
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

Predicting runtime of computational jobs in distributed

computing environment

A G Feoktistov1 and O Yu Basharina2

1Matrosov Institute for System Dynamics and Control Theory of SB RAS,

Lermontov St. 134, Irkutsk, Russia, 664033
2Irkutsk State University, Karl Marx St. 1, Irkutsk, Russia, 664003

agf@icc.ru

Abstract. The paper addresses a relevant problem of predicting the runtime of jobs for

executing problem-solving schemes of large-scale applications in a heterogeneous

distributed computing environment. Such an environment includes nodes that have

various hardware architectures, different system software, and diverse computational

possibilities. We believe that increasing the accuracy in predicting the runtime of jobs

can significantly improve the efficiency of problem-solving and rational use of

resources in the heterogeneous environment. To this end, we propose new models that

make it possible to take into account various estimations of the module runtime for all

modules included in the problem-solving scheme. These models were developed using

the special computational model of distributed applied software packages (large-scale

scientific applications). In addition, we compare the prediction results (jobs runtime

and their errors) using different estimations. Among them are the estimations obtained

through the modules testing, user's estimations, and estimations based on

computational history. These results were obtained in continuous integration, delivery,

and deployment of applied and system software of a package for solving warehouse

logistics problems. They show that the largest accuracy is achieved by the

modules testing.

1. Introduction

Todays, scientific applications focus on carrying out large-scale scientific experiments in a

heterogeneous distributed computing environment. They play a significant role in the process of

solving important practical problems based on mathematical modeling of complex systems under

study [1]. Often, such applications are implemented as distributed applied software packages. The

environment heterogeneity means that its nodes (PCs, compute servers, HPC-clusters, and cloud

resources) have various hardware architectures, different system software, and diverse computational

possibilities. Various local resource managers (LRMs) are hosted in nodes of the environment.

In distributed applied software packages, problem-solving is described by schemes that specify the

computing process in terms of the subject domain. We apply methods of the computation and

information planning in constructing such problem-solving schemes on the special computational

model [2]. Wherein, this model is a special case of the semantic network.

To execute a problem-solving scheme in the heterogeneous distributed computing environment, a

computational job is generated. A job enters into the environment. The meta-scheduler selects an

environment node suitable for this job. It then submits the job to LRM located on the node. The job

falls into the LRM's queue. When the resources of the node are freed, the job is launched.

An improvement in the efficiency of problem-solving and rational use of resources depends a lot

on the ability to estimate jobs runtime. In this regard, we propose new models for predicting jobs

runtime in the environment. Unlike well-known similar models [3-5], the proposed models make it

possible to take into account various estimations of the module runtime for all modules included in the

problem-solving scheme. Among them estimates that are obtained on the basis of the methodology

proposed by the authors.

This methodology allows us to test the program runtime. It is also used in the process of continuous

integration of applied software [6].

The rest of the paper is structured as follows. In Section 2, we briefly review related works on the

problem under study. Section 3 provides the models for predicting the jobs runtime. An example of

applying the proposed models is considered in Section 4. Section 5 concludes the paper.

2. Related work

When starting jobs in a heterogeneous distributed computing environment, it is necessary to solve the

following two problems:

 Forming a rational configuration of heterogeneous resources of the environment,

 Planning a suboptimal schedule of the job execution on the formed configuration of resources.

It's obvious that a qualitative solution to these problems for a large spectrum of practical scientific

applications requires an estimation of the execution time of applied programs [7]. For example, such

an estimation is used to cluster jobs in the allocation of resources to them [8]. Generally, job runtime

estimates are implemented by the user or some runtime prediction procedure [9].

Most of traditional job management systems and many workflow management systems are based

on the use of estimates for program execution time that are specified by the user. This is a simple and

very flexible approach. However, the errors of such estimates are usually highly large in practice.

There are various methods for predicting program execution time [10]. Among them are static and

dynamic methods of program analysis.

The use of methods and tools of static analysis of program code without real program execution in

heterogeneous environments is characterized by high overheads to additional programming. Such

overheads are owing to the need to simulate operating the processor of the target computing node for

executing a large spectrum of programs written in various programming languages.

In practice, the method of frequency characteristics has proven itself well [11]. It is based on the

use of special tools for dynamic analysis of programs [12, 13]. Algorithms based on the use of such

analysis differ in the sets of studied software and hardware characteristics [14]. Each algorithm

determines specific relations between these characteristics. In this regard, the method of profiling the

program on some reference node is most applicable in practice [15]. Its results are then extrapolated

relative to the characteristics of the target node. Within this method, the accuracy of estimating the

program execution time largely depends on the selection of scaling coefficients for computation

speedup. These coefficients are determined by the ratios of characteristics for the reference and

target nodes.

However, our practical experience in applying continuous integration of applied software

represented in [6] allows us to draw the following conclusion. If the target nodes are available, then

testing the programs in them can simplify the program runtime prediction in comparison with the

dynamic analysis.

3. Models for Predicting Computational Jobs Runtime

The computational model of the environment is determined by the structure

𝕄 =< 𝐴, 𝑍, 𝐹, 𝑀, 𝑆, 𝐽, 𝑅, 𝑄, 𝑂, 𝑀𝐻 >,

where 𝐴, 𝑍, 𝐹, 𝑀, 𝑆, 𝐽, 𝑅, and 𝑄 are, respectively, the sets of applied software packages, parameters,

operations, program modules, problem-solving schemes, jobs, resources, and constraints to the job

execution and resources use. 𝑂 is the set of relations between the above-listed objects. The data

structure 𝑀𝐻 represents the computational history that reflects the functioning of modules from 𝑀. If

necessary, a description of components of the model 𝕄 can be found in details in [2].

Operations from 𝐹 determine computational actions on the set 𝑍 of parameters. Parameters can be

represented by scalars, vectors, and matrices of various basic data types or arbitrary data structures.

Each operation 𝑓𝑖 ∈ 𝐹 is implemented by the module 𝑚𝑗 ∈ 𝑀, where 𝑖 ∈ 1, 𝑛𝑓
̅̅ ̅̅ ̅̅ , 𝑗 ∈ 1, 𝑛𝑚

̅̅ ̅̅ ̅̅ ̅, 𝑛𝑓 is the

number of operations, and 𝑛𝑚 is the number of modules. One module can implement several

operations. Each operation 𝑓𝑖 has two subsets 𝑍𝑖
𝑖𝑛, 𝑍𝑖

𝑜𝑢𝑡 ⊂ 𝑍 of parameters. The subset 𝑍𝑖
𝑖𝑛 consists of

input parameters. Their values must be known in order to calculate values of parameters from 𝑍𝑖
𝑜𝑢𝑡.

Parameters of the subsets 𝑍𝑖
𝑖𝑛 and 𝑍𝑖

𝑜𝑢𝑡 reflect the purpose and semantics of formal parameters of the

module 𝑚𝑗 that implements the operation 𝑓𝑖. Parameters are transferred between modules in the form

of data files.

Schemes from 𝑆 represent problems-solving processes in packages. The scheme 𝑠 ∈ 𝑆 that

performs operations from 𝐹 is an analogue of the tiered-parallel form of the algorithm graph. Within

the computational model under consideration, a scheme is a connected subgraph of an oriented acyclic

bipartite graph. Such a graph represents schematic knowledge about algorithms for studying a subject

domain. The example of such a graph is represented in Figure 1. Operations and parameters are

depicted on it by filled and unfilled circles. The problem-solving scheme represented by the graph

includes 3 tiers. Tier 1 contains the operation 𝑓3. The second consists of the operations 𝑓4, 𝑓5, and 𝑓6.

Finally, two operations 𝑓7 and 𝑓8 are placed on tier 3.

f3

z4

f5

f6

f4

z6

z5

z9

f7

f8 z8

z7

z1

z2

z3

Tier 1 Tier 2 Tier 3

Figure 1. Bipartite directed graph of the problem-solving scheme.

Two special operations 𝑓1 and 𝑓2 are emphasized in the computational model. This allows us to

maintain a commonality for computations planning when constructing problem-solving schemes using

their formulations [16]. The operations 𝑓1 and 𝑓2 model the conditions of the problem. They

respectively define a subset of parameters whose values are known, and a subset of the parameters

whose values need to be calculated. Thus, the operation 𝑓1 defines the subsets 𝑍1
𝑖𝑛 = ∅ and 𝑍1

𝑜𝑢𝑡 ≠ ∅.

The operation 𝑓2 determines the subsets 𝑍2
𝑖𝑛 ≠ ∅ and 𝑍1

𝑜𝑢𝑡 = ∅. In the above example, 𝑍1
𝑖𝑛 = ∅ and

𝑍1
𝑜𝑢𝑡 = {𝑧1} (Figure 2). At the same time, 𝑍2

𝑖𝑛 = {𝑧7, 𝑧8, 𝑧9} and 𝑍2
𝑜𝑢𝑡 = ∅.

The execution of a problem-solving scheme in the environment is specified by a computational job.

A job includes a list of modules of a problem-solving scheme. In addition, it contains requirements to

the environment that determine the computing resources needed to execute the listed modules. These

requirements include the number of processors or cores, sizes of RAM and disk memory, execution

time, etc.

z8
...z1f1 f2

z7

z9

Figure 2. The operations 𝑓1 and 𝑓2.

We propose new models for predicting the job runtime in the heterogeneous environment. In these

models, we consider cases of job execution in modes of data readiness and fork/join, resource

virtualization, and job restarts.

Let the matrix 𝐏 of dimension 𝑘 × 𝑘 represent information on the precedence of 𝑘 operations of the

problem-solving scheme. The element 𝑝𝑖𝑗 = 1 (𝑝𝑖𝑗 = 0) of the matrix 𝐏 means that the operation 𝑓𝑗 in

the problem-solving scheme precedes (does not precede) the operation 𝑓𝑖 and 𝑍𝑖
𝑖𝑛 ∩ 𝑍𝑗

𝑜𝑢𝑡 ≠ ∅ (𝑍𝑖
𝑖𝑛 ∩

𝑍𝑗
𝑜𝑢𝑡 = ∅). The matrix 𝐃 of dimension 𝑘 × 𝑘 reflects estimates of the data volumes transmitted

between operations. The matrix element 𝑑𝑖𝑗 ≥ 0 shows the amount of data transmitted by the

operation 𝑓𝑖 to the operation 𝑓𝑗. The matrix 𝐖 of dimension 𝑘 × 𝑘 provides information about the

interconnect bandwidth between nodes where modules that implement scheme operations are

launched. The matrix element 𝑤𝑖𝑗 ≥ 0 demonstrates the interconnect bandwidth between nodes, in

which the modules implementing the operations 𝑓𝑖 and 𝑓𝑗 operate.

The estimate 𝐸𝑠 of the job runtime in the asynchronous mode based on data availability is defined

as follows:

𝐸𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢), 𝑢 =

𝑑𝑗𝑖

𝑐𝑗𝑖(𝑡)𝑤𝑗𝑖
 . (1)

The variables in the formulas (1) are interpreted as follows:

 𝑒𝑖
𝜏 (𝑒𝑗

𝜏) is the estimate of the period 𝜏 elapsed from the beginning of the job execution to the

completion of the operation 𝑓𝑖 (𝑓𝑗),

 𝑒𝑖
𝑞
 is the estimate of the wait time in a queue for the module that implements the operation 𝑓𝑖

(at a time when all the necessary data is ready to execute it),

 𝑒𝑖 is the predictive estimate of the module runtime,

 𝑘 is the number of scheme operations,

 0 < 𝑐𝑗𝑖(𝑡) ≤ 1 is the coefficient of decrease in interconnect bandwidth between nodes, in

which the modules implementing the operations 𝑓𝑖 and 𝑓𝑗 operate, at the time 𝑡.

Let the matrix 𝐒 of dimension 𝑚 × 𝑘 be a tiered-parallel form describing the scheme execution in

the fork/join mode, and 𝑚 is the number of scheme tiers. The element 𝑠𝑙𝑖 = 1 means that the operation

𝑓𝑖 must be performed on the lth tier. The transition to operations of the (l+1)th tier is possible provided

that all operations on the lth tier are completed. The estimate 𝐸𝑠
′ of the job runtime in the fork/join

mode is defined as follows:

𝐸𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖 + 𝑣), 𝑣 = ∑
𝑑𝑗𝑖

𝑐𝑗𝑖(𝑡)𝑤𝑗𝑖
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗 . (2)

We use formulas (1) and (2) to define other estimates. Among them the estimates of the job

runtime with virtualized resources, module restarts, user estimates of the module runtime, and

estimates adjusted based on the computational history.

In the environment with virtualized resources, the estimate 𝐸𝑣𝑠 of the job runtime in the

asynchronous mode is defined as follows:

𝐸𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖 + 𝑒𝑖

𝑣𝑚𝑟 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢).

The variables 𝑒𝑖
𝑣𝑚𝑙 and 𝑒𝑖

𝑣𝑚𝑟 are, respectively, estimates of the time it takes to launch and remove

virtual machine with a module that implements the operation 𝑓𝑖. The estimates 𝑒𝑖
𝑣𝑚𝑙 and 𝑒𝑖

𝑣𝑚𝑟 are

determined experimentally for virtual machines of various configurations.

For the same environment, the estimate 𝐸𝑣𝑠
′ of the job runtime in the fork/join mode is defined as

follows:

𝐸𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖 + 𝑒𝑖

𝑣𝑚𝑟 + 𝑣).

In the asynchronous mode with restarting modules, the estimate 𝐸𝑟𝑠 of the job runtime is defined as

follows:

𝐸𝑟𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖 + 𝑒𝑖
𝑟𝑢𝑛 + 𝑒𝑖

𝑟𝑒𝑠 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢).

The variables in the formula above are interpreted as follows:

 𝑒𝑖
𝑓
 is the estimate of the time it takes for the detection and identification of a failure,

 𝑒𝑖
𝑟𝑒𝑠 is the estimate of the time it takes for the restart of a module that implements operation

𝑓𝑖,

 𝑒𝑖
𝑟𝑢𝑛 is the module runtime to failure.

These variables are required in the case of a hardware-software failure. The estimates 𝑒𝑖
𝑓
 and 𝑒𝑖

𝑟𝑒𝑠

are determined by the average execution time of such processes by a meta-monitoring system for

different types of software and hardware failures.

At the same time, in the fork/join mode with restarting modules, the estimate 𝐸𝑟𝑠
′ of the job runtime

is defined as follows:

𝐸𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖 + 𝑒𝑖
𝑟𝑢𝑛 + 𝑒𝑖

𝑟𝑒𝑠 + 𝑣).

Let us now look at a case for applying user's estimates. In the asynchronous mode, the estimate 𝐸𝑢𝑠

of the job runtime is defined as follows:

𝐸𝑢𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
′ + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢),

where 𝑒𝑖
′ is the user’s estimate of the module runtime.

The estimate 𝐸𝑢𝑠
′ of the job runtime in the fork/join mode is defined as follows:

𝐸𝑢𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
′ + 𝑣).

In the environment with virtualized resources, the estimate 𝐸𝑢𝑣𝑠 of the job runtime in the

asynchronous mode is defined as follows:

𝐸𝑢𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖

′ + 𝑒𝑖
𝑣𝑚𝑟 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢).

For the same environment, the estimate 𝐸𝑢𝑣𝑠
′ of the job runtime in the fork/join mode is defined as

follows:

𝐸𝑢𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖

′ + 𝑒𝑖
𝑣𝑚𝑟 + 𝑣).

In the asynchronous mode with restarting the modules, the estimate 𝐸𝑢𝑟𝑠 of the job runtime is

defined as follows:

𝐸𝑢𝑟𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖
′ + 𝑒𝑖

𝑟𝑒𝑠 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢).

Meanwhile, the estimate 𝐸𝑢𝑟𝑠
′ of the job runtime in the fork/join mode is defined as follows:

𝐸𝑢𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖
′ + 𝑒𝑖

𝑟𝑒𝑠 + 𝑣).

Finally, let us consider the use of estimates based on computational history. In the asynchronous

mode, the estimate 𝐸𝑢𝑠𝑠 of the job runtime is defined as follows:

𝐸𝑢𝑠𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑏𝑖𝑒𝑖
′′ + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢).

The variable 𝑒𝑖
′′ is the estimate adjusted based on the computational history. Its correction

coefficient 𝑏𝑖 = ℎ(𝑖, 𝑀𝐻, 𝑇ℎ) > 0 is calculated on the basis of the computational history. The function

ℎ(𝑖, 𝑀𝐻, 𝑇ℎ) calculates 𝑏𝑖 using the average or median values from the sample time of the execution

of the module that implements the operation 𝑓𝑖 for the period 𝑇ℎ.

The estimate 𝐸𝑢𝑠𝑠
′ of the job runtime in the fork/join mode is defined as follows:

𝐸𝑢𝑠𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑏𝑖𝑒𝑖
′′ + 𝑣).

In the environment with virtualized resources, the estimate 𝐸𝑢𝑠𝑣𝑠 of the job runtime in the

asynchronous mode is defined as follows:

𝐸𝑢𝑠𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑏𝑖𝑒𝑖

′′ + 𝑒𝑖
𝑣𝑚𝑟 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢).

For the same environment, the estimate 𝐸𝑢𝑠𝑣𝑠
′ of the job runtime in the fork/join mode is defined as

follows:

𝐸𝑢𝑠𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑏𝑖𝑒𝑖

′′ + 𝑒𝑖
𝑣𝑚𝑟 + 𝑣).

In the asynchronous mode with restarting modules, the estimate 𝐸𝑢𝑠𝑟𝑠 of the job runtime is defined

as follows:

𝐸𝑢𝑠𝑟𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑏𝑖𝑒𝑖
′′ + 𝑒𝑖

𝑟𝑢𝑛 + 𝑒𝑖
𝑟𝑒𝑠 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢).

At the same time, the estimate 𝐸𝑢𝑠𝑟𝑠
′ of the job runtime in the fork/join mode is defined as follows:

𝐸𝑢𝑠𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑏𝑖𝑒𝑖
′′ + 𝑒𝑖

𝑟𝑢𝑛 + 𝑒𝑖
𝑟𝑒𝑠 + 𝑣).

Estimates of the job runtime for virtual machines can be adapted to the container application case.

4. Example

As an example, we consider the problem of improving the processes of loading and unloading of

goods in a warehouse through their simulation. To solve this problem, a distributed applied software

package has been developed using the Orlando Tools framework [17]. This package is a parameter

sweep application [18]. Simulations models (modules) are created using a special toolkit [19].

The heterogeneous distributed computing environment, in which this package is applied, was

created on the basis of the resources of the public access Irkutsk Supercomputer Center SB RAS [20].

We compare the prediction results (jobs runtime and their errors) using different estimations.

The experiments were carried out in the continuous integration process of package modules. Such

integration includes the modification, version control, build, testing, delivery, and deployment of

applied and system software on different nodes of the heterogeneous environment. The experiments

were carried out on two different clusters: PC-cluster and HPC-cluster. The characteristics of both

clusters are provided in [17]. Figure 3 and Figure 4 show the actual and predicted jobs runtime on the

PC-cluster and HPC-cluster, respectively. The jobs runtime are shown for different data size that is

determined by the number of problem parameter variants. This time was predicted using the three

methods discussed above. Obviously, the most accurate prediction in both cases was formed on the

basis of the modules testing.

Figure 3. Predictive and actual results for PC-cluster.

Figure 4. Predictive and actual results for HPC-cluster.

Figure 5 and Figure 6 demonstrate the runtime prediction errors obtained through the various

methods for estimating the module runtime. The errors are shown in percentages relative to the actual

job runtime on the PC-cluster and HPC-cluster, respectively.

Figure 5. Runtime prediction error for the PC-cluster.

0

70000

140000

210000

280000

350000

31.73 61.57 121.98 246.73

Jo
b

 r
un

ti
m

e,
 s

Data size, MB

Actual job runtime

Predicted job runtime based on the

module testing
Predicted job runtime based on the

computational history
Predicted job runtime based by users

0

1000

2000

3000

4000

5000

6000

7000

8000

31.73 61.57 121.98 246.73

Jo
b

 r
un

ti
m

e,
 s

Data size, MB

Actual job runtime

Predicted job runtime based on the

module testing
Predicted job runtime based on the

computational history
Predicted job runtime based by users

0

50

100

150

200

250

300

31.73 61.57 121.98 246.73

E
rr

o
r,

 %

Data size, MB

Error of the prediction based on the modules testing

Error of the prediction based on the user's estimation

Error of the prediction based on the computational history

Figure 6. Runtime prediction error for the HPC-cluster.

These results show that the error in the job runtime predicted based on the module testing decreases

with increasing the data size in the both cases. In the example, it does not exceed 10%. At the same

time, a change of the runtime prediction errors obtained owing to user’s estimates or computational

history can be non-monotonous. In practice, the job runtime predicted based on a user’s estimates is

usually overstated. The use of computational history can slightly reduce such errors.

5. Conclusions

The rational allocation of resources in solving large problems in a heterogeneous distributed

computing environment depends on the effectiveness of job maintenance schedules planned by LRMs.

Usually, these schedules are based on estimates of program execution time.

In the paper, we propose new models for predicting the job runtime using a variety of estimates.

Such job specifies the execution of a problem-solving scheme of a distributed applied software

package (large-scale scientific application) in the environment. Within these models, we take into

account job execution in modes of data readiness and fork/join, resource virtualization, and job

restarts.

The practical significance of the study lies in improving the quality of planning computations and

resource allocation in heterogeneous environments. Such an improvement is due to reducing the error

in estimating the job runtime through the application of the proposed models.

Acknowledgments

The study is supported by the Russian Foundation of Basic Research, project no. 19-07-00097. The

development of the heterogeneous distributed computing environment was supported in part by the

Basic Research Program of SB RAS, project no. IV.38.1.1.

References

[1] Deelman E, Peterka T, Altintas I, Carothers C D, van Dam K K, Moreland K, Parashar M,

Ramakrishnan L, Taufer M and Vetter J 2018 The future of scientific workflows Int. J. High

Perform. C. 32(1) 159–175

[2] Bychkov I, Oparin G, Tchernykh A, Feoktistov A, Bogdanova V and Gorsky S 2017

Conceptual Model of Problem-Oriented Heterogeneous Distributed Computing Environment

with Multi-Agent Management Procedia Comput. Sci.103 162–167

[3] Cao F, Zhu M M and Ding D 2013 Distributed workflow scheduling under throughput and

budget constraints in grid environments Lect. Notes Comput. Sci. 8429 62–80

[4] Qin J and Fahringer T 2012 Semantic-based scientific workflow composition Scientific

Workflows (Berlin and Heidelberg: Springer) 115–134

[5] Deelman E, Vahia K, Juvea G, Ryngea M, Callaghan S Maechling P J, Mayani R, Chen W,

da Silva R F, Livny M and Wenger K 2015 Pegasus, a workflow management system for

science automation Future Gener. Comp. Sy. 46 17–35

[6] Feoktistov A, Gorsky S, Sidorov I and Tchernykh A 2019 Continuous Integration in Distributed

0

50

100

150

200

250

31.73 61.57 121.98 246.73

E
rr

o
r,

 %

Data size, MB

Error of the prediction based on the modules testing

Error of the prediction based on the user's estimation

Error of the prediction based on the computational history

Applied Software Packages Proc. of the 42th Int. Convention on information and

communication technology, electronics and microelectronics (Riejka: IEEE) pp 1775–1780

[7] Voevodin V V 2007 The solution of large problems in distributed computational media.

Automat. Rem. Contr.+ 68(5) 773–786

[8] Pegasus WMS – Automate, recover, and debug scientific computations. Available at:

https://pegasus.isi.edu/ (accessed: 02.03.2020)

[9] da Silva R F, Juve G, Deelman E, Glatard T, Desprez F, Thain D, Tovar B and Livny M 2013

Toward fine-grained online taskcharac-teristics estimation in scientific workflows: Proc. of

the 8thWorkshop on Workflows in Support of Large-Scale Science pp 58–67

[10] Wilhelm R et al. 2008 The worst-case execution-time problem – overview of methods and

survey of tools ACM T. Embed. Comput. S. 7(3) 1–52

[11] Wang W, Wang W, Guan X, Zhang X and Yang L 2006 Profiling program behavior for

anomaly intrusion detection based on the transition and frequency property of computer

audit data Comput. Secur. 25(7) 539–550

[12] Intel® VTune™ Profiler (formerly Intel® VTune™ Amplifier). Available at:

https://software.intel.com/en-us/vtune/ (accessed: 02.03.2020)

[13] OProfile – A System Profiler for Linux. Available at: https://oprofile.sourceforge.io/news/

(accessed: 02.03.2020)

[14] Adhianto L, Banerjee S, Fagan M, Krentel M, Marin G, Mellor‐Crummey J and Tallent N R

2010 HPCToolkit: Tools for performance analysis of optimized parallel programs Concurr.

Comp.-Pract. E. 22(6) 685–701

[15] Ivannikov V P, Gaisaryan S S, Avetisyan A I and Padaryan V A 2006 Estimation of dynamical

characteristics of a parallel program on a model Program. Comput. Soft.+ 32(4) 203–214

[16] Novopashin A P and Oparin G A 2004 Boolean Modeling of Action Planning in Distributed

Computing Systems J. Comput. Sys. Sc. Int.+ 43(5) 763–766

[17] Tchernykh A, Feoktistov A, Gorsky S, Sidorov I, Kostromin R, Bychkov I, Basharina O,

Alexandrov A and Rivera-Rodriguez R 2019 Orlando Tools: Development, Training, and

Use of Scalable Applications in Heterogeneous Distributed Computing Environments

Comm. Com. Inf. Sc. 979 265–279

[18] Bychkov I, Oparin G, Tchernykh A, Feoktistov A, Bogdanova V, Dyadkin Yu, Andrukhova V

and Basharina O 2017 Simulation Modeling in Heterogeneous Distributed Computing

Environments to Support Decisions Making in Warehouse Logistics Procedia Eng. 201

524–533

[19] Feoktistov A G, Kostromin R O, Fereferov E S, Tchernykh A, Basharina O Yu, Dmitriev V I

and Kurzybova Ya V 2019 Toolkit for simulation modeling of queue systems in Grid Proc.

of the 1st International Workshop on Information, Computation, and Control Systems for

Distributed Environments (ICCS-DE) (CEUR-WS Proceedings) 2430 pp 51–59

[20] Public access center Irkutsk Supercomputer Center. Available at: http://hpc.icc.ru (accessed:

02.03.2020)

