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Abstract
Few-shot classifiers excel under limited training samples, making them useful in applications with sparsely user-provided
labels. Their unique relative prediction setup offers opportunities for novel attacks, such as targeting support sets required to
categorise unseen test samples, which are not available in other machine learning setups. In this work, we propose a detection
strategy to identify adversarial support sets, aimed at destroying the understanding of a few-shot classifier for a certain class. We
achieve this by introducing the concept of self-similarity of a support set and by employing filtering of supports. Our method is
attack-agnostic, and we are the first to explore adversarial detection for support sets of few-shot classifiers to the best of our
knowledge. Our evaluation of the miniImagenet (MI) and CUB datasets exhibits good attack detection performance despite
conceptual simplicity, showing high AUROC scores. We show that self-similarity and filtering for adversarial detection can be
paired with other filtering functions, constituting a generalisable concept.
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1. Introduction
An open topic in machine learning is the transferability
of a trained model to a new set of prediction categories
without retraining efforts, in particular when some classes
have very few samples. Few-shot learning algorithms
have been proposed to address this, where prediction and
training are based on the concept of an episode. Each
episode (task) comprises several labelled training samples
per class (i.e. 1 or 5), denoted as the support set, and
query samples for episodic testing, called the query set.
Unlike other setups, the prediction in few-shot models is
relative to the support set classes of an episode [1, 2, 3, 4].
The label categories vary in each episode and training is
performed by drawing randomised sets of classes, thus it-
erating over varying prediction tasks when learning model
parameters. Effectively, this learns a class-agnostic simi-
larity metric which generalises to novel categories [5, 6].

Unfortunately, the adversarial susceptibility of mod-
els under the few-shot paradigm remains relatively unex-
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plored, albeit gaining traction [7, 8]. This is compared
to models under the standard classification setting, where
such phenomenon had been widely explored [9, 10]. The
relative nature of predictions in few-shot setups allows
going beyond crafting adversarial test samples.

The attacker could craft adversarial perturbations for
all 𝑛-shot support samples of the attacked class and insert
them into the deployment phase of the model. The goal is
to misclassify test samples of the attacked class regardless
of the samples drawn in the other classes. In this work,
we consider the impact on the few-shot accuracy of the
attacked class, in the presence of adversarial perturba-
tions, even when different samples were drawn for the
non-attacked classes. This is a highly realistic scenario
as the victim could unknowingly draw such adversarial
support sets during the evaluation phase once they were
inserted by the attacker. The use of adversarial samples to
attack other settings than the one trained for are known as
transferability attacks.

Prior methods proposed to mitigate such adverse effects
through the lenses of detection [11, 12] and model robust-
ness [13, 14]. Though these methods work well for neural
networks under the conventional classification setting,
they will fail on few-shot classifiers due to limited data.
Furthermore, these defences were not trained to transfer
its pre-existing knowledge towards a novel distribution
of class samples, contrary to few-shot classifiers. With
the aforementioned drawbacks in mind, we propose a con-
ceptually simple method for performing attack-agnostic
detection of adversarial support samples in this setting.
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We exploit the concept of support and query sets of few-
shot classifiers to measure the similarity of samples within
a support set after filtering. We perform this by randomly
splitting the original support set randomly into auxiliary
support and query sets, followed by filtering the auxiliary
support and predicting on the query. If the samples are
not self-similar, we will flag the support set as adversarial.
To this end, we make the following contributions in our
work:

1. We propose a novel attack-agnostic detection
mechanism against adversarial support sets in the
domain of few-shot classification. This is based
on self-similarity under randomised splitting of
the support set and filtering, and is the first, to
the best of our knowledge, for the detection of
adversarial support sets in few-shot classifiers.

2. We investigate the effects of a unique white-box
adversary against few-shot frameworks, through
the lens of transferability attacks. Rather than
crafting adversarial query samples similar to stan-
dard machine learning setups, we optimise adver-
sarial supports sets, in a setting where all non-
target classes are varying.

3. We provide further analysis on the detection per-
formance of our algorithm when using differ-
ing filtering functions and also different formula-
tion variants of the aforementioned self-similarity
quantity.

The remaining of our paper is structured as follows:
Section 2 discusses prior literature and Section 3 provides
readers with the background to this study. We dive into
our method in Section 4 and describe our experimental
settings and evaluation results in Section 5. We provide
further in-depth discussion in Section 6 and we conclude
in Section 7 with summary and future work.

2. Related Works
Poisoning of Support Sets: There is limited literature
examining the poisoning of support sets in meta-learning.
[7] proposed an attack routine, Meta-Attack, extending
from the highly explored Projected Gradient Descent
(PGD) attack [10]. They assumed a scenario where the at-
tacker is unable to obtain feedback from the classification
of the query set. Hence, the authors used the empirical
loss on the support set to generate adversarial support
samples to induce misclassification behaviours to unseen
queries.

2.1. Autoencoder-based and Feature
Preserving-based Defences

[12] performs detection of such attacks using Non-
parametric Scan Statistics (NPSS), based on hidden node

activations from an autoencoder. [13] proposed using
an autoencoder to reconstruct input samples such that
only the necessary signals remain for classification. Their
method requires fine-tuning the decoder based on the clas-
sification loss of the input with respect to the ground
truth. However, under the few-shot setting, such fine-
tuning based on the classification loss should be avoided
as we would require large enough samples from each
class for this step. [14] attempts to stabilise sensitive
neurons which might be more prone to the effects of ad-
versarial perturbations, by enforcing similar behaviours of
these neurons between clean and adversarial inputs. Their
method requires adversarial samples during the training
process which potentially makes defending against novel
attacks challenging. Hence, we proposed a detection ap-
proach that does not make use of any adversarial samples.
Though we employed the concept of feature preserving as
one of our various filtering functions, our approach is dif-
ferent from [14] as it does not suffer from this limitation.
Hence, in our work, we adopted an approach that does not
require any labelled data.

3. Background

3.1. Few-shot classifiers Used
A majority of the few-shot classifiers are trained with
episodes sampled from the training set. Each episode con-
sists of a support set 𝑆 = {𝑥𝑠, 𝑦𝑠}𝐾*𝑁

𝑠=1 with 𝑁 labelled
samples per 𝐾 classes, and a query set 𝑄 = {𝑥𝑞}𝑁𝑞

𝑞=1

with 𝑁𝑞 unlabelled samples from the same 𝐾 classes
to be classified, denoted as a 𝐾-way 𝑁 -shot task. The
metric-based classifiers learn a distance metric that com-
pares the features of support samples 𝑥𝑠 and query sample
𝑥𝑞 and generates similarity scores for classification. Dur-
ing inference, the episodes are sampled from the test set
that has no overlapping categories with the training set.

In this work, we explored two known metric-based few-
shot classifiers, namely the RelationNet (RN) [5] and a
state-of-the-art model, the cross-attention network (CAN)
[6]. As illustrated in Figure 1, the support and query sam-
ples are first encoded by a backbone CNN to get the image
features {𝑓𝑐

𝑠 | 𝑐 = 1, . . . ,𝐾} and 𝑓𝑞 , respectively. The
feature vectors 𝑓𝑐

𝑠 and 𝑓𝑞 ∈ R
𝑑𝑓 ,ℎ𝑓 ,𝑤𝑓 , where 𝑑𝑓 , ℎ𝑓 ,

and 𝑤𝑓 are the channel dimension, height, and width of
the image features. If 𝑁 > 1, 𝑓𝑐

𝑠 will be the averaged
feature of the support samples from class 𝑐. To measure
the similarity between 𝑓𝑐

𝑠 and 𝑓𝑞 , the RN model concate-
nates 𝑓𝑞 and 𝑓𝑐

𝑠 along the channel dimension pairwise
and uses a relation module to calculate the similarities.
The CAN model adopts a cross-attention module that
generates attention weights for every {𝑓𝑐

𝑠 , 𝑓𝑞} pair. The
attended image features are further classified with cosine
similarity in the spirit of dense classification [15].



Figure 1: RelationNet and CAN few-shot classifiers.

3.2. Adversarial Attacks
Here, we describe the base adversarial attacks used in our
experiments. The PGD attack [10] applies the sign of the
gradient of the loss function to the input data as adversarial
perturbations. It initialises an adversarial candidate by a
small noise injection. This process repeats for a number
of iterations. For an input 𝑥𝑖 at the 𝑖𝑡ℎ iteration:

𝑥0 = 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝜖, 𝜖), (1)

𝑥𝑖 = 𝐶𝑙𝑖𝑝𝑥,𝜖{𝑥𝑖−1 + 𝜂 𝑠𝑖𝑔𝑛(∇𝑥𝐿(ℎ(𝑥𝑖−1), 𝑦𝑡𝑟𝑢𝑡ℎ))},
(2)

where ℎ(.) is a prediction logits for classifier ℎ of some
input sample, 𝑦𝑡𝑟𝑢𝑡ℎ is the ground truth label, 𝐿 is the
loss used during training (i.e. cross entropy with softmax),
𝜂 is the step size and 𝜖 is the adversarial strength which
limits the adversarial candidate 𝑥𝑖 within an 𝜖-bounded
ℓ∞ ball.

The Carlini-Wagner (CW) attack [16] finds the smallest
𝛿 that successfully fools a target model using the Adam
optimiser. Their attack solves the following objective
function:

min
𝛿

||𝛿||2 + 𝑐𝑜𝑛𝑠𝑡 · 𝐿(𝑥+ 𝛿, 𝜅),

𝑠.𝑡. 𝐿(𝑥′, 𝜅) = max(−𝜅,max
𝑖

(ℎ(𝑥′)𝑖̸=𝑡)− ℎ(𝑥′)𝑡).

(3)

The first term penalises 𝛿 from being too large while the
second term ensures misclassification. The value 𝑐𝑜𝑛𝑠𝑡
is a weighting factor that controls the trade-off between
finding a low 𝛿 and having a successful misclassification.
ℎ(·)𝑖 refers to the logits of prediction index 𝑖 and 𝑡 refers
to the target prediction. 𝜅 is the confidence value that
influences the logits score differences between the target
prediction 𝑡 and the next best prediction 𝑖.

3.3. Threat Model
We assume that the attacker wants to destroy the few-shot
classifier’s notion of a targeted class, 𝑡, unlike conven-
tional machine learning frameworks where one is optimis-
ing single test samples to be misclassified. The attacker
wants to find an adversarially perturbed set of support
images, such that misclassification of most query sam-
ples from class 𝑡 occurs, regardless of the class labels of

the other samples. He or she then replaces the defender
support set for class 𝑡 with the adversarial support. We
assume that the attacker has white-box access to the few-
shot model (i.e. weights, architecture, support set). The
adversarial support set would classify itself as self-similar,
that is, they classify among each other as being within
the same class, visually appear as class 𝑡, but classify true
query images of class 𝑡 as belonging to another class.

We now clarify our definition of 𝑥 used in our attacks.
The attacks are applied on a fixed support set candidate
(𝑥𝑡

1, . . . , 𝑥
𝑡
𝑛𝑠ℎ𝑜𝑡

) for the target class. In every iteration of
the gradient-based optimisation, we sample all classes ran-
domly except for the target class. Specifically, we sample
the support sets 𝑆−𝑡 and query sets 𝑄−𝑡 of all the other
classes randomly, and we randomly sample the query sam-
ples of the target 𝑄𝑡, illustrated in the equations below.
They are redrawn in every iteration of the optimisation of
the above equations.

𝒞−𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝒞 ∖ {𝑡}),

𝑆−𝑡, 𝑄−𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑥|𝑐 ∈ 𝒞−𝑡),

𝑄𝑡 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑥|𝑐 = 𝑡),

𝑥 = (𝑥𝑡
1, . . . , 𝑥

𝑡
𝑛𝑠ℎ𝑜𝑡

),

ℎ(𝑥) = ℎ(𝑥𝑡
1, . . . , 𝑥

𝑡
𝑛𝑠ℎ𝑜𝑡

, 𝑆−𝑡, 𝑄𝑡, 𝑄−𝑡),

(4)

where 𝒞 is the set of all classes, and 𝒞−𝑡 the random set of
classes used in the episode together with class 𝑡. The last
line in (4) indicates that the few-shot classifier ℎ takes in a
support set made up of 𝑥 and 𝑆−𝑡 and a query set made up
of 𝑄𝑡 and 𝑄−𝑡, which is a simplification to the expression,
to relate to (2) and (3). The adversarial perturbation 𝛿 and
the underlying gradients are computed only for each of
the support samples 𝑥 of the target class.

4. Defence Methodology
The defence is based on three components: sampling of
auxiliary query and support sets, filtering the auxiliary
support sets, and measuring the accuracy on the unfiltered
auxiliary query set. We denote a statistic either averaged
over all possible splits or for a randomly drawn split of a
support set into auxiliary sets with filtering of the auxil-
iary supports as self-similarity. We elaborate further on
auxiliary sets below.

4.1. Auxiliary Sets
Few-shot classifiers’ support and query sets can be freely
chosen, implying that any sample can be used as either
a support or query. Given a support set for class 𝑐, we
randomly split it into auxiliary sets, where 𝑆𝑐 might be
clean or adversarial:

𝑆𝑐
𝑎𝑢𝑥 ∪𝑄𝑐

𝑎𝑢𝑥 = 𝑆𝑐 𝑎𝑛𝑑 𝑆𝑐
𝑎𝑢𝑥 ∩𝑄𝑐

𝑎𝑢𝑥 = ∅,



𝑠.𝑡. |𝑆𝑐
𝑎𝑢𝑥| = 𝑛𝑠ℎ𝑜𝑡 − 1 𝑎𝑛𝑑 |𝑄𝑐

𝑎𝑢𝑥| = 1. (5)

The few-shot learner is now faced with a randomly drawn
(𝑛− 1)-shot problem, evaluating on one query sample per
way, with the option to average the 𝑛 possible splits.

4.2. Detection of Adversarial Support
Sets

Our detection mechanism flags a support set as adversarial
when support samples within a class are highly different
from each other, as shown in Figure 2. Given a support set
of class 𝑐, 𝑆𝑐, we split it randomly into two auxiliary sets
𝑆𝑐
𝑎𝑢𝑥 and 𝑄𝑐

𝑎𝑢𝑥. We filter 𝑆𝑐
𝑎𝑢𝑥 using a function 𝑟(·) and

use the resultant samples as the new auxiliary support set
to evaluate 𝑄𝑐

𝑎𝑢𝑥. Following which, we obtain the logits
of 𝑄𝑐

𝑎𝑢𝑥 both before and after the filtering of the auxil-
iary support (i.e. using 𝑆𝑐

𝑎𝑢𝑥 and 𝑟(𝑆𝑐
𝑎𝑢𝑥) respectively)

and compute the ℓ1 norm difference between them. The
adversarial score 𝑈𝑎𝑑𝑣 is given in Eq. (6) where ℎ is the
few-shot classifier

𝑈𝑎𝑑𝑣 =‖ℎ(𝑟(𝑆𝑐
𝑎𝑢𝑥), 𝑄

𝑐
𝑎𝑢𝑥)− ℎ(𝑆𝑐

𝑎𝑢𝑥, 𝑄
𝑐
𝑎𝑢𝑥)‖1, (6)

and 𝑟 is any filtering function which maps a support set
onto its own space. The filter 𝑟 is chosen such that it
causes smaller impact to clean samples, while inducing
larger dissimilarity between the auxiliary support and
query sets under adversariality. We observe that we obtain
already very high AUROC detection scores when com-
puting 𝑈𝑎𝑑𝑣 without averaging over 𝑛𝑠ℎ𝑜𝑡 draws, which
we elaborate further later. We flag a support set 𝑆𝑐 as
adversarial if the adversarial score goes above a certain
threshold1 (i.e. 𝑈𝑎𝑑𝑣 > 𝑇 ). Different statistics can be
used to compute 𝑈𝑎𝑑𝑣 , with Eq. (6) being one of many.
Our main contribution lies rather in the proposal of using
self-similarity of a support set for such detection.

Figure 2: Illustration of our detection mechanism based
on self-similarity, by partitioning 𝑆𝑐 into two auxiliary sets
𝑆𝑐
𝑎𝑢𝑥 and 𝑄𝑐

𝑎𝑢𝑥 and filtering. Best viewed in colour.

1𝑇 can be chosen by examining the 𝑈𝑎𝑑𝑣 on clean support
samples, according to a desired threshold based on False Positive
Rates (e.g. @5% FPR).

4.3. Feature-space Preserving
Autoencoder (FPA) for Auxiliary
Support Set Filtering

We explored using an autoencoder (AE) as a filtering
function 𝑟(·), for the detection of adversarial samples in
the support set, motivated by [13]. Initially we trained
a standard autoencoder to reconstruct the clean samples
in the image space using the MSE loss. However, the
standard autoencoder performed poorly in detecting ad-
versarial supports since it did not learn to preserve the
feature space representation of image samples. Therefore,
we switched to a feature-space preserving autoencoder
which additionally reconstructs the images in the feature
space of the few-shot classifier, contrary to prior work
where they fine-tuned their AE on the classification loss.
We argue that using classification loss for fine-tuning is
inapplicable in few shot learning due to having very few
labelled samples. We minimise the following objective
function for the feature-space preserving autoencoder:

ℒℱ𝒫𝒜 =
1

𝑁 ′

𝑁′∑︁
𝑖=1

0.01 · ‖𝑥𝑖 − 𝑥𝑖̂‖22
𝑑𝑖𝑚(𝑥𝑖)1/2

+
‖𝑓𝑖 − 𝑓𝑖̂‖22
𝑑𝑖𝑚(𝑓𝑖)1/2

(7)
where 𝑥𝑖 and 𝑥𝑖̂ are the original and reconstructed im-
age samples, respectively, and, 𝑓𝑖 and 𝑓𝑖̂ are the feature
representation of the original and reconstructed image ob-
tained from the few-shot model before any metric module
(i.e. features from CNN backbone). The second loss term
ensures that the reconstructed image features are simi-
lar to those of original image in the feature space of the
few-shot models. We train the feature-space preserving
autoencoder by fine-tuning the weights from the standard
autoencoder.

4.4. Median Filtering (FeatS)
In our work, we also explored an alternative filtering func-
tion. We adopted a feature squeezing (FeatS) filter from
[11] where it was used in a conventional classifier. It es-
sentially performs local spatial smoothing of images by
having the centre pixel taking the median value among its
neighbours within a 2x2 sliding window. As their detec-
tion performance was reasonably high using this filter, we
decided to use it as an alternative to FPA as an explorative
step. However, their approach performs filtering on each
individual test sample whereas we use it on the auxiliary
support set. Since we would like to demonstrate our de-
tection principle and the FPA performs already very well,
we leave further filtering functions to future research.



5. Experiments and Results

5.1. Experimental Settings
Datasets: MiniImagenet (MI) [17] and CUB [18] datasets
were used in our experiments. We prepared them fol-
lowing prior benchmark splits [19, 20], with 64/16/20
categories for the train/val/test sets of MI and 100/50/50
categories for the train/val/test sets of CUB. In our attack
and detection evaluation, we chose an exemplary set of
10 and 25 classes from the test set for MI and CUB re-
spectively, and we report the average metrics across them.
This is purely for computational efficiency. For the RN
model, we used image sizes of 224 while using image
sizes of 96 for the CAN model across both datasets. We
shrank the image size for the CAN model due to memory
usage issues.

Attacks: In our work, we used two different attack rou-
tines, one being PGD while the other being a slight variant
of the CW attack. This variant uses a normal Stochastic
Gradient Descent optimiser instead of Adam as we did not
yield good performing adversarial samples with the latter.
We still used the objective function defined in Eq. (3) to
optimise our CW adversarial samples, while using Eq. (2)
to perform a perturbation step less the clipping and sign
functions. We name this attack CW-SGD. For our PGD at-
tack, we limit the ℓ∞ norm of the perturbation to 12/255
and a step size of 𝜂 = 0.05 (see Eq. (2)). For our CW-
SGD attack, clipping was not used due to the optimisation
over ||𝛿||2 while 𝜅 = 0.1 and 𝜂 = 50. We would like to
stress that optimising for the best set of hyperparameters
for generating attacks is not the main focus of our work
as we are more interested in obtaining viable adversarial
samples. In both settings, we generate 50 sets of adver-
sarial perturbations for each of the 10 and 25 exemplary
classes for MI and CUB respectively. We also attack all 𝑛
support samples for the targeted class 𝑡.

Autoencoder: We used a ResNet-50 [21] architecture
for the autoencoders2. For the MI dataset, we trained the
standard autoencoder from scratch with a learning rate of
1e-4. For CUB, we trained the standard encoder initialised
from ImageNet with a learning rate of 1e-4, and the stan-
dard decoder from scratch with a learning rate of 1e-3. For
fine-tuning of the feature-space preserving autoencoder,
we used a learning rate of 1e-4. We employed a decaying
learning rate with a step size of 10 epochs and 𝛾 = 0.1.
We used the Adam [22] optimiser with a weight decay of
1e-4. In both settings, we used the train split for training
and the validation split for selecting our best performing
set of autoencoder weights out of 150 epochs of training.
It is implemented in PyTorch [23].

2Autoencoder architecture adapted from GitHub repository
https://github.com/Alvinhech/resnet-autoencoder.

5.2. Baseline Accuracy of Few-shot
Classifiers

We evaluated our classifiers by taking the average and
standard deviation accuracy over 2000 episodes across all
models and datasets, reported in Table 1, to show that we
were attacking reasonably performing few-shot classifiers.

Table 1
Baseline classification accuracy of the chosen models on
the two datasets, under a 5-way 5-shot setting, computed
across 2000 randomly sampled episodes. We report the
mean with 95% confidence intervals for the accuracy.

RN - 5 shot CAN - 5 shot
MI 0.727 ± 0.0037 0.787 ± 0.0033
CUB 0.842 ± 0.0032 0.890 ± 0.0026

5.3. Attack Evaluation Metrics
We evaluated the success of our attacks via computing
the Attack Success Rate (ASR), measuring the propor-
tion of samples that had adversarial candidates generated
from attacks that successfully cause misclassification. We
only considered samples from the targeted class when
measuring ASR:

𝐴𝑆𝑅 = E𝑆𝑡,𝑄𝑡∼𝐷{𝑃 (argmax𝑗(ℎ𝑗(𝑆
𝑡 + 𝛿𝑡, 𝑄𝑡))

̸= 𝑡)}.
(8)

The remaining (𝐾 − 1) classes were sampled randomly.
In the evaluation of the detection performances, we used
the Area Under the Receiver Operating Characteristic
(AUROC) metric, since detection problems are binary
(whether an adversarial sample is present or not), and true
and false positives can be collected at various predefined
threshold values (𝑇 ).

5.4. Transferability Attack Results
We conducted transferability experiments to evaluate how
well the attacker generalised their generated adversarial
perturbation under two unique scenarios: i) transfer with
fixed supports and ii) transfer with new supports. Setting
(i) assumes that we have the same adversarial support set
for class 𝑡 and we evaluated the ASR over newly drawn
query sets. Setting (ii) relaxes this assumption, and we in-
stead applied the generated adversarial perturbation, that
was stored during the attack phase, on newly drawn sup-
port sets for class 𝑡, similarly evaluating over newly drawn
query sets. Contrary to transferability attacks in conven-
tional setups where a sample is generated on one model
and evaluated on another, we performed transferability to
new tasks, by drawing randomly sets of non-target classes
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Figure 3: Transferability attack results under scenarios
(i) Fixed Supports and (ii) New Supports, against our two
explored attacks on RN and CAN models across both
datasets. Reported ASRs were averaged across the cho-
sen exemplary classes and across the 50 generated sets
of adversarial perturbations as bar charts. Standard devi-
ation represented as the whiskers. ASR metric reported.

together with their support sets, and new query sets for
the few-shot paradigm.

As illustrated in Figure 3, the PGD generated adversar-
ial samples showed higher transferability than the CW-
SGD attack, across both models and under both scenarios.
The exceptionally high transfer ASR we observed under
scenario (i) implies that once the attacker had obtained
an adversarial support set targeting a specific class, suc-
cessful attacks can be carried out on new tasks for which
the target class is present. This further reinforces the
motivation to investigate defence methods for few-shot
classifiers. Under scenario (ii), where the support set of
the target class is also randomised, we see lower transfer
ASR across the chosen classes. We would like to remind
readers that the adversarial samples were optimised ex-
plicitly using setting (i) and not for (ii). Even though the
ASR in scenario (ii) is lower than in (i), there still exist
classes, where unpleasantly high ASR occurs.

5.5. Detection of Adversarial Supports
We compared our explored approaches against a simple
filtering function for 𝑟(·), since prior detection methods
for adversarial samples in few-shot classifiers do not ex-
ist. We experimented with using normal distributed noise
as a filter, in which we computed the channel-wise vari-
ance for drawing normal distributed noise to be added to
the images. Being in the context of detection, we report
the AUROC scores to evaluate the effectiveness of our
detection algorithm.

Our results in Figure 4 shows that FPA exhibits good de-
tection performance. This indicates that the self-similarity
of clean samples under filtering of the auxiliary support
set is preserved to a degree, which allows discrimina-
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Figure 4: AUROC scores for the various filter functions
(normal distributed noise, median filtering from Feature
Squeezing (FeatS), FPA) across our experiment settings,
for RN and CAN models. Higher is better.

tion against adversarial samples. Though "FeatS" ex-
hibits already a good detection performance, our FPA
approach consistently outperforms it across all settings.
The "Noise" approach, however, does not detect well. We
see highly varied detection performances across the differ-
ent settings, which makes this approach highly unreliable3.
This result is hardly surprising since such methods require
substantial manual fine-tuning of its noise parameters.
This is not ideal as newer attacks can be introduced in
the future and also, being in a few-shot framework, the
optimal noise parameters between different task instances
might not be consistent as the data might be different.
However, our FPA filter approach exhibits such robust-
ness even in such scenarios as it still achieved favourable
AUROC scores. For clean samples, our FPA managed to
reconstruct 𝑆𝑐

𝑎𝑢𝑥 such that the logits of 𝑄𝑐
𝑎𝑢𝑥 before and

after filtering remained consistent, even when the FPA did
not encounter classes from the novel split during training.

3Cases with AUROC score less than 0.5 indicates that more
favourable detection effectiveness can be achieved by flipping the
detection threshold (i.e. 𝑈𝑎𝑑𝑣 > 𝑇 to 𝑈𝑎𝑑𝑣 < 𝑇 ). However, it
will not be experimentally consistent. This is also a clear indication
of the lack of reliability of using "Noise" as a filtering function.



6. Discussion

6.1. Study of Self-Similarity
Computation Methods

In Section 4.2, we described one of the possible detection
mechanisms based on logits differences. An alternative
would be to use hard label predictions. Thus, we investi-
gate the effect of a differing scheme as a justification for
our choice 𝑈𝑎𝑑𝑣 . For the case of hard label predictions,
we perform the following: we compute the average accu-
racy of 𝑄𝑐

𝑎𝑢𝑥, across the different permutated partitions
of 𝑆𝑐, illustrated in Figure 5. This results in the statistic
𝑈 ′

𝑎𝑑𝑣:

𝑈 ′
𝑎𝑑𝑣 =

1

𝑛𝑠ℎ𝑜𝑡

𝑛𝑠ℎ𝑜𝑡∑︁
𝑖=1

1[𝑎𝑟𝑔𝑚𝑎𝑥(ℎ(𝑟(𝑆𝑐
𝑖,𝑎𝑢𝑥), 𝑄

𝑐
𝑖,𝑎𝑢𝑥)) ̸= 𝑐],

(9)

where ℎ is the few-shot classifier, 𝑟 is the filtering function,
and 1 is the indicator function. Similarly, we flag the
support set as adversarial when 𝑈 ′

𝑎𝑑𝑣 > 𝑇 , such that it
goes beyond a certain threshold.

𝑆௖ 𝑆௔௨௫௖ 𝑄௔௨௫௖
…

𝑃ଵ𝑃ଶ𝑃௡௦௛௢௧
Figure 5: Illustration of how partitioning 𝑆𝑐 into two aux-
iliary sets 𝑆𝑐

𝑎𝑢𝑥 and 𝑄𝑐
𝑎𝑢𝑥 is performed. Best viewed in

colour.

Table 2
AUROC scores for the two detection mechanisms (𝑈𝑎𝑑𝑣

and 𝑈 ′
𝑎𝑑𝑣) using our FPA across our experiment settings.

Higher is better.

Model Dataset PGD CW-SGD
𝑈𝑎𝑑𝑣 𝑈 ′

𝑎𝑑𝑣 𝑈𝑎𝑑𝑣 𝑈 ′
𝑎𝑑𝑣

RN
(5-shot)

MI 0.999 0.451 0.979 0.723
CUB 0.997 0.326 0.974 0.524

CAN
(5-shot)

MI 0.999 0.991 0.999 0.931
CUB 0.999 0.998 0.988 0.821

Table 2 shows our AUROC scores comparing the two
detection mechanisms, 𝑈𝑎𝑑𝑣 and 𝑈 ′

𝑎𝑑𝑣 , when using the
FPA filtering function. It is evident that using logits scores
to calculate differences as in 𝑈𝑎𝑑𝑣 can be more informa-
tive than using hard label predictions to match class labels,
as 𝑈𝑎𝑑𝑣 consistently outperforms 𝑈 ′

𝑎𝑑𝑣 , with the differ-
ence being bigger for RN. Differences in logits can be

pronounced also in cases when the prediction label does
not switch.

6.2. Varying Degrees of Regularisation
of FPA

We observe lower AUROC scores for the RN model than
the CAN model in Figure 4. As such, we question if
this difference can be attributed to the FPA’s ability to
reconstruct clean samples effectively. Recalling from
Eq. (7), we define an additional regularisation term to en-
force stricter reconstruction requirements to also include
class distribution reconstruction. More specifically, we
minimise the following objective function:

ℒℱ𝒫𝒜′ =
1

𝑁 ′

𝑁′∑︁
𝑖=1

0.01 · ‖𝑥𝑖 − 𝑥𝑖̂‖22
𝑑𝑖𝑚(𝑥𝑖)1/2

+
‖𝑓𝑖 − 𝑓𝑖̂‖22
𝑑𝑖𝑚(𝑓𝑖)1/2

+
‖𝑧𝑖 − 𝑧𝑖̂‖22
𝑑𝑖𝑚(𝑧𝑖)1/2

,

(10)

where 𝑥𝑖 and 𝑥𝑖̂ are the original and reconstructed image
samples, respectively, and 𝑓𝑖 and 𝑓𝑖̂ are the feature repre-
sentation of the original and reconstructed image obtained
from the few-shot model before any metric module, and
𝑧𝑖 and 𝑧𝑖̂ are the logits of the original and reconstructed
image. We refer to this variant as 𝐹𝑃𝐴′. Similarly, we
train 𝐹𝑃𝐴′ by fine-tuning the weights from the standard
autoencoder.

Table 3
AUROC results comparing 𝐹𝑃𝐴 and 𝐹𝑃𝐴′ for the RN.
We computed the results across the 10 and 25 exem-
plary classes for MI and CUB respectively, and 50 sets of
adversarial perturbations.

Dataset PGD CW-SGD
𝐹𝑃𝐴 𝐹𝑃𝐴′ 𝐹𝑃𝐴 𝐹𝑃𝐴′

MI 0.999 0.999 0.979 0.950
CUB 0.997 0.997 0.974 0.971

Our results in Table 3 shows that surprisingly, impos-
ing a higher degree of regularisation marginally lowers
the detection performance of our algorithm rather than
improving it. This implies that 𝐹𝑃𝐴 is already suffi-
cient to induce a large enough divergence in classification
behaviours in the presence of an adversarial support set.

7. Conclusion
Adversarial attacks against the support sets can be damag-
ing to few-shot classifiers. To this end, we propose a novel
adversarial attack detection algorithm on support sets in



the few-shot framework, which has not been explored
prior, to the best of our knowledge. Our algorithm works
by using the concept of self-similarity among samples in
the support set and filtering. We obtained high detection
AUROC scores in the CAN and RN models, across MI
and CUB datasets, with FPA and FeatS filtering functions,
though FPA is superior. We have also found that using
differences of the logits scores yield better detection per-
formances and a higher degree of regularisation of FPA
does not guarantee better detection results. Future work
can explore the efficacy of our detection for black-box at-
tack settings and the detection performances with different
filtering functions.
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