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Abstract
With the intelligence of society, location-based service (LBS) plays an increasingly prominent role in
daily life. In this paper, an indoor fusion fingerprint localization based on channel state information (CSI)
and image is proposed to solve the limitation of single sensor in positioning. To reduce the dimension of
image data, Shared Convolutional-Neural-Network based Add Fusion Network(SC-AFN) is proposed
to process multi-directional images. In SC-AFN, initial features of images from different directions are
extracted by shared Convolutional-Neural-Network (CNN), and then the features are fused by Add
strategy and trained for vector representation of images. On this basis, the measure index based fusion
representation model (MI-FRM) is proposed to fuse CSI features and SC-AFN image features. MI-FRM
introduces the measurement index of fingerprint database into the fusion method. The parameters of
MI-FRM are optimized by maximizing the discrimination of fusion fingerprint database to improve the
matching accuracy for positioning. Experiments show that the fusion localization based on MI-FRM
achieves better positioning performance, with the average error 0.62m in office scene.
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1. Introduction

With the development of information and intelligence in society, location-based service (LBS)
plays an increasingly prominent role in daily life. Indoor localization has been widely used
in emergency rescue, logistics tracking, intelligent manufacturing and other aspects[1]. High
quality LBS is based on high precision location information, so it is urgent to study on precise
and reliable indoor localization technology to meet the needs of location service in complex
indoor environment.

In recent years, a series of solutions for indoor localization have been proposed. According
to the signal sensor used, the positioning technology can be divided into radio signals such as
Wi-Fi, Bluetooth and Ultra-Wide-Band (UWB), as well as non-radio signals such as infrared,
ultrasonic and vision [2, 3]. Although indoor localization with single sensor can obtain certain
accuracy, its performance is limited in a complex indoor environment. The frequent shade,
strong interference, weak light and non-line-of-sight in complex environment may lead to the
feature losing, signal error and incomplete information when single sensor is used only. It
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would inevitably affect the accuracy and reliability of positioning system. Therefore, the fusion
localization with multi-sensor has become an important trend in indoor positioning technology
[4].

Among various signals for indoor positioning, Wi-Fi and visual signal have become the
research hotspots currently due to their advantages of rich positioning information and low
hardware cost. The regular indicators of Wi-Fi are the received signal strength (RSS) and channel
state information (CSI), among which CSI provides more detailed subcarrier information with
stronger time stability. Therefore, CSI-based indoor localization can achieve better positioning
performance [5]. The accuracy of localization based on CSI has reached the meter-level in
reports, but there are still some problems such as insufficient discrimination in data and difficulty
in determining the unique location in the complex indoor environment. Visual signal-based
positioning is widely used in navigation and positioning because it does not need to deploy
equipment in advance and the cost of hardware is low [6]. The image match for indoor
positioning has the advantages of stable features and low noise influence, but multi-directional
images for positioning always have the problems of high feature dimension, complex work-flow
and difficulty in achieving real-time performance. To sum up, the CSI features of Wi-Fi signal
and the image features of visual signal have their own advantages and disadvantages, and the
fusion localization with the two signal features can improve the completeness and accuracy of
location information to achieve better performance.

At present, the multi-sensor fusion positioning systems usually include decision-level fusion
and feature-level fusion [7]. Decision-level fusion is usually used to fuse the preliminary
positioning results of different positioning sensors at a higher level to get the final result.
Although the position accuracy can be improved to a certain extent in decision-level fusion,
there are still problems such as complex process and insufficient fusion depth. In contrast,
feature-level fusion can simplify the positioning process and increase the depth of fusion. In
feature-level fusion, fingerprint database is usually constructed after fusion of heterogeneous
features from different sensors, and then location estimation is realized by fingerprint matching
[8]. Theoretically, the estimated location based on feature-level fusion can further integrate
the rich location information in multi-sensor data. However, there is still a lack of effective
unified representation of heterogeneous features for fusion fingerprint database with high
discrimination, which leads to insufficient positioning accuracy.

The most important contribution of this paper is the design of an indoor fusion fingerprint
localization based on channel state information and multi-directional images. In order to improve
the positioning accuracy by combining the two heterogenous information from different sensors,
Shared Convolutional-Neural-Network based Add Fusion Network (SC-AFN) is proposed to
extract the key vector feature from multi-directional images and the measure index based fusion
representation model (MI-FRM) of the two location features is proposed to realize the fusion
representation with high discrimination for the fingerprint localization. In SC-AFN, the shared
Convolutional-Neural-Network(CNN) model is used for the initial feature extraction of images
in all directions, the Add strategy is adopted for the disordered fusion of multiple features and
the full connection is used to extract the target related features for the final representation
of the images. In MI-FRM, the perceptron is trained with the aim of optimizing the measure
index of heterogeneous fusion features to obtain the best representation model, and the fusion
fingerprint with high discrimination can be constructed for the final fingerprint localization.



The rest of this paper is organized as follows: The second section introduces the related
work. In the third section, the proposed system is introduced, including the image feature
extraction method SC-AFN, fusion fingerprint construction method MI-FRM and the localization
method. The fourth section introduces the experimental results. In the fifth section, this paper
is summarized and the future work is prospected.

2. Related works

Multi-carrier CSI fingerprint has rich location information, but is insufficient in data discrimi-
nation. In fingerprint positioning, data processing of original CSI data can enhance fingerprint
discrimination and improve positioning accuracy [9]. In [10], with the analysis of CSI amplitude,
we propose Local Connection based Deep Neural Network (LC-DNN) to realize high precision
positioning. LC-DNN adopts multiple non-shared convolution kernels to extract the local feature
in different frequency ranges of CSI amplitudes and adopts full connection to extract the target
related global feature from the spliced local feature. Thus the features with high discrimination
are obtained for positioning. Since this paper focuses on the dimensionality reduction for
multidirectional images and the fusion for multi-sensor, LC-DNN is directly adopted for feature
processing of CSI amplitude.

Image feature description is the key point in image fingerprint localization [11]. In [12],
the authors propose a two-stage image fast search and matching localization method. Firstly,
similar images are quickly selected through Histogram of Oriented Gradient(HOG) feature, and
then the pose estimation and position estimation are further realized by the match of accurate
image feature Affine-Scale Invariant Feature Transform(A-SIFT). However, HOG, SIFT and
other traditional descriptors are still manually image feature extractors and models, which
require a specific professional foundation. Deep learning technology provides the possibility
of automatic extraction of image features and has become a research hotspot in recent years.
In [13], the author introduces transfer learning to indoor positioning to improve the training
speed and accuracy of model. The image sets collected by the robot are used to retrain the
pre-trained VGG-16, and the last layer of the network is adopted as the image feature for
matching and positioning. Nowadays, deep learning descriptors have been widely used in single
image feature description. The images collected from different directions at the same location
could provide more abundant position information for precise localization. However, indoor
positioning based on multi-directional images still has problems such as high feature dimension
and complex matching process. There is still a lack of research on unified vector representation
of multi-directional images for positioning. In this paper, SC-AFN is designed to realize effective
vector representation of multi-directional images through shared CNN and Add fusion, which
is convenient for subsequent multi-sensor fusion.

For the feature-level fusion localization of multi-sensor signals, a variety of heterogeneous
fusion fingerprint construction and matching algorithms have been proposed. In [14], based
on the fusion of geomagnetism and image information, the author proposes a heterogeneous
feature database to achieve a positioning accuracy of 0.85m in the laboratory environment.
But this method is only applicable to the space with significant magnetic field features. In
[15], the authors propose a feature level fusion of CSI amplitude information and geomagnetic



intensity information to construct a heterogeneous fusion fingerprint for localization. And the
multidimensional scaling K-Nearest-Neighbor matching (MDS-KNN) algorithm is proposed for
matching location, with the mean error of 1.7 m. However, this method only realizes the simple
combination of features, and fails to change the discrimination of features. To enhance the
feature discrimination, many researchers try to introduce the measure index, which measures
the degree of similarity between features, into feature construction and matching. In [16], the
author proposes a new similarity measure method based on LP measure between fuzzy sets,
which improves the accuracy of face recognition system. In [17], the authors divide the image
into blocks to extract the contour and uses Jaccard coefficient as the similarity measure of
the binary image, which effectively solves the recognition problems caused by the rotation
and deformation of the image. In this paper, a fusion representation model based on measure
index, MI-FRM, is proposed for distinctive fusion localization. The perceptron-based fusion
representation model is trained with the discrimination as the optimization objective, and the
heterogeneous fusion fingerprint database with high discrimination is constructed to improve
the positioning accuracy.

3. Fusion localization based on MI-FRM

To realize multi-sensor localization, a fusion fingerprint localization based on MI-FRM is pro-
posed in this paper. The fusion fingerprint database is the key point. In the fusion representation
of multi-sensor signal features, CSI and multi-direction images need to be processed respectively
first. In this paper, SC-AFN algorithm is proposed to construct the vector feature of multi-
directional images. The MI-FRM algorithm is used to fuse CSI features and multi-directional
images for precise indoor localization. In addition, the LC-DNN method [10] is adopted for data
processing to ensure the validity of CSI data. The framework is shown as Figure 1.
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Figure 1: Framework of fusion indoor localization based on MI-FRM.



3.1. SC-AFN Algorithm

Different visual images of the environment can be collected at fixed position points from different
directions, as shown in Figure 2. Multi-directional environment images could jointly record the
rich position information about collected points and have better discrimination for position
estimation. However, there are still some problems in the localization based on multidirectional
images. First, it is usually difficult to obtain the direction label of the images in real time to
ensure the sequence of the input images. Second, the images lead to higher dimensions in
positioning. Therefore, the fusion representation of the disordered multi-directional images is
still needed for fingerprint localization.

Direction_1 Direction_2 Direction_3 Direction_4

Figure 2: The schematic diagram of multi-directional image.

In this paper, SC-AFN is proposed to process and fuse the multi-directional images at each
position, and construct the vector representation. This method innovatively realizes the fusion
characterization of disordered multi-directional images, and reduces the dimension of images
to complete the structural homogenization of heterogenous data, which lays the foundation
for multi-sensor fusion. SC-AFN consists of three parts: shared CNN, Add fusion and full
connection. The structure is shown as Figure 3.

In the feature extraction of image, the multi-directional images at each position belong to the
same type environment, so the same model can be used for feature extraction and description.
CNN is a common feature extraction and classification method for image, which has the
advantages of strong generality, small number of parameters and high classification accuracy.
Therefore, we adopt the shared CNN model to extract the initial features of images from each
direction. The shared CNN includes convolution, pooling, dropout and flattening layers. Figure
4 shows the structure of shared CNN. Firstly, the rotation invariant and translation invariant
features of Image𝑛(the input images of direction n) are extracted by convolution method. And
then, the max pooling simplifies the data and reduces the dimensions of the multi-dimensional
feature images to enlarge the receptive field and prevent overfitting. ReLU function is adopted to
realize the nonlinear transformation. The two-dimensional convolution and activation function
are formulated as (1) and (2).

𝑠(𝑖, 𝑗) = (𝑋 *𝑊 )(𝑖, 𝑗) + 𝑏 =

𝑛_𝑖𝑛∑︁
𝑘=1

(𝑋𝑘 *𝑊𝑘)(𝑖, 𝑗) + 𝑏, (1)

ReLU(𝑥) = max(0, 𝑥), (2)
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Figure 3: The structure of SC-AFN.
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Figure 4: The structure of shared CNN.

where 𝑠(𝑖, 𝑗) is the output value at the corresponding position, 𝑛_𝑖𝑛 is the total number of
channels for input data, 𝑋𝑘 is the input matrix of channel 𝑘, 𝑊𝑘 represents the 𝑘𝑡ℎ channel’s
subconvolution kernel matrix and 𝑏 is the bias. To enhance the robustness of the network, the
dropout strategy is adopted to randomly discard part of the neuron nodes, so that the calculation
results contain more random structures. Finally, the one-dimensional vector feature of the image
ℎ𝑛 can be obtained. The feature extraction of the single-direction image could be expressed as:

ℎ𝑛 = shared_model(Image𝑛), (3)

where shared model is the shared CNN.
After the extraction of single-direction image, the network needs to adopt the fusion strategy

to integrate the multi-directional image features. The fusion strategy includes Contract and
Add. Contract method is often used to slice features of different channels, which means that
the number of feature dimensions increases but the amount of information in each dimension
remains unchanged. The Add strategy mainly completes the superposition among features, and



increases the information of each dimension while the feature dimension remains unchanged.
For multi-directional images, Contract has the problems of high data dimension, much redundant
information, and great dependence on the splicing order. Therefore, SC-AFN adopts Add strategy
to fuse the features of images from different directions element by element to achieve disordered
fusion. The feature map of the multi-directional image can be expressed as:

ℎ =

⎡⎢⎢⎢⎣
ℎ1
ℎ2
...

ℎ𝑚

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ℎ1,1 ℎ1,2 . . . ℎ1,𝑛
ℎ2,1 ℎ2,2 . . . ℎ2,𝑛

...
...

. . .
...

ℎ𝑚,1 ℎ𝑚,2 . . . ℎ𝑚,𝑛

⎤⎥⎥⎥⎦ , (4)

where 𝑚 is the number of directions and 𝑛 is the dimension of image feature. The fusion feature
based on Add strategy can be expressed as:

𝑟 = [𝑟1 𝑟2 · · · 𝑟𝑛] , (5)

where 𝑟𝑖 =
𝑚∑︀
𝑘=1

ℎ𝑘,𝑖.

Finally, the network adopts full connection layer to integrate the fusion features, and obtain
the final fusion features related to position. And the Softmax function is used to classify the
final features. The probability of class 𝑖 is formulated as :

softmax (𝑥)𝑖 =
exp(𝑥𝑖)∑︀
𝑗
exp(𝑥𝑗)

, (6)

where (𝑥)𝑖 is the 𝑖-𝑡ℎ eigenvalue.
For multi-classification, the cross-entropy loss function is adopted for network optimization,

which is shown as

H𝑦′(𝑦) = −
∑︁
𝑖

𝑦′𝑖 log(𝑦𝑖), (7)

where 𝑦 is the predicted probability distribution and 𝑦′ is actual probability distribution. The
network parameters are trained through Gradient descent method iteratively by minimizing
the loss function.

3.2. MI-FRM Algorithm

In this paper, a fusion representation algorithm MI-FRM is proposed to transfer CSI and image
feature domains to the fusion domain. This method mainly proposes the measure index to
quantitative the discrimination of fingerprint database, and optimizes the parameters of the
fusion model by maximizing the measure index. The structure is shown as Figure 5.

The MI-FRM adopts basic perceptron as the fusion representation model. The input is the
splicing data of CSI amplitude feature and multi-directional image feature, and the output is the
fusion feature. In MI-FRM, full connection and activation function are used to fit the process
of fusion representation mapping. Linear transformation of the feature domain is realized by
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Figure 5: Fusion representation algorithm based on MI-FRM.

assigning weight parameters to different dimensions of the two kinds of features, and nonlinear
transformation of the feature domain is realized by activation function. Then the feature fusion
representation domain is constructed.

The expression of the initial fusion representation model is as follows:

𝑣𝑚𝑘 =
1

1 + exp{−𝑐(
𝑁CSI∑︀
𝑖=1

𝑤𝑚
𝑖 𝑦𝑖CSI,𝑘 +

𝑁IMA∑︀
𝑗=1

𝑤𝑚
𝑗+𝑁CSI

𝑦𝑗IMA,𝑘)}
(𝑚 = 1, 2 · · · ,𝑀),

(8)

where 𝑣𝑚𝑘 is the 𝑚-𝑡ℎ element in the fusion feature vectors at the 𝑘𝑡ℎ fingerprint point, M
is the dimension of the fusion feature, 𝑦CSI,𝑘 and 𝑦IMA,𝑘 are the CSI feature vectors and multi-
directional image feature vectors at the 𝑘𝑡ℎ fingerprint point, 𝑁CSI and 𝑁IMA are the dimensions
of the two feature vectors, and {𝑐, 𝑤1, 𝑤2, · · · , 𝑤𝑁CSI+𝑁IMA

} are the tunable parameters of the
model.

High-quality fusion fingerprint should meet the following requirements: the fingerprints at
the same location are closer to each other, while those at different locations are farther apart.
According to this principle, the classical Euclidean distance is used to calculate the basic distance
between two fusion representations, then the measurement index of the whole database can be
defined. We divided all fusion fingerprints into triples. Each triplet contains anchor samples 𝑣𝑎,
positive samples 𝑣𝑝 with the same location as anchor samples, and negative samples 𝑣𝑛 with
different locations. To reduce the distance of the fingerprints at the same location and increase
the distance of the fingerprints at different location points, the measurement index of the fusion
database can be expressed as:

𝐷 =

𝑁∑︁
𝑖=1

[︂⃦⃦⃦
𝑣𝑎(𝑖) − 𝑣𝑛(𝑖)

⃦⃦⃦2
2
−
⃦⃦⃦
𝑣𝑎(𝑖) − 𝑣𝑝(𝑖)

⃦⃦⃦2
2
− 𝛼

]︂
(𝛼 > 0), (9)

where 𝑣𝑎(𝑖), 𝑣
𝑝
(𝑖)and 𝑣𝑛(𝑖) are the fingerprint of anchor position, positive position and negative

position in the 𝑖-𝑡ℎ triad respectively, 𝛼 is the minimum threshold to distinguish the distance
between negative pair and positive pair and 𝑁 is the total number of triplet samples.



To construct discriminative fingerprints, this paper takes the measurement index of fusion
feature space as the optimization objective, and adopts Adaptive Moment Estimation (Adam)
training algorithm to optimize the parameters of MI-FRM. The parameters are as follows:

𝑤 = {𝑐, 𝑤1, 𝑤2, · · · , 𝑤𝑁CSI+𝑁IMA
}. (10)

These parameters represent the contribution of each dimension in the feature vector to the
fusion representation domain. In the optimization process, appropriate parameters are selected
to make the information with high discriminative degree have relatively high contribution in
the fusion representation.

The measure index of fusion database is proportional to the difference degree of fingerprints
at different locations, and inversely proportional to the difference degree of fingerprints at the
same location. The target of fingerprint database construction with high discrimination should
maximize the measure index. Therefore, the negative number of the measure index is selected
as the objective function of minimization:

𝐿 = −𝐷 =
𝑁∑︁
𝑖=1

[︂⃦⃦⃦
𝑣𝑎(𝑖) − 𝑣𝑝(𝑖)

⃦⃦⃦2
2
−

⃦⃦⃦
𝑣𝑎(𝑖) − 𝑣𝑛(𝑖)

⃦⃦⃦2
2
+ 𝛼

]︂
. (11)

Adam algorithm is adopted as the optimization algorithm, and the update formula is shown as
follows:

𝑤𝑡 = 𝑤𝑡−1 − 𝛼

⌢
𝑚𝑡√︀
⌢
𝑣 𝑡 + 𝜀

, (12)

where 𝑡 is the number,
⌢
𝑚𝑡 is the correction of 𝑚𝑡,

⌢
𝑣 𝑡 is the correction of 𝑣𝑡.

⌢
𝑚𝑡 =

𝑚𝑡

1− 𝛽𝑡
1

,
⌢
𝑣 𝑡 =

𝑣𝑡
1− 𝛽𝑡

2

(13)

where 𝛽1 and 𝛽2 are constants that control exponential attenuation, 𝑚𝑡 is the exponential
moving mean of the gradient (obtained by the first moment of the gradient), and 𝑣𝑡 are square
gradient (obtained by the second moment of the gradient).The update formula of, is as follows:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1− 𝛽1)𝑔𝑡, (14)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1− 𝛽2)𝑔
2
𝑡 , (15)

where 𝑔𝑡 is the first derivative. The default setting for the parameters is : 𝛼 = 0.001, 𝛽1 = 0.9,
𝛽2 = 0.999 and 𝜀 = 10−8.

3.3. Localization

The fusion localization based on MI-FRM is realized by the construction and matching of fusion
fingerprints, including offline and online stages.

In the offline stage, original data of CSI and multi-directional images are collected at each
reference point. For CSI, LC-DNN is trained with the CSI amplitudes and position labels to obtain
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the optimal weights of feature extraction and the effective feature database of CSI amplitudes.
For images, SC-AFN is trained with multi-directional images and position labels to obtain the
optimal weights and the vector representation database for multi-directional images. The data
processing of the above two kinds of location data can realize the structural homogenization of
features, which lays the foundation for the next feature-level fusion. To further fuse the CSI
and image feature, the two features at the same location are spliced to construct the training
set, and the parameters of the MI-FRM are optimized with the combination of the training set
and labels to obtain the optimal weights and the fusion fingerprint database.

In the online stage, the real-time fusion fingerprint based on MI-FRM is constructed with the
real-time CSI and image data and is matched with the fusion database to estimate the location.
For CSI, the feature extraction is realized through the trained LC-DNN. For images, the trained
SC-AFN is adopted for vector representation of multi-directional images. Then, the MI-FRM
could transform the data of CSI amplitude feature and multi-directional image into the fusion
representation domain. Finally, the location is estimated by the match of fusion fingerprint.
Since the matching algorithm is not focused in this paper, the Softmax classifier is used directly
here.

4. Experiments

4.1. Experiment environments

This part mainly verifies the performance of fusion localization based on MI-FRM. Data collection
in experiments includes two sources, CSI and image. The equipment is shown in Figure 7 and
Figure 8 respectively. The equipment for CSI collection includes transmitter and receiver, both of
which are mobile terminals with built-in Intel 5300 wireless network card. The transmitter sends
packets at 5ms intervals under the bandwidth of 20MHz, and the receiver collects and stores the
corresponding packets. The CSI information can be solved by modifying the underlying driver.



The equipment for image collection is jointly built by the stereo box and four low-cost cameras.
Four cameras are fixed in the four directions of stereo box and connected with the same laptop
computer through the data line respectively. Therefore, the multi-directional image data can be
collected by single computer operation.
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Figure 7: The transmitter (left) and receiver (right) of CSI.

 

Direction_1 D
irection_2

Direction_3D
ir

ec
tio

n_
4

Figure 8: The collect equipment of multidirectional image (Left: front view, Right: top view).

Datasets: The data collection included 52 reference position points and 52 test points, 1000 CSI
packets and 40 multi-directional images collected at each position. The experiment environment
is the comprehensive office scene, which is composed of laboratory, meeting room and corridor.
It is characterized by many obstacles, independent rooms and frequent flow of people. In the
office scene, obstacles in room mainly include tables, chairs and computers, and three rooms
are separated by walls. The total area in experiment is 152.9m2, of which the laboratory area
is 16.4m*4.4m and the meeting room area is 8.4m*1.8m. 52 reference points and 52 test points
are set, and the interval of reference points is 1.2m. In CSI collection, four fixed transmitter
and one mobile receiver are used. In image collection, four cameras are controlled by a laptop
computer at the mobile end. Data collection is mainly arranged in non-work hours. Figure 9
shows the layout of the office scene and the distribution of points.
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Figure 9: The diagram of the experiment environments.

4.2. The evaluation of SC-AFN

To verify the positioning performance of SC-AFN, this part mainly compares SC-AFN with the
positioning method based on VGG-16 proposed by Wozniak P et al in 2018 from positioning
accuracy and stability[13]. Both methods adopt the above datasets in office scene to ensure the
objectivity of experiments.

Figure 10(a) shows the comparison of CDFs in two image localization. Overall, the trend of
CDF curves in the two methods are basically similar because the data sets and feature matching
methods are similar. However, the CDF of SC-AFN is always higher than the image positioning



method based on VGG-16 and more inclined to the upper left, which indicates that SC-AFN
achieves superior positioning performance. At the same time, the maximum positioning errors
of SC-AFN and VGG-16 methods are 13.5m and 17.7m respectively. In contrast, the unified vector
representation based on multi-directional images (SC-AFN) effectively reduces the probability
of large errors and improves the positioning accuracy.

Table 1
Image Localization Errors of Different Methods

SC-AFN VGG-16

mean/m 1.25 1.96
std/m 2.47 2.96

Table 1 and Figure 11(a) show the comparison of the positioning mean error and standard
deviation in two image localization methods. The mean error of SC-AFN is 1.25m, which is 44.3%
lower than that of the 1.96m of VGG-16 method. In terms of stability, the standard deviation of
SC-AFN is 2.47m, which is 16.5% less compared with 2.96m based on VGG-16 method. Combined
with CDFs, the vector representation network of multi-directional image features (SC-AFN)
further improves the positioning accuracy and stability by reducing the probability of large
errors.

4.3. The evaluation of MI-FRM

To further evaluate the indoor fusion localization based on MI-FRM, this part mainly compares
the proposed algorithm with LC-DNN (CSI database)[10], SC-AFN (image database), and MDS-
KNN (fusion database)[15] to verify the effectiveness of positioning performance improvement
by introducing measure index into fingerprint construction. The experiments focus on accuracy
and stability of positioning.

(a) (b)

Figure 10: The CDFs of different methods.



Figure 10(b) shows the CDF of the four methods for indoor localization. As can be seen, in
the comparison of single fingerprint database, the SC-AFN (image localization) and LC-DNN
(CSI localization) have an intersection point at the error of 0.5m. It indicates that the image
localization achieves better effect when the error is less than 0.5m and the CSI localization
achieves better effect when the error is larger than 0.5m. Both fingerprint databases have
their own advantages. Compared with single fingerprint database, MI-FRM have significant
improvement within the error of 1.5m, and the overall performance is more superior. It also
shows that fusion fingerprint could effectively combines the information of two positioning
features and has higher discrimination than single fingerprint. Compared with MDS-KNN, MI-
FRM performs slightly worse within the error of 0.25m, which may be caused by the reduction of
feature dimension and the direct loss of information. However, MI-FRM has obvious advantages
when the error is larger than 0.25m, with more stable curve and better positioning performance.
Therefore, it is further verified that the introduction of the measure index in the database
construction could improve the feature discrimination and positioning accuracy.

Table 2
Localization Errors of Different Methods

LC-DNN SC-AFN MDS-KNN MI-FRM

mean/m 0.74 1.25 0.70 0.62
std/m 1.55 2.47 2.33 1.55
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(a) Image localization errors in different methods.
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Figure 11: The comparison of localization errors in different methods.

TABLE 2 and Figure 11(b) show the comparison of mean error and standard deviation in four
positioning methods. The mean error of MI-FRM is 0.62m, which is 16.2%, 50.4% and 11.4% lower
than the 0.74m of LC-DNN (CSI database), 1.25m of SC-AFN (image database) and 0.70m of
MDS-KNN (fusion database) respectively. The standard deviation of MI-FRM is 1.55m, which is
basically unchanged compared with LC-DNN (CSI database), 37.3% higher than that of SC-AFN
(image database) and 33.4% higher than that of MDS-KNN (fusion database). The results show
that MI-FRM could combine the advantages of two localization features effectively to construct
a high-precision positioning fingerprint database with more abundant information, and achieve
better stability than single fingerprint or other fusion method.



5. Conclusion

In this paper, we present a fusion fingerprint localization based on MI-FRM to improve the
positioning accuracy and robustness. In this method, SC-AFN is proposed to construct vector
features for images from different directions and MI-FRM is designed to fuse image features and
CSI features to a new distinctive representation for precise fingerprint positioning. Experiments
in office scene show that SC-AFN realizes vector representation and reduces the probability
in large errors, with an average error of 1.25m. The MI-FRM effectively combined the two
positioning signals to further improve the feature discrimination and positioning accuracy.
The average error of MI-FRM is 0.62m, which is 16.2%, 50.4% and 11.4% higher than LC-DNN,
SC-AFN and MDS-KNN, respectively.
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