
COSMIC Functional Size of ARM Assembly
Programs

Ahmed Darwish1 ID
and Hassan Soubra1

1The German University in Cairo (GUC), New Cairo, Egypt,
ahmed.ahmeddarwish@student.guc.edu.eg

hassan.soubra@guc.edu.eg

Abstract. The COSMIC functional size measurement (FSM) method
can be applied in different phases of software projects: early in the design
phase or after the implementation has been delivered. Different software
artifacts can be used to produce the COSMIC functional size of a piece
of software: specification requirements, implemented code, etc. COSMIC
has been used in different domains (e.g. Management Information Sys-
tems (MIS), Real-time Embedded Systems-RTES, etc.), and has been ap-
plied to different conceptual frameworks and programming paradigms.
Assembly language is the lowest-level programming language designed
for a specific type of processor executing machine code. Assembly can
be compiled or interpreted from different high-level languages. ARM®

processors account for 90% of those used in the mobile industry and
controllers of IoT devices. In addition, 75% of the processors used in in-
vehicle infotainment Advanced Driver-Assistance Systems (ADAS) are
made by ARM. As a whole, they address 33% of the total addressable
market. In this paper, we propose an FSM procedure based on COSMIC
ISO 19761 to measure software artifacts expressed in ARM’s base 32-bit
Assembly code. An FSM automation prototype tool is also introduced.

Keywords: COSMIC FSM, ARM, Assembly Language, IoT, Compilers

1 Introduction

The world of technology is going through a new phase, and the workflow of
software development is starting to take on a newer more efficient form. Due to
the always changing requirements of the industry, newer programming languages
with features more suited to the market keep springing up. In addition, older
languages are often updated or used as a basis for newer languages with better
specifications, lest they get ignored by a programming team.

Software Engineering is both a technical and a managerial process, where the
best-suited programming language and style are picked by experts for building
either a simple or a complex component of a project [1]. And to be able to

Copyright ©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

https://orcid.org/0000-0001-5793-4128

2 Ahmed Darwish and Hassan Soubra

plan these projects, it is necessary to be aware of the required effort and the
estimated complexity of the system. This is where COSMIC software functional
measurement [2] comes in. Functional size measurement (FSM) is a powerful tool
for managing software projects and it provides an objective and quantitative
base for management decisions. It can be applied either during the design or
the implementation phase of a project. FSM also has the upper hand due to
their language-agnostic rules and definitions, as well as their robustness against
the difference in programming experience. They can even be applied to user
requirements written in natural languages. This deems this type of measurement
more objective.

The genericness of COSMIC’s rules allows them to be easily adapted to dif-
ferent use cases. However, applying COSMIC to assembly languages, which has
been largely ignored in literature, can be very useful. Any language, whether
compiled or interpreted, or a hybrid of both, is bound to be represented in bi-
nary streams of 1s and 0s for a processing unit to execute [3]. Assembly Language
is one layer of abstraction above this stream. That is why we argue that it is
important to have measurement rules for assembly languages since having such
rules would allow FSM measurement done in the implementation phase to be
language-agnostic. Having an automated, generic measurement tool for imple-
mented work would also provide a chance to detect any discrepancies between the
expected software size and the actual one, in a smooth workflow. The increased
demand of developing software at the lower levels of programming, which is a
result of the recent IoT (Internet of Things) boom, is also a very strong incentive
for automating low-level software measurement.

There are numerous microprocessor manufacturers in the market, many of
which adhere to a specific base architecture and assembly language. ARM [4] pro-
vides a simplistic language due to its reduced instruction set computing (RISC)
nature and it has a very high penetration ratio in the embedded systems indus-
try. This paper presents the definition and design of a COSMIC FSM procedure
for ARM-based devices. We are going to define the mappings of ARM’s assembly
to COSMIC’s guidelines and rules, as well as reasons for chosen measurement
granularity. We are also going to show an example of compiled machine code
being measured using our method, dealing with different parts of a system. We
believe that our approach can be generally applied to other architectures, with
minor modifications.

The rest of the paper is organized in the following manner: Section 2 provides
an exhaustive literature survey of different COSMIC FSM procedures using dif-
ferent programming and modelling languages, including attempts to implement
tools which automate the measurement procedures. Section 3 contains overviews
of the COSMIC method and the ARM microprocessor family. Section 4 presents
our proposed measurement procedure, as well as an illustrative example using
two different ARM instructions. Finally, sections 5 and 6 respectively present an
automated measurement prototype and conclude the paper with a statement of
our planned future work.

COSMIC Functional Size of ARM Assembly Programs 3

2 Related Work

Many approaches have been proposed in the literature to automate COSMIC-
based measurements, for different types of input and in different domains. One
of the most notable inputs are conceptual models, which have taken many dif-
ferent forms, and evolved throughout the years. One of the earliest attempts was
undertaken by Jenner [5], who implemented a tool that measures the CFPs of a
UML 1.0 model. Habela et al. [6] and Levesque et al. [7] then proposed manual
procedures for the newer 1.5 and 2.0 versions of UML, respectively. Meiliana et
al. [8] then went on to implement a tool that automates the measurement for
models represented in XML. The previous works were concerned mainly with
Management Information systems. Lind and Heldal [9] developed a tool using
Java that estimates the functional points of embedded software represented in
UML models. In the field of web development, Ceke and Milanisovic [10] devel-
oped a tool that takes web-oriented UML models as input. Similarly, Haoues
et al. [11] proposed a procedure that could be applied to both Mobile and web
applications. The latest work, done by De Vito et al. [12], consists of a generic
automated estimation tool that is claimed to work accurately for any domain.
More UML-related approaches are found in [13–15].

A lot of effort has also been made for other conceptual models. Diab et al.
formalised the rules of applying to ROOM framework for real-time applications,
and implemented a tool that works with RRRT models [16,17]. Grau et al. [18]
implemented a tool for the PRiM method. Abrahão et al.[16] implemented an
automated measurement plug-in for VisualWADE, a popular tool for developing
web applications using the Object-Oriented Hypermedia (OO-H) method.

Another kind of input that has been explored in literature is plain text. Ishrar
et al. [20] were the first to carry out a statistical study, looking for correlations
between the textual representation of the functionalities of an application and
its COSMIC measurement. Their study encouraged further research in the area.
Having a list of the use cases of an application, Ungan et al. [21] has been
able to extract COSMIC measurements, by implementing an extension to the
ScopeMaster® tool. In a very identical manner, Ecar et al. [22] estimated the
measurements using User Stories (US).

Tools have also been developed for actual programming environments. Soubra
et al. [23] implemented a tool that computes the CFP count of SimuLink files.
Later on, the same authors [24] (with the exception of Sophie Stern) refined
the procedure of the tool to account for variance in the account when the same
functional requirement is implemented using different approaches. In the auto-
motive industry, Soubra et al. [25] proposed a verification protocol for an FSM-
automation tool for AUTOSAR-based software. In [26], an automated tool was
developed by ESTACA for the LUSTRE-based SCADE development tool, and
it was verified that its measurements match those done manually. For Manage-
ment Information systems, Tarhan and Sağ [27] used execution traces from Java
Business Apps to generate tagged representations of sequence diagrams, which
were in turn used to automatically measure the functional size.

4 Ahmed Darwish and Hassan Soubra

To the best of our knowledge, no attempts have been made to define rules and
guidelines based on the COSMIC method, for any low-level assembly language.
The closest thing to our approach was a work by Soubra and Abran who applied
COSMIC rules to Arduino C, mapping COSMIC to the different components of
an Arduino board [28].

3 Overviews of COSMIC and ARM Architecture

This section presents overviews of COSMIC and ARM architecture.

3.1 COSMIC Overview

COSMIC is an ISO-standardised method of quantifying FURs. It defines how to
decompose the system into layers and how to differentiate between the various
movements of data in a system according to what is called the boundaries of a
Functional Process. It also dictates the guidelines of defining the granularity of
the measurement. The measurement unit is coined a COSMIC Functional Point
(CFP), and each data movement has the size of 1 CFP.

The four kinds of data movements according to COSMIC are as follows:-

1. Entry (E): This corresponds to a data group passing a boundary from a
functional user into a functional process, as a reaction to some trigger.

2. Exit (X): This corresponds to a data group crossing a boundary and moving
outside the functional process.

3. Read (R): Data is read from some persistent storage into the currently run-
ning functional process that requires it.

4. Write (W): Data is written to some persistent storage within the reach of
the currently running functional process.

Persistent storage is defined as storage with means of storing data after a
functional process terminates and/or of allowing a process to retrieve data that
has been manipulated by some other functional process or another occurrence
of the same process.

COSMIC rules can not be applied directly to measure the size of FURs; two
other stages need to be carried out first:-

1. Measurement Strategy Phase, in which the scope and the purpose of the
measurement is defined. This is done by applying the COSMIC Software
Context Model.

2. Mapping phase, where the measurement rules of COSMIC are mapped and
defined for the domain being measured.

After the measurement takes place, the final size of software is calculated by
summing up the sizes of all the functional processes present within the defined
scope. The FSM procedure proposed in this paper is based on version 4.0.2 of
COSMIC.

COSMIC Functional Size of ARM Assembly Programs 5

3.2 ARM Overview

ARM is a family of RISC architectures for computer processors, based on the
A32 Instruction Set Architecture -ISA, and its variations, the A64 and the T32
ISAs. The A64 ISA, the most recent addition, was introduced in tandem with
the new ARMv8-A microarchitecture which supports 64-bit memory addressing.
To maximise code density, T32 ISA have variable instruction lengths. To meet
the typical need for floating point operations, an extension ISA exists. Other
than that, additional ISA extensions are available for domains such as Machine
Learning, which provide increased parallelism.

As of 2019, ARM processors account for 90% of those used in the mobile
industry and controllers of IoT devices. In addition, 75% of the processors used in
in-vehicle infotainment Advanced Driver-Assistance Systems (ADAS) are made
by ARM. As a whole, they address 33% of the total addressable market [29].

At the time of writing, three different families of chips are in production: the
(A)pplication family which is targeted at high-performance general applications,
the (R)eal-time family which is optimised for time-critical and real-time domains,
and finally the (M)icrocontroller family [4].

The register file in an ARM core consists of 31 registers, whose sizes are either
32- or 64-bits according to the version of the processor. Of those registers, 16 are
always visible to the user, while the remaining are used to store program states,
such as the program counter, and the stack pointer, and handle exceptions. As
for memory, different processors have different levels of caching, and some have
none at all, while providing a standard interface to an external memory [30].

One defining feature of ARM instructions is the ability to conditionally exe-
cute commands by setting a specific field to the required the status of the system
that the instruction must run in. If the condition is not met, an instruction is
treated as a No Operation (NOP) instruction. This is more efficient than relying
on branch instructions.

4 An FSM Procedure for COSMIC Measurement on
ARM

To correctly measure the functional size of a program represented in ARM in-
structions, we have to define the scope and the purpose of our measurement,
and then we have to map COSMIC terms to ARM components.

4.1 The Measurement Strategy Phase

The purpose of this procedure is to apply the COSMIC method to the compiled
ARM assembly code. As to the scope, it is at the hardware level of a computing
entity, be it a stand-alone processor, or a separate core in a multi-core system.
Since we are working at such a low level, the granularity here would be at
the processor instruction level, since each instruction carries out a distinctive
operation that affects the state of the system.

6 Ahmed Darwish and Hassan Soubra

We consider the decoding circuitry (DC) to be our sole functional user. We
say the decoding circuitry is the hardware unit responsible for extracting the
different parameters from the fetched instruction, and analysing it so that the
proper hardware signals, required for executing the instruction correctly, may
be fired.

As for the persistent storage, we consider the register file, any caches present,
and any existing co-processor register files/memories to be common persistent
storage units for any ARM processor. In addition, if a processor is complying
with the Harvard architecture, then the Data Memory is also a part of the
persistent storage. However, if the processor is based on von Neumann’s, such
as pre-ARM9 processors [31], then we consider only the physical spaces storing
data to be part of it.

4.2 The Mapping Phase

Our mapping is based on our abstract view of instructions, which was inspired
from the official documentation of ARM’s ISA. In our model, we view each
instruction simply as a subroutine carrying out a specific operation, see figure
1. It must be stressed that this is not to be confused with the commonly known
idea of an assembly subroutine which usually involves a branch and ending in a
return. In our representation, every single instruction (including the branch and
the return instructions) is a subroutine, carrying out a certain set of operations
to achieve an intended change in the state of the system.

void i n s t r u c t i o n (ha l f by t e cond i t i onF i e ld , {boolean S} , param1 , param2 ,
. . .) {
// Optional s t a tu s r e g i s t e r check
i f (s t a tu sReg i s t e r [c ond i t i onB i t s] != cond i t i onF i e l d)

return ;

// Deta i l s of the in s t ruc t i on go here

// Optional s t a tu s r e g i s t e r update
// (for ar i thmet ic in s t ruc t i on s only)
i f (S == true)

updateStatusRegs i t e r ()

return ;
}

Figure 1. The abstract format of a single instruction

Moreover, for an instruction to be executed, the hardware needs to determine
certain operands from the decoded instruction. The operands would naturally
differ according to the nature of the instruction, and they can include informa-
tion about the specific index or label of the needed data in the persistent storage.
Therefore, we perceive the operands as entries coming from the instruction de-
coder to the subroutine, which is then later used to carry out the intended job,
by using the operands to read a register, write to memory, or carry out an arith-
metic operation, etc. It should be noted that due to the instruction format of
ARM instructions, a Read can take place at the beginning of the execution of

COSMIC Functional Size of ARM Assembly Programs 7

an instruction, where the condition field is compared to the status register bits
that correspond to the needed comparison.

So based on the aforementioned idea, each instruction stored in the instruc-
tion memory is considered a separate independent functional process, which is
triggered by fetching the instruction from the instruction memory according to
the Program Counter, and passing it to the DC. This would be the Triggering
Event. Of the extracted parameters, the condition field, shown in figure 1, is
the Triggering Entry, since it is common for all instructions. This Entry will be
followed by others carrying the operands and signals as explained before.

We define the start of the functional boundary for incoming data groups to be
the circuitry connecting the instruction decoding mechanism (i.e. the DC) and
the execution circuitry, which can, but need not, contain a mixture of ALUs,
shifters, and/or sign extenders. Naturally, the boundary will contain the register
file where register contents will be fetched according to the instruction operands
and other persistent storage. The boundary also encapsulates the circuitry re-
quired for reading and writing from the other persistent storage members. This
definition is arbitrary enough for and can be applied to any processor having a
decoding and an execution stage in its pipeline.

The mappings of the COSMIC rules regarding data group movements into
ARM terms are summarized in table 1.

4.3 The Measurement Phase

Using the rules defined in Section 4.2 to measure the size in CFP of every
instruction, we aggregate the results coming from all instructions at the end of
the execution of our program. For some instructions, such as the ADC (Add with
Carry) instruction, the CFP count of the actions carrying out the instruction’s
objective will always be the same for any instance of the instruction, no matter
the value of the operands. In other words, apart from the optional condition field
check, the CFP will be the same. On the other hand, other instructions, such as
the PUSH instruction, would have different counts for different instances. The
reason for this would be the nature of the parameters of the instruction, which
can lead to different amounts of data movements based on their values. This is
elaborated in the example below. Hence, we segregate ARM instructions into
two types: fixed size and variable size instructions, from a COSMIC FSM point
of view.

To show how an instruction is broken down to be measured, figures 2 and
3 shows examples of breaking down an instruction into measureable form. Both
examples borrow the parameter names from the syntax definition of the corre-
sponding instructions in ARM’s ISA documentation. The CFP count of ADC
instruction, where Operand2 is an immediate, not an optionally-shifted register
value, is always 8 CFP, while the CFP count of PUSH instruction varies accord-
ing to the reglist parameter. reglist is a mask that determines which registers
will be pushed to the stack, as shown in the pseudo-code in the figure. Therefore,
the CFP would vary based on the cardinality of reglist.

8 Ahmed Darwish and Hassan Soubra

Table 1. Mapping COSMIC Data Group Movement rules to ARM Terms

COSMIC Data Group Equivalent in ARM

Entry data group movements

Parameters required by the
instruction to carry out its

ISA-defined operation, such as
names of operand registers,
immediate values, memory

addresses, or bit masks.

Exit data group movements

Instructions never move data
outside the boundary, and are

considered to systemically
terminate. Consequently, all

functional processes have an exit
CFP count of 0.

Read data group movements

The reading of data from the
persistent storage as per the

parameters passed to the
functional process

Write data group movements

The writing of data to persistent
storage after the data processing
unit carries out the required data

manipulations

The status flags corresponding to the results of arithmetic operations are not
automatically updated after each instruction in ARM. Instead, an optional iden-
tifier, S, has to be included in the instruction for this to happen. Therefore, an
additional Write (1 CFP) updating the status register may take place depending
on the presence of that identifier.

5 Prototype of an Automated Measurement Tool

In this section, we present a prototype tool for a program expressed in ARM
assembly language.

5.1 Data Preparation

To retrieve a sample of machine code that can easily be analyzed and processed
to carry out the proposed FSM procedure, we wrote a simple program in C as
shown in figure 4. The C program contains two functions: square() and facto-
rial(), of which the latter is recursive. The C file was compiled using GCC on a
Raspberry Pi® 1 B+ board. The board runs on a Broadcom BCM2835 proces-
sor running an ARM ARM1176JZF-S™ core. This allowed us to have a binary

COSMIC Functional Size of ARM Assembly Programs 9

void ADC(ha l f by t e cond i t i onF i e ld , boolean S , int rd , int rn , int
Operand2){ ← 5 Ent r i e s
i f (s t a tu sReg i s t e r [c ond i t i onB i t s] != cond i t i onF i e l d) ← 1 Read

return ; (op t i ona l)

tmp a = Reg i s t e rF i l e [r t] ; ← 1 Read
Reg i s t e rF i l e [rd] = a + Operand2 + s t a tu sReg i s t e r [CarryFlag] ; ← 1

Write , 1 Read

i f (S == true)
updateStatusReg i s te r () ; ← 1 Write (op t i ona l)

return ;
}

Figure 2. The ADC instruction represented as a subroutine

void PUSH(ha l f by t e cond i t i onF i e ld , short r e g l i s t){ ← 2 Ent r i e s
i f (s t a tu sReg i s t e r [c ond i t i onB i t s] != cond i t i onF i e l d) ← 1 Read

return ; (op t i ona l)

for i = 0 t i l l 15 :
i f r e g l i s t [i] == 1 :

Memory [address] = Reg i s t e rF i l e [i] ← 1 Read ,
1 Write (per register)

address = address + 4

Reg i s t e rF i l e [SP] = Reg i s t e rF i l e [SP] − 4∗BitCount (r e g l i s t) ;← 1 Read ,
1 Write

return ;
}

Figure 3. The PUSH instruction represented as a subroutine

executable in ARM machine language. The next step was to translate the bi-
nary file to a human-readable file that can be used to analyze the instructions
more easily. This is where GNU’s objdump tool came in. We used this tool to
disassemble the binary file, separating the ARM instructions according to the
subroutines, see figure 5. The objdump returns an instruction in the form of
{hexadecimal representation, the natural language name of the instruction, list
of needed operands}. This form adheres to ARM’s assembly syntax.

#include <s t d i o . h>

int square (int x){ return x ∗ x ; }
int f a c t o r i a l (int x){

i f (x == 0){ return 1 ; }
return x ∗ f a c t o r i a l (x − 1) ;

}
int main () {

int x = 5 ;
x = x + 9 ;
int y = square (x) ;
y = f a c t o r i a l (y) ;
p r i n t f (”%d\n” , y) ;
return 0 ;

}

Figure 4. The sample C program used

10 Ahmed Darwish and Hassan Soubra

Fig. 5. A snippet from the output of the objdump tool

5.2 The Automated Measurement Tool

We used Python2 to implement our automated measurement tool, and figure 6
shows the UI of the tool. The tool accepts as input a text containing objdump’s
disassembly, object, or C file. The tool also gives the user the option to exclude
C’s standard headers from the measurement. For an accurate measurement of
the CFP count of the input program, we comply with the syntax and the pseudo-
code defined in ARM’s official specifications of their 32-bit ISA, A323. The ARM
Quick Reference Card4 was also used as a guide.

Fig. 6. The tool’s UI

2 https://www.python.org/
3 https://developer.arm.com/docs/ddi0597/h
4 https://www.ee.ryerson.ca/ courses/coe718/Data-Sheets/ARM/IS-arm.pdf

COSMIC Functional Size of ARM Assembly Programs 11

We start by using a regular expression to preprocess and filter out non-
instruction elements of the file, mainly assembly labels of different sections in
the code. After retrieving the list of instructions, we carry out the following
steps:

1. For each fixed-size instruction, that always has the same functional size, we
count its number of occurrences. We then multiply the occurrences by its
size in CFP.

2. For variable size instructions, we further analyze the operands of each occur-
rence of such instructions to determine its exact COSMIC functional size.

3. For pseudo-instructions and aliases, we translate the instruction to an equiv-
alent list of ARM instructions and use these resulting instructions for the
measurement.

For our prototype, we only consider a subset of instructions, which are the
ones present in our sample file. We plan to include all the instructions in the
final version of our prototype tool.

Our prototype tool returns the total CFP count of the input file with its
breakdown into the different types of data movements, as shown in figure 7. It
also returns the count of each unique instruction in the program. The user can
save the output as two different. The first of them is the functional size in CFP
of the whole program, as well as the count of each unique instruction in the
examined program. This is depicted in figure 8.

Fig. 7. The UI with an output

The second output is a Comma-Separated Values (CSV) file, containing a
list of the hexadecimal codes, the instruction names, the operands, as well as
the individual CFP count of each instruction. figure 9. shows the CSV output
file.

6 Conclusion

FSM is used to estimate development effort, manage project scope changes,
measure productivity, benchmark, and normalize quality and maintenance ratios.

12 Ahmed Darwish and Hassan Soubra

Fig. 8. The saved output file

COSMIC ISO 19761 is considered a second-generation FSM method that is
designed to be independent of any implementation decisions embedded in the
operational artifacts of the software to be measured.

In this paper, we proposed an application of the COSMIC method to an as-
sembly language. We explained how the COSMIC measurement methods could
be used to measure the functionality of compiled ARM programs, with an illus-
trative example and we introduced an automated measurement tool prototype
that can easily produce the functional size in CFP of an ARM program.

We believe that our work would influence the embedded systems industry,
especially with the present boom in the domain of IoT and portable devices. In
addition, we believe that our work would be useful to the compiler construction
field, as the CFP count can provide insight into the difference of the efficiencies
of two similar compilers.

In the future, we hope to apply our technique to a Complex Instruction Set
Computer (CISC) language, and carry out a study to compare sizes in CFP as
code is compiled into another.

References

1. Sommerville, Ian., Software Engineering, Addison Wesley; 2006
2. https://cosmic-sizing.org/
3. Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey

D. Ullman - Second Edition, 2007
4. https://www.arm.com/

https://cosmic-sizing.org/
https://www.arm.com/

COSMIC Functional Size of ARM Assembly Programs 13

Fig. 9. Part of the Output CSV file (examined in LibreOffice Calc)

5. Jenner, M.S.: COSMIC-FFP and UML: Estimation of the Size of a System Speci-
fied in UML – Problems of Granularity. In: 4th European Conference on Software
Measurement and ICT Control, Heidelberg, pp. 173–184 (2001)

6. Habela, P., Glowacki, E., Serafinski, T., Subieta, K.: Adapting Use Case Model for
COSMIC-FFP Based Measurement. In: 15th International Workshop on Software
Measurement – IWSM 2005, Montréal, pp. 195–207 (2005)

7. Levesque, G., Bevo, V., Cao, D.T.: Estimating software size with UML models. In:
Proceedings of the 2008 C3S2E Conference, Montreal, pp. 81–87 (2008)

8. Meiliana, et al. “Automating Functional and Structural Software Size Measure-
ment Based on XML Structure of UML Sequence Diagram.” 2017 IEEE Inter-
national Conference on Cybernetics and Computational Intelligence (Cybernetic-
sCom), 2017, pp. 24–28.

9. Lind, Kenneth, et al. “CompSize: Automated Size Estimation of Embedded Soft-
ware Components.” 2011 Joint Conference of the 21st International Workshop on
Software Measurement and the 6th International Conference on Software Process
and Product Measurement, 2011, doi:10.1109/iwsm-mensura.2011.49.

10. Ceke, Denis, and Boris Milasinovic. “Automated Web Application Functional Size
Estimation Based on a Conceptual Model.” 2015 23rd International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), 2015, pp.
234–241.

11. Haoues, Mariem, et al. “A Rapid Measurement Procedure for Sizing Web and
Mobile Applications Based on COSMIC FSM Method.” Proceedings of the 27th In-
ternational Workshop on Software Measurement and 12th International Conference
on Software Process and Product Measurement On , 2017, pp. 129–137.

12. Vito, Gabriele De, et al. “Design and Automation of a COSMIC Measurement
Procedure Based on UML Models.” Software and Systems Modeling, vol. 19, no. 1,
2020, pp. 171–198.

13. Barkallah, S., Gherbi, A., & Abran, A. (2011). COSMIC Functional Size Measure-
ment Using UML Models. FGIT-ASEA/DRBC/EL.

14. Lavazza, L., & Robiolo, G. (2010). Introducing the evaluation of complexity in
functional size measurement: a UML-based approach. ESEM ’10.

15. Lavazza, L., & Bianco, V.D. (2009). A Case Study in COSMIC Functional Size
Measurement: The Rice Cooker Revisited. IWSM/Mensura.

16. Diab, H., Frappier, M., St-Denis, R.: Formalizing COSMIC-FFP Using ROOM.
In: ACS/IEEE International Conference on Computer Systems and Applications,
Beirut (2001)

14 Ahmed Darwish and Hassan Soubra

17. Diab, H., Koukane, F., Frappier, M., St-Denis, R.: µcROSE: Automated Measure-
ment of COSMIC-FFP for Rational Rose Real Time. Information and Software
Technology 47(3), 151–166 (2005)

18. Grau, G., Franch, X.: Using the PRiM method to Evaluate Requirements Model
with COSMIC-FFP. In: Proceedings of the IWSM-MENSURA 2007, Mallorca, pp.
110–120 (2007)

19. Abrahão, Silvia, et al. “Definition and Evaluation of a COSMIC Measurement Pro-
cedure for Sizing Web Applications in a Model-Driven Development Environment.”
Information & Software Technology, vol. 104, no. 104, 2018, pp. 144–161.

20. Hussain, Ishrar, et al. “Approximation of COSMIC Functional Size to Support
Early Effort Estimation in Agile.” Data and Knowledge Engineering, vol. 85, 2013,
pp. 2–14.

21. Ungan, Erdir, et al. “Automated COSMIC Measurement and Requirement Quality
Improvement Through ScopeMaster® Tool.” IWSM-Mensura, 2018, pp. 1–13.

22. Ecar, Miguel, et al. “AutoCosmic: COSMIC Automated Estimation and Manage-
ment Tool.” Proceedings of the XIV Brazilian Symposium on Information Systems,
2018, p. 61.

23. Soubra, Hassan, et al. “Design of a Functional Size Measurement Procedure
for Real-Time Embedded Software Requirements Expressed Using the Simulink
Model.” 2012 Joint Conference of the 22nd International Workshop on Software
Measurement and the 2012 Seventh International Conference on Software Process
and Product Measurement, 2011, pp. 76–85.

24. Soubra, Hassan et al. “A Refined Functional Size Measurement Procedure for Real-
Time Embedded Software Requirements Expressed Using the Simulink Model.”
2012 Joint Conference of the 22nd International Workshop on Software Measure-
ment and the 2012 Seventh International Conference on Software Process and Prod-
uct Measurement (2012): 70-77.

25. Soubra, Hassan, et al. “Verifying the Accuracy of Automation Tools for the Mea-
surement of Software with COSMIC – ISO 19761 Including an AUTOSAR-Based
Example and a Case Study.” 2014 Joint Conference of the International Workshop
on Software Measurement and the International Conference on Software Process
and Product Measurement, 2014, pp. 23–31.

26. Soubra, Hassan, et al. Manual and Automated Functional Size Measurement of
an Aerospace Realtime Embedded System: a case study based on SCADE and on
COSMIC ISO 19761. 2015.

27. Tarhan, Ayça, and Muhammet Ali Sağ. “COSMIC Solver: A Tool for Functional
Sizing of Java Business Applications.” Balkan Journal of Electrical and Computer
Engineering, vol. 6, no. 1, 2018, pp. 1–8.

28. Soubra, Hassan and Alain Abran. “Functional size measurement for the internet
of things (IoT): an example using COSMIC and the arduino open-source platform.”
IWSM Mensura ’17 (2017).

29. ARM’s Q1 2019 Roadshow Presentation: https://www.arm.com/-/media/global/
company/investors/PDFs/Arm SBG Q1 2019 Roadshow Slides FINAL.pdf

30. https://developer.arm.com/
31. Furber, Steve. ARM System-on-Chip Architecture. p. 344. ISBN 0201675196.

https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf
https://www.arm.com/-/media/global/company/investors/PDFs/Arm_SBG_Q1_2019_Roadshow_Slides_FINAL.pdf
https://developer.arm.com/

	COSMIC Functional Size of ARM Assembly Programs

