
Usability, Performance and Scalability
for Expressive Data Languages

via Cardinality-Based Aggregates

Carlo Zaniolo

UCLA Computer Science Department
Los Angeles, CA

USA
Email: zaniolo@cs.ucla.edu

Abstract. In theory, the combined use of recursion and negation al-
lows the declarative expression of very powerful algorithms in languages
such as Datalog or SQL. However, the diffculty of writing such programs
and proving that they satisfy formal non-monotonic semantics makes
such an approach totally impractical for software developers. Thus, we
propose a new general solution to the problem of developing advanced
applications in logic-based languages. Our approach is based on the com-
bined use of recursion and aggregates endowed with a unified definition
of their semantics based on cardinality. In fact, we show that this entails
the expression on a wide range of algorithms used in ML, data-mining
and graph applications, which can be very appealing for practitioners
because of (i) the compactness of their code, (ii) a simplified proof or
verification for their stable-model semantics, (iii) their effcient implemen-
tations via a max-optimized semi-naive fixpoint algorithm, and (iv) their
superior scalability via Stale-Synchronous Parallelism. To demonstrate
and further enhance the usability of our proposed framework, including
the several efficient and scalable applications we developed, we provide
a Logical Algorithm Library (Llib) and a Logical Data-Frame System
(LFrame). By integrating access to Llib libray with other Apache Spark
libraries, and supporting the interoperability of our BigDatalog, RaSQL,
and Datalog-ML systems with Scala, Java and Python, LFrame turns
Datalog into a powerful and attractive tool for advanced application de-
velopment in the Spark ecosystem.

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.


