𝜑, 1) ∈ Φ then the agent in question has
reported 𝜑 in the past in a situation where 𝜑 was shown
to be true. On the other hand, (𝜑, 0) ∈ Φ means that 𝜑
has been reported in a situation where it was false.

3.2. Construction from Reports
Suppose we start with a trust graph in which the report-
ing agent is essentially trusted to be able to distinguish
all states, with a default confidence level. For each true
report in the history, we strengthen our trust in the re-
porting agent’s ability to distinguish certain states. For
each false report, we weaken our trust.

Definition 5. For any 𝑛 > 0, the initial trust graph
𝑇𝑛 = ⟨𝑆,𝑤⟩ where 𝑆 is the set of states, and 𝑤 is defined
such that 𝑤(𝑠, 𝑡) = 0 if 𝑠 = 𝑡 and 𝑤(𝑠, 𝑡) = 𝑛 otherwise.

The idea of the initial trust graph is that the reporting
agent is trusted to distinguish between all states equally
well.

We are now interested in giving a procedure that takes
a report history, and returns a trust graph; this is pre-
sented in Algorithm 1. The algorithm looks at each report
in the history 𝑅, and it increases the weight on edges
where there have been true reports and decreases the
weight on edges where there have been false reports.

Proposition 1. Given a report history 𝑅, the weighted
graph returned by Algorithm 1 is a trust graph.

This result relies on the fact that 𝑤 only returns non-
negative values; this is guaranteed by the choice of 𝑛 for
the initial trust graph.

Example 2. We return to our running example. Suppose
that we have no initial assumptions about the trust held

41

Algorithm 1 Construct_from(𝑅)
Input 𝑅, a report history.
𝑛← size of 𝑅.
𝑇 = ⟨𝑆,𝑤⟩ is the initial trust graph for 𝑛.
while 𝑅 ̸= ∅ do

Get some (𝜑, 𝑖) ∈ 𝑅
if 𝑖 = 0 then

𝑤(𝑠1, 𝑠2) ← 𝑤(𝑠1, 𝑠2) − 1 for all 𝑠1, 𝑠2 such
that 𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑

else
𝑤(𝑠1, 𝑠2) ← 𝑤(𝑠1, 𝑠2) + 1 for all 𝑠1, 𝑠2 such
that 𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑

end if
𝑅 = 𝑅− (𝜑, 𝑖).

end while
Return ⟨𝑆,𝑤⟩.

in Present, and that the report history 𝑅 consists of the
following reports:

⟨𝐴, 1⟩, ⟨𝐴, 1⟩, ⟨𝐵, 0⟩, ⟨𝐴 ∧𝐵, 1⟩

Since our report history has size 4, the initital trust graph
would look like Figure 1, except that all edge weights would
be 4. After the first report, the edge weights would be
increased on the following edges:

({𝐴,𝐵}, ∅), ({𝐴,𝐵}, {𝐵}), ({𝐴}, ∅), ({𝐴}, {𝐵}).

The same thing would happen after the second report. On
the third report, we would subtract one from the following
edges:

({𝐴,𝐵}, ∅), ({𝐴,𝐵}, {𝐴}), ({𝐵}, ∅), ({𝐴}, {𝐵}).

Finally, the fourth report would add one to the following
edges:

({𝐴,𝐵}, ∅), ({𝐴,𝐵}, {𝐴}), ({𝐴,𝐵}, {𝐵}).

The final trust graph is given in Figure 2. Based on this
graph, Present is least trusted to distinguish the states {𝐵}
and ∅. This is because the positive reports were all related to
the truth of 𝐴, and the only false report was a report about
the trust of 𝐵. Hence, the graph is intuitively plausible.

3.3. Basic Results
We have defined an approach to building trust graphs
from reports. We remark that the edge weights will not be
used directly when it comes to belief revision. For belief
revision, what we need is a single trust ranking that is
derived from the trust graph. However, constructing the
graph allows us to define the ranking function as sort of
a consequence of the reports. In this section, we show
the construction satisfies some desirable properties.

First, we define the trust ranking associated with a
trust graph.

𝐴,𝐵 𝐴

𝐵∅

4

3

6 5

7 6

Figure 2: Graph Construction

Definition 6. For any trust graph 𝑇 = ⟨𝑆,𝑤⟩, let 𝑑𝑇
denote the minimax distance between states.

The distance 𝑑𝑇 captures an overall trust ranking that
can be used to inform belief revision. Informally, even if
an agent is not trusted to distinguish two states directly,
they may be trusted to distinguish them based on a path
in the graph. The important feature of such a path is the
minimax weight. The following is a basic result about
the notion of distance defined by a trust graph.

Proposition 2. For any trust graph 𝑇 = ⟨𝑆,𝑤⟩, the
function 𝑑𝑇 is a pseudo-ultrametric on 𝑆.

Recall from Section 2 that a pseudo-ultrametric over
states can be used to define a ranking that is suitable
for reasoning about trust. We remark that, in fact, every
ultrametric over a finite set is actually equivalent up to
isomorphism to an ultrametric defined by the minimax
distance over some weighted graph. This means that
every trust ranking can be defined by a trust graph.

The next result shows that there is nothing particu-
larly special about the trust graphs constructed by our
algorithm.

Proposition 3. Every weighted graph over 𝑆 is the trust
graph obtained from some report history 𝑅.

This can be proven by a simple construction where each
report only modifies a single edge weight.

In the next results, we adopt some simplifiying nota-
tion. If 𝑅 is a report history and 𝑟 is a report, we let 𝑅 · 𝑟
denote the multiset obtained by adding 𝑟 to 𝑅. Also, if
𝑅 is a report history, we let 𝑇 (𝑅) denote the trust graph
obtained from 𝑅 and we let 𝑑𝑅 denote the distance 𝑑
defined by 𝑇 (𝑅).

As stated, Algorithm 1 can only construct a trust graph
starting from scratch. However, the following proposi-
tion states that we can iteratively modify a trust graph
as we get new reports.

Proposition 4. Let 𝑅 be a report history and let 𝑟 be a
report. Then𝑇 (𝑅·𝑟) is identical to the trust graph obtained
by modifying 𝑇 (𝑅) as follows:

42

• Increment weights between states that disagree on
𝜑, if 𝑟 is a positive report.

• Decrement weights between states that disagree on
𝜑, if 𝑟 is a negative report.

• Defining a new minimax distance 𝑑 in accordance
with the new edge weights.

Hence, rather than viewing trust graphs as something
created with no a priori knowledge, we can think of
trust graphs as a simple model of trust together with an
operation that tweeks the weights to respond to a new
report.

One desirable feature of our construction is that a
report of (𝜑, 0) should make the reporting agent less
trustworthy with regards to reports about the trust of 𝜑.
The next proposition shows that this is indeed the case.

Proposition 5. Let 𝑅 be a report history, let 𝑠1 and 𝑠2
be states such that 𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑. Then

𝑑𝑅(𝑠1, 𝑠2) ≥ 𝑑𝑅·(𝜑,0)(𝑠1, 𝑠2).

We have a similar result for positive reports.

Proposition 6. Let 𝑅 be a report history, let 𝑠1 and 𝑠2
be states such that 𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑. Then

𝑑𝑅(𝑠1, 𝑠2) ≤ 𝑑𝑅·(𝜑,1)(𝑠1, 𝑠2).

Taken together, these results indicate that negative (resp.
positive) reports of 𝜑 make the reporting agent less (resp.
more) trusted with respect to 𝜑. We remark that the
inequalities in the previous theorems would be strict if
we were considering actual edge weights; but they are not
strict for 𝑑𝑅, since there may be multiple paths between
states.

We have seen that trust graphs define a distance over
states that represents a general notion of trust that is
implicit in the graph. Significantly, trust graphs can be
constructed in a straightforward way by looking at past
reports; the implicitly defined trust ranking is based on
the accuracy of these reports. In the next section, we
consider how the notion of trust defined by a trust graph
can be used to construct different approaches to revision.

4. Using Trust Graphs

4.1. Example Revisited
Consider again our example involving reports about the
lights in a building. We previously pointed out that Ab-
sent might not actually trust the reports from Present, and
we gave an approach to construct a trust graph.

Informally, when talking about trust, we might make
assertions of the following form:

1. Present is not trusted to know which room they
are in.

2. Present is not trusted to check two rooms at once.

These kind of assertions give us a hint about how belief
revision might occur. For example, in the first case, Ab-
sent would interpret a report to mean that exactly one of
the rooms is lit.

Note, however, that a trust graph does not simply give
a binary notion of trust; it defines a distance function that
indicates strength of trust in various distinctions. Simi-
larly, the beliefs of an agent might be held with different
levels of strength. So, even if we have a trust graph, there
are still problems with incorporating reports related to
comparing strength of belief with strength of trust.

In our example, if Absent just left the building, they
might believe very strongly that the light in room 𝐴 must
be off. They might believe this so strongly that they
disregard Present’s report entirely. But disregarding re-
ports is not the only option. It might be the case that
the exact strength of Absent’s beliefs needs to be consid-
ered. Suppose Absent believes the light in room 𝐴 is off
with a medium degree of strength. In that case, a report
from a weakly trusted agent will not change their beliefs,
whereas a report from a strongly trusted agent would be
more convincing. Moreover, Absent also needs to have a
strength ranking over possible alternatives. Hence, this is
not simply a binary comparison between strength of de-
gree and strength of trust. In order to model interaction
between belief and trust, we need a precise formal ac-
count that permits a comparison of the two. We also need
to account for the way that Present develops a reputation,
either for laziness or inaccuracy.

4.2. Naive Revision with Trust Graphs
In the remainder of this paper, we assume that the beliefs
of an agent are represented by an OCF. We show how a
trust graph allows us to capture an approach to belief re-
vision that takes trust into account. In fact, the approach
in this section depends only on a pseudo-ultrametric 𝑑𝑇
defined by a trust graph.

For any pseudo-ultrametric 𝑑, we define a family of
revision operators *𝑛.

Definition 7. Let 𝜅 be an OCF and let 𝑑 be a pseudo-
ultrametric over 𝑆. For each 𝑛, the operator *𝑛 is defined
such that 𝐵𝑒𝑙(𝜅) *𝑛 𝜑 is equal to:

min
𝜅
{𝑠 | there exists 𝑡 such that 𝑑(𝑡, 𝑠) ≤ 𝑛 and 𝑡 |= 𝜑}

From the theory of metric spaces, we have the following.

Proposition 7. For any pseudo-ultrametric 𝑑 over a set
𝑋 , if 𝑛 ∈ N then the collection of sets 𝑌𝑥 = {𝑦 |
𝑑(𝑥, 𝑦) ≤ 𝑛} is a partition of 𝑋 .

The next result relates these revision operators to trust-
sensitive revision operators. A parallel result is proved

43

in [9], although the result here is stated in terms of OCFs
rather than AGM revision.

Proposition 8. Let 𝜅 be an OCF and let 𝑇 be a trust
graph. For any formula 𝜑 and any 𝑛:

𝐵𝑒𝑙(𝜅) *𝑛 𝜑 = 𝐵𝑒𝑙(𝜅) *Π 𝜑

where Π is the partition defined by (𝑑𝑇 , 𝑛) and *Π is the
trust-senstive revision operator associated with Π.

Hence 𝜅 and 𝑑𝑇 define a set of trust-sensitive revision op-
erators. The parameter 𝑛 specifies how close two states
must be to be considered indistinguishable in the parti-
tion.

We refer to the operators *𝑛 as naive trust-sensitive
revision operators in this paper. These operators are
naive in the sense that they do not allow us to take into
account the relative magnitudes of the values in 𝜅 and
the distances given by 𝑑𝑇 . In other words, the scales of 𝜅
and 𝑑𝑇 are not compared; it doesn’t matter if the initial
strength of belief is high or low. This makes sense in
applications where the magnitudes in 𝜅 and 𝑑𝑇 are seen
as independent.

Example 3. We refer back to our motivating example.
Suppose that the initial beliefs of Absent are given by 𝜅
such that:

𝜅({𝐴}) = 0,

𝜅({𝐵}) = 1,

𝜅({𝐴,𝐵}) = 1,

𝜅(∅) = 2

Hence the initial belief set for Absent is {𝐴}. Now suppose
that Present passes a message that asserts ¬𝐴 ∧ 𝐵; in
other words, the light is off in 𝐴 while it is on in 𝐵. If this
information was given to Absent as infallible sensory data,
then the result could be determined easily with regular
AGM revision. But this is not sensory data; this is a report,
and trust can play a role in how it is incorporated.

To make this concrete, suppose that Absent thinks that
Present is generally lazy and unaware of the room that
they are in. It is unlikely therefore, that Present would run
quickly from one room to another to verify the status of
the light in both. So perhaps the trust graph 𝑇 constructed
from past reports defines the distance function 𝑑𝑇 from
{𝐵} as follows:

𝑑𝑇 ({𝐵}, {𝐴}) = 1

𝑑𝑇 ({𝐵}, {𝐵}) = 0

𝑑𝑇 ({𝐵}, {𝐴,𝐵}) = 10

𝑑𝑇 ({𝐵}, ∅) = 5

This distance function does indeed encode the fact that
Present is not strongly trusted to distinguish {𝐴} and {𝐵};
this is because they do not always know where they are.

We have supposed that Present reports ¬𝐴 ∧ 𝐵. So,
what should Absent believe? It depends on the threshold
𝑛. If we set 𝑛 = 3, then by Proposition 6, *3 is the trust-
sensitive revision operator defined by the partition with cells
{{𝐴}, {𝐵}} and {{𝐴,𝐵}, ∅}. Since {𝐴} and {𝐵} are
in the same cell, it follows that revision by 𝐵 is equivalent
to revision by 𝐴 ∨𝐵. Hence:

𝐵𝑒𝑙(𝜅) *3 𝐵 = {{𝐴}}.

This is a belief state containing just one state; so Absent
believes that the most plausible state is the unique state
where only the light in room 𝐴 is on. Hence, if Present
reports that the light in room 𝐵 is on, it will not change
the beliefs of 𝐴 at all.

For naive operators, it does not matter how strongly
Absent believes the light in room 𝐴 is on. It only mat-
ters whether or not the reporting agent can distinguish
between particular states.

4.3. General Revision with Trust Graphs
In the previous section, we considered the case where
strength of belief and strength of trust are incomparable;
the magnitudes of the values are not on the same scale. In
this case, we can not meaningfully combine the numeric
values assigned by 𝜅 with the numeric distances given by
a trust graph; we essentially have two orderings that have
to be merged in some way. This is the general setting of
AGM revision, and trust-sensitive revision.

However, there is an alternative way to define revision
that actually takes the numeric ranks into account. First,
we define a new OCF, given some initial beliefs and a
trust distance function.

Definition 8. Let 𝜅 be an OCF and let 𝑑 be a pseudo-
ultrametric. For any 𝑠 ∈ 𝑆:

𝜅𝜑
𝑑 (𝑠) = 𝜅(𝑠) ·min{𝑑(𝑠, 𝑡) | 𝑡 |= 𝜑}.

The OCF 𝜅𝜑
𝑑 (𝑠) combines the a priori belief in the likeli-

hood of 𝑠 along with a measure indicating how easily 𝑠
can be distinguished from a model of 𝜑. Essentially, this
definition uses 𝑑 to construct a ranking function over
states centered on |𝜑|. This ranking is aggregated with
𝜅, by adding the two ranking functions together.

Given this definition, we can define a new revision
operator.

Definition 9. Let 𝜅 be an OCF and let 𝑑 be a pseudo-
ultrametric. For any formula 𝜑, define ∘𝑑 such that

𝐵𝑒𝑙(𝜅) ∘𝑑 𝜑 = {𝑠 | 𝜅𝜑
𝑑 (𝑠) is minimal}.

This new definition lets the initial strength of belief be
traded off with perceived expertise. We return to our
example.

44

Figure 3: Initializing a Trust Graph

Example 4. Consider the light-reporting example again,
with the initial belief state 𝜅 and the distance function 𝑑𝑇
specified in Example 3. Now suppose again that Present
reports 𝜑 = ¬𝐴 ∧ 𝐵, i.e. that only the light in room 𝐵
is on. We calculate 𝜅𝜑

𝑑 (𝑠) for all states 𝑠 in the following
table.

𝑠 𝜅(𝑠) 𝑑({𝐵}, 𝑠) 𝜅𝜑
𝑑 (𝑠)

{𝐴} 0 1 1
{𝐵} 1 0 1

{𝐴,𝐵} 1 10 11
∅ 2 5 7

Since the first two rows both have minimal values, it
follows that

𝐵𝑒𝑙(𝜅) ∘𝑑 *¬𝐴 ∧𝐵 = {{𝐴}, {𝐵}}.

Following revision, Absent believes exactly one light is on.

This example demonstrates how the strength of belief
and the strength of trust can interact. The given result
occurs because the strength of belief in {𝐴} is identical
to the strength of trust in the report of {𝐵}. Increasing
or decreasing either measure of strength will cause the
result to be different. Note also that this approach gives
a full OCF as a result, so we have a ranking of alternative
states as well.

5. Implementation

5.1. Functionality
We describe T-BEL , a Java application for modeling the
dynamics trust and belief. The core functionality of T-BEL
is as follows. It allows a user to create a trust graph that
captures the distinctions an information source is trusted
to make. It allows a user to enter a series of reports, which
might be correct or incorrect. These reports trigger an
update to the trust graph. Finally, the user can calculate
the result of belief revision, in a manner that accounts
for the influence of trust.

Note that the steps listed above need not be done se-
quentially. The interface for the software provides several

panels for different actions: initializing a trust graph, ma-
nipulating the trust graph, visualizing the trust graph,
and performing revision. The only constraint is that the
vocabularly needs to be provided to initialize the trust
graph. After the initial trust graph is constructed, a user
can jump between different panels. For example, one
could add new information about past reports at any
time, even after revision has been performed.

In the following sections, we describe the basic usage
of the software.

5.2. Constructing a Trust Graph
In order to perform belief revision using T-BEL , we first
need to initialize a trust graph. This is done through the
panel in Figure 3. The user simply enters a propositional
vocabulary as a comma delimited sequence of strings.
Optionally, one can specify an initial trust value; this is
the weight that will be assigned to all edges in the trust
graph. If it is not specified, it will default to 1.

The panel in Figure 4 is used for visualizing and ma-
nipulating the trust graph. After the trust graph has been
generated, it is displayed on the left side as a matrix that
gives the weight between every pair of states. The val-
ues in this matrix can be edited manually, but this is not
the preferred way to change the values. The main goal
of T-BEL is to allow trust to be built incrementally by
adding reports. This is done through the report entry
section in Figure 4. Reports are entered as formulas in a
simple variant of propositional logic, using the keyboard-
friendly symbols & (conjunction), | (disjunction) and −
(negation). The reports are tagged with 1 (positive) and
0 (negative). By default, when the Add Reports button
is pressed, the matrix on the left updates the values in
accordance with the following update rules:

Update Rule 1. For each pair of states 𝑠1, 𝑠2 such that
𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑 decrease the value 𝑤(𝑠1, 𝑠2) to
𝑤(𝑠1, 𝑠2)− 1.

Update Rule 2. For each pair of states 𝑠1, 𝑠2 such that
𝑠1 |= 𝜑 and 𝑠2 ̸|= 𝜑, increase the value 𝑤(𝑠1, 𝑠2) to
𝑤(𝑠1, 𝑠2) + 1.

These update rules correspond to the construction of a
trust graph in Algorithm 1. However, we remark that
T-BEL is not restricted to these updates. If the user would
like to specify different update rules, this can be done by
providing a text file specifying new update rules.

There is one remaining feature to mention in this panel:
the Distance Checker. We will see in the next section that
we actually do not use the values in the trust matrix
directly; we use the minimax distance generated from
these values. As such, we provide the user with a simple
mechanism for checking minimax distance for testing
and experimentation.

45

Figure 4: The Trust Panel

5.3. Specifying an Epistemic State
As noted previously, epistemic states are represented in
T-BEL using ranking functions. The software provides
two different ways to specify an epistemic state.

The first way to specify an epistemic state is by explic-
itly specifying a total pre-order over all states. This is
done by creating an external text file that lists a “level”
for all states starting from 0. For example, if we had two
variables 𝐴 and 𝐵, then one example input file could be
specified as follows:

2
0:00
1:10

The first line indicates that there are 2 variables. The
second line says that the state where 𝐴 and 𝐵 are both
false is the most plausible, so it is the only state in level 0.
The next line specifies the states in level 1. Any states not
listed are put in level 2. A ranking over states specified
in this manner gives us enough information to perform
belief revision.

Manually specifying a complete ranking in this manner
can be problematic, because it is time consuming and it is
easy to make mistakes. As such, we also give the user the
ability to experiment with revision simply by entering
a belief state as a set of formulas through an input box
in the main interface. For example, we could enter the
beliefs by giving this list of formulas:

A&B
A|-B

To generate a ranking function from such a list, T-BEL
finds all satisfying assignments. In the example given,
the only satisfying assignment occurs when 𝐴 and 𝐵
are both true. By default, T-BEL then uses the Hamming

distance from the set of satisfying assignments to create a
full ranking. In other words, the default approach defines
a ranking that corresponds to Dalal’s revision operator
[10]. However, T-BEL also provides a flexible mechanism
for reading alternative rankings from a file input.

5.4. Calculating the Result of Revision
T-BEL implements both naive revision and general revi-
sion; the user chooses the mechanism to be used in the
menu in Figure 3.

If Naive Revision is selected, then the user needs to
enter a threshold value. Following Proposition 8, this
threshold value defines a trust-sensitive revision opera-
tor. This operator is used to calculate the result of belief
revision when the Naive option is selected. The result of
revision is displayed as a formula, capturing the minimal
states in the new ranking. We note that the software
can be used to perform more than one revision when the
Hamming distance has been specified for the ranking.
However, for file-based rankings, iterated revision is not
possible.

We can also specify that we want to use general re-
vision in the dropdown menu in Figure 3. In this case,
if 𝜅 is the original ranking function, 𝑑 is the minimax
distance and 𝜑 is the formula for revision, then we can
define a new function:

𝜅𝜑
𝑑 (𝑠) = 𝜅(𝑠) + min{𝑑(𝑠, 𝑡) | 𝑡 |= 𝜑}.

By normalizing this function, we define a new ranking
function that represents the beliefs following revision.
The result of belief revision is displayed as a formula.
However, general revision can be iterated because the
full ranking is maintained after each revision.

46

Figure 5: Revision Output

5.5. Step by Step Example
Assume we want to work with the vocabularly {𝑎, 𝑏},
as well as past reports of (𝑎 ∨ 𝑏, 1) and (𝑎, 1). Assume
further that we would like to start with the belief state
(𝑎 ∧ 𝑏) and then revise by (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏). Using
T-BEL , then can solve this problem through the following
steps:

1. Enter the vocabulary 𝑎, 𝑏 and a default value of
5.

2. Enter reports (𝑎|𝑏, 1) and (𝑎, 1) then click Add
Reports.

3. Select Naive revision with threshold 3.
4. Enter the belief state 𝑎&𝑏 and formula (𝑎& −

𝑏)|(−𝑎&𝑏).
5. Click Revise.

The default value in step 1 should be set so that it is at
least as high as the number of reports. However, beyond
that constraint, it will not impact the results. After step
2, the values in the matrix representing the trust graph
will be as follows:

00 01 10 11
00 0 6 7 7
01 6 0 6 6
10 7 6 0 5
11 7 6 5 0

The revision panel following the example is in Figure
5, showing the input and the fact that the beliefs are
unchanged after revision. It can easily be verified that
this is correct.

5.6. Performance
The question of run time is a challenging one to address
for any implemented belief revision system, due to the
well known compexity of revision [11]. The problem is
even worse when we add trust graphs, which become
very large as the vocabulary size increases.

The present implementation has made many imple-
mentation choices in order to optimize performance.
For example, we represent a trust map internally as a

hashmap of hashmaps; the lookup time is very fast. An-
other place where we focus on efficiency is in the transla-
tion from formulas to belief states, where we use a DPLL
solver to find satisfying assignments. However, the run
time for T-BEL still becomes slow as the vocabulary size
increases. It is a useful prototype for reasoning about
small examples, and demonstrating the utility of trust
graphs. In future work, we will look to improve run time
by integrating a competition level ALLSAT solver for the
hard calculations [12].

6. Discussion

6.1. Related Work
This work fits in the general tradition of formalisms
that address notions of trust and credibility for belief
revision. There are alternative approaches, based on
non-prioritized and credibility-limited revision as well
[13, 14, 15]. The notion of trust has been explored in the
setting of Dynamic Epistemic Logic (DEL), by adding an
explicit measure of trust to formulas [16]. Finally, since
we are primarily concerned with with trust based on ex-
pertise, the formalism presented here is also related to
recent work on truth discovery [17].

But fundamentally, this work is really about building
trust in a source based on the knowledge demonstrated
in past reports; our goal is to develop a formal model of
knowledge-based trust. To the best of our knowledge,
this problem has not been explored previously in the
context of formal belief change operators. However, it
has been explored in some practical settings, such as the
formulation of search engine results [18].

The software introduced here can be seen as an exten-
sion of the GenB system [19]. GenB is a general solver
for revision with a limited capacity to capture trust; T-
BEL is significantly more sophisticated when it comes to
representing and reasoning about the dynamics of trust
and belief.

6.2. Conclusion
In this paper, we have addressed the problem of building
trust from past reports. We demonstrated that, in the

47

context of OCFs, trust can be interpreted in two ways.
First, if the scale used for the the strength of belief is
deemed to be independent of the distance metric, then
we can use a trust ranking to define a family of naive
revision operators for trust-sensitive revision. On the
other hand, if strength of trust and strength of belief are
considered to be comparable on the same scale, then we
have shown how the two can be aggregated to define a
new approach to trust-influenced belief revision.

We have also described a tool for solving belief change
problems influenced by trust. The focus is on building
trust from reports, and then performing belief revision.
Our software provides a simple interface that can be used
to build a trust graph iteratively, and then this graph is
used to adjust the behaviour of a formal belief change
operator to account for trust. We suggest that this tool
is an important step towards demonstrating the utility
of belief change operators for solving practical problems
with partially trusted information sources.

There are many directions for future research. Beyond
expanding the formal theory, we are primarily interested
in practical applications of this work. In future work, we
intend to improve run time performance, apply the tool
to concrete problems in the evaluation of web resources,
and connect our approach to related work on learning
with respect to trust.

References
[1] A. Hunter, Building trust for belief revision, in: Pro-

ceedings of the Pacific Rim Conference on Artificial
Intelligence (PRICAI), 2021, pp. 543–555.

[2] C. E. Alchourrón, P. Gärdenfors, D. Makinson, On
the logic of theory change: Partial meet functions
for contraction and revision, Journal of Symbolic
Logic 50 (1985) 510–530.

[3] W. Spohn, Ordinal conditional functions. A dy-
namic theory of epistemic states, in: W. Harper,
B. Skyrms (Eds.), Causation in Decision, Belief
Change, and Statistics, vol. II, Kluwer Academic
Publishers, 1988, pp. 105–134.

[4] M. Carbone, M. Nielsen, V. Sassone, A formal model
for trust in dynamic networks, in: International
Conference on Software Engineering and Formal
Methods, 2003, pp. 54–61.

[5] K. Krukow, M. Nielsen, Trust structures, Inter-
national Journal of Information Security 6 (2007)
153–181.

[6] T. D. Huynh, N. R. Jennings, N. R. Shadbolt, An in-
tegrated trust and reputation model for open multi-
agent systems, Autonomous Agents and Multi-
Agent Systems 13 (2006) 119–154.

[7] A. Salehi-Abari, T. White, Towards con-resistant
trust models for distributed agent systems, in: Pro-

ceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), 2009, pp. 272–277.

[8] R. Booth, A. Hunter, Trust as a precursor to belief
revision, J. Artif. Intell. Res. 61 (2018) 699–722.

[9] A. Hunter, R. Booth, Trust-sensitive belief revision,
in: Q. Yang, M. J. Wooldridge (Eds.), Proceedings of
the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, AAAI Press, 2015, pp.
3062–3068.

[10] M. Dalal, Investigations into a theory of knowledge
base revision, in: Proceedings of the National Con-
ference on Artificial Intelligence (AAAI), 1988, pp.
475–479.

[11] T. Eiter, G. Gottlob, On the complexity of proposi-
tional knowledge base revision, updates and coun-
terfactuals, Artificial Intelligence 57 (1992) 227–270.

[12] T. Toda, T. Soh, Implementing efficient all solu-
tions sat solvers, ACM Journal of Experimental
Algorithmics 21 (2016) 1–44.

[13] S. O. Hansson, E. L. Fermé, J. Cantwell, M. A.
Falappa, Credibility limited revision, J. Symb. Log.
66 (2001) 1581–1596.

[14] R. Booth, E. Fermé, S. Konieczny, R. P. Pérez,
Credibility-limited revision operators in proposi-
tional logic, in: Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Thir-
teenth International Conference, KR 2012, Rome,
Italy, June 10-14, 2012, 2012.

[15] G. Bonanno, Credible information, allowable in-
formation and belief revision - extended abstract,
in: L. S. Moss (Ed.), Proceedings Seventeenth Con-
ference on Theoretical Aspects of Rationality and
Knowledge, TARK 2019, Toulouse, France, 17-19
July 2019, volume 297 of EPTCS, 2019, pp. 82–90.

[16] F. Liu, E. Lorini, Reasoning about belief, evidence
and trust in a multi-agent setting, in: PRIMA 2017:
Principles and Practice of Multi-Agent Systems -
20th International Conference, Nice, France, Oc-
tober 30 - November 3, 2017, Proceedings, volume
10621 of Lecture Notes in Computer Science, Springer,
2017, pp. 71–89.

[17] J. Singleton, R. Booth, An axiomatic approach to
truth discovery, in: Proceedings of the International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2020, pp. 2011–2013.

[18] X. Dong, E. Gabrilovich, K. Murphy, V. Dang,
W. Horn, C. Lugaresi, S. Sun, W. Zhang, Knowledge-
based trust: Estimating the trustworthiness of web
sources, Proceedings of the VLDB Endowment 8
(2015).

[19] A. Hunter, E. Tsang, GenB: A general solver
for AGM revision, in: Proceedings of the Euro-
pean Conference on Logics in Artificial Intelligence
(JELIA), 2016, pp. 564–569.

48

	1 Introduction
	2 Preliminaries
	2.1 Motivating Example
	2.2 Belief Revision
	2.3 Trust
	2.4 Trust Rankings

	3 Building Trust
	3.1 Trust Graphs
	3.2 Construction from Reports
	3.3 Basic Results

	4 Using Trust Graphs
	4.1 Example Revisited
	4.2 Naive Revision with Trust Graphs
	4.3 General Revision with Trust Graphs

	5 Implementation
	5.1 Functionality
	5.2 Constructing a Trust Graph
	5.3 Specifying an Epistemic State
	5.4 Calculating the Result of Revision
	5.5 Step by Step Example
	5.6 Performance

	6 Discussion
	6.1 Related Work
	6.2 Conclusion

