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Abstract. Link Prediction (LP) on Knowledge Graphs (KGs) has re-
cently become a sparkling research topic, benefiting from the explosion
of machine learning techniques. Several relation-learning models are pub-
lished every year, mostly relying on KG embeddings. So far, however, not
much has been done to interpret the features they learn and predict, and
the circumstances that allow them to achieve satisfactory performances.
Our research aims at opening the black box of LP models, trying to
explain their behaviors. In this work we first discuss the current lim-
itations of LP benchmarks, showing how the use of global metrics on
largely skewed datasets hinders our understanding of these models; we
then report the main takeaways from our recent comparative analysis of
state-of-the-art LP models [3], identifying the most influential structural
features of the graph for predictive effectiveness.
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1 Introduction

Knowledge Graphs (KGs) model data as nodes linked by labeled edges. In a
KG nodes represent entities; each edge connects a head entity to a tail entity
through the relation specified by its label, resulting in a fact. KGs are employed
in several domains, ranging from question answering to information retrieval
and content-based recommendation. All KGs tend to suffer from incomplete-
ness; Link Prediction (LP) tackles this issue by leveraging the known facts to
infer the missing ones. LP research has been largely influenced by the recent
advancements in machine learning; most LP models nowadays map the KG el-
ements into vectors dubbed KG embeddings, learned automatically based on
scoring functions that estimate the plausibility of the training facts. For in-
stance, 〈Barack Obama, born in, Honolulu〉 is expected to yield a better score
than 〈Barack Obama, born in, Beijing〉. In this framework, predicting the tail of
an incomplete fact 〈h, r, ?〉 amounts to finding the entity that results in the best

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.



score when used as its tail. Head prediction is performed analogously. Despite
the popularity of LP techniques, their strengths, weaknesses and limitations are
still unknown, and the graph structural features driving predictions have been
hardly investigated. Roughly speaking, we still do not really know what makes
a fact easy or hard to learn and predict, and whether the corresponding predic-
tions can be trusted or not. Our research focuses on interpreting the behavior of
LP models, aiming at providing tools for explaining their predictions. As a first
step towards this goal, in this paper we summarize our findings on the limita-
tions of current benchmarks in showing how different papers in LP literature fit
together. Then, we report the main results of our comparative analysis. Finally,
we discuss our research plans for building interpretable methods for LP.

2 Related Works

Works related to ours are mostly meta-analyses focusing on specific LP method-
ologies. These works tend to address very specific hypotheses to interpret LP
behaviours, and run experiments on a few selected models to verify them. For
instance, the authors of [5] study geometrical properties of the embedding vec-
tors, measuring their Alignment To Mean (ATM) and conicity. They show that
models that operate by adding embeddings tend to learn significantly sparser
vectors than the ones multiplying them; in the latter, higher conicity also seems
to correlate to better performances. The work of [7] points out that the cur-
rent evaluation practices just ensure that models prioritize correct answers over
wrong ones on test facts. In this way, only questions that do have an answer are
taken into account. The authors argue that this approach is more akin to ques-
tion answering than LP, and propose a novel measure that includes questions
with no correct answers (e.g. nonsensical questions, such as 〈Apple, gender, ?〉).

Finally, we acknowledge that LP is also being researched on standard graphs.
In this scenario edges are usually non-labeled, so modeling relations is unneces-
sary: this makes it a related but ultimately very different task from LP on KGs.

3 Interpreting Link Prediction Results

Since the seminal work of [1], dozens of models have been developed in just a
few years (see [6] for a survey). We argue that a crucial step towards interpret-
ing these models lies in providing informative evaluation practices. We briefly
highlight the most prominent limitations of current LP evaluation practices and
benchmarks, and then summarize our main findings when comparing LP models.

3.1 Benchmark Limitations

All the currently most popular LP datasets have been generated by sampling
facts from a KG and splitting them uniformly at random into a training, a
validation and a test set. As a side effect, in such datasets the number of mentions



of both entities and relations display significantly skewed distributions: less than
15% entities can be featured in more than 80% training facts. Furthermore, since
the training and test set are random splits from the same original sample, the
most mentioned entities in training are largely over-represented in testing too.

Since current evaluation practices rely almost solely on global metrics (e.g.
Hits@K, Mean Rank, Mean Reciprocal Rank) over the entire test set, LP models
can exhibit good performances, in proportion, by just learning to predict the
most mentioned entities, while ignoring the others. In FB15k [1], one of the first
LP datasets and a de facto standard, “United States” is both the most mentioned
entity and the most common answer to relation “nationality”; in this setting, a
model can obtain decent results by just learning to predict U.S. citizens only.

In our work [4] we have observed experimentally that LP models are indeed
subject to this issue to some extent, as they achieve better performances when
dealing with entities with more training mentions.

3.2 Comparative Analysis of Models

As mentioned above, relying exclusively on global metrics hides any variations
in predictive performances across different portions of the dataset. This makes it
difficult to analyze the conditions that facilitate or hinder predictions. We also
acknowledge the difficulty of coming up with new datasets with different struc-
tural properties and good semantic consistency. In order to mitigate this issue,
we have proposed a set of evaluation practices going beyond what is available
in literature, taking into account structural properties of individual facts and
entities. We have run an extensive comparative analysis [3] on a set of 16 mod-
els representative for the most successful architectures applied to LP; we have
included an additional rule-based LP model as a baseline. We have trained and
fine-tuned all models on the 5 most popular LP datasets, extracting fine-grained
results with the predictions yielded by each model for each test fact. The full
list of featured datasets and models can be found at our repository.

We have used these results to investigate the graph structural features that
make facts easier to learn and predict, searching for the strongest correlations
with the predictive performances of the models. The structural features we found
most influential to predictive performances are the number of peers and the
support provided by paths, as discussed below.

Given a prediction, its target is the entity to predict, and its target peers
are its correct alternatives, i.e. forming a fact belonging to the dataset. When a
prediction has too many target peers, LP models seem to get confused: as they
try to optimize the embeddings for too many correct answers, they also let many
incorrect ones in, leading to a rapid decrease in performances. In a specular way,
the known entity in the prediction is called its source, and its correct alternatives
are dubbed source peers. Source peers seem to facilitate predictions, leading
to better performances; this can be explained by interpreting them as specific
examples that enable analogical reasoning.

https://github.com/merialdo/research.lpca



In a graph, paths are chained sequences of facts. Given a fact, the paths
connecting its head and tail can provide useful patterns for prediction, e.g.
〈Barack Obama, born in, Honolulu 〉 and 〈 Honolulu, located in, USA〉 can be
useful to predict 〈Barack Obama, nationality, USA〉. In our work [3] propose a
novel RPS measure estimating the Relational Path Support of any test fact. RPS
uses TF-IDF vectors to assess the similarity between the paths co-occurring with
the specific test fact and the ones usually co-occurring with the other facts that
feature the same relation. We have observed that most LP models, despite just
training on individual facts, are able to leverage longer-range dependencies to
some extent, as higher RPS values always correspond to far better performances.

4 Research plan and concluding remarks

Being aware of the behaviours of current LP methods is vital to identify their
weaknesses, and to ultimately build more robust, trustworthy systems.

In order to open the black box of LP systems, we aim at building a full-
fledged explainability framework: given a prediction of a model, our framework
would yield as an explanation the training facts that have been most influential
for it. In the categorization of [2], this amounts to a post-hoc local explanation.
The framework we aim to create should be agnostic to the architecture of the LP
model to explain, thus being applicable to a set of systems as wide as possible.

As a matter of fact, explaining the predictions provided by LP models is still
an open problem. To the best of our knowledge, the only technique proposed
so far is [8]; this approach, however, still displays severe limitations, as it just
searches for meaningful paths connecting the head and tail, without any evidence
that such paths have actually been instrumental to perform the prediction.

Our research plan also includes the development of more balanced and in-
sightful benchmarking workloads, in terms of both datasets and metrics.
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