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Abstract. The paper addresses a relevant problem of predicting the runtime of jobs for 

executing problem-solving schemes of large-scale applications in a heterogeneous 

distributed computing environment. Such an environment includes nodes that have 

various hardware architectures, different system software, and diverse computational 

possibilities. We believe that increasing the accuracy in predicting the runtime of jobs 

can significantly improve the efficiency of problem-solving and rational use of 

resources in the heterogeneous environment. To this end, we propose new models that 

make it possible to take into account various estimations of the module runtime for all 

modules included in the problem-solving scheme. These models were developed using 

the special computational model of distributed applied software packages (large-scale 

scientific applications). In addition, we compare the prediction results (jobs runtime 

and their errors) using different estimations. Among them are the estimations obtained 

through the modules testing, user's estimations, and estimations based on 

computational history. These results were obtained in continuous integration, delivery, 

and deployment of applied and system software of a package for solving warehouse 

logistics problems. They show that the largest accuracy is achieved by the 

modules testing. 

1.  Introduction 

Todays, scientific applications focus on carrying out large-scale scientific experiments in a 

heterogeneous distributed computing environment. They play a significant role in the process of 

solving important practical problems based on mathematical modeling of complex systems under 

study [1]. Often, such applications are implemented as distributed applied software packages. The 

environment heterogeneity means that its nodes (PCs, compute servers, HPC-clusters, and cloud 

resources) have various hardware architectures, different system software, and diverse computational 

possibilities. Various local resource managers (LRMs) are hosted in nodes of the environment. 

In distributed applied software packages, problem-solving is described by schemes that specify the 

computing process in terms of the subject domain. We apply methods of the computation and 

information planning in constructing such problem-solving schemes on the special computational 

model [2]. Wherein, this model is a special case of the semantic network. 

To execute a problem-solving scheme in the heterogeneous distributed computing environment, a 

computational job is generated. A job enters into the environment. The meta-scheduler selects an 



 

 

 

 

 

 

environment node suitable for this job. It then submits the job to LRM located on the node. The job 

falls into the LRM's queue. When the resources of the node are freed, the job is launched. 

An improvement in the efficiency of problem-solving and rational use of resources depends a lot 

on the ability to estimate jobs runtime. In this regard, we propose new models for predicting jobs 

runtime in the environment. Unlike well-known similar models [3-5], the proposed models make it 

possible to take into account various estimations of the module runtime for all modules included in the 

problem-solving scheme. Among them estimates that are obtained on the basis of the methodology 

proposed by the authors.  

This methodology allows us to test the program runtime. It is also used in the process of continuous 

integration of applied software [6]. 

The rest of the paper is structured as follows. In Section 2, we briefly review related works on the 

problem under study. Section 3 provides the models for predicting the jobs runtime. An example of 

applying the proposed models is considered in Section 4. Section 5 concludes the paper. 

2.  Related work 

When starting jobs in a heterogeneous distributed computing environment, it is necessary to solve the 

following two problems: 

 Forming a rational configuration of heterogeneous resources of the environment, 

 Planning a suboptimal schedule of the job execution on the formed configuration of resources. 

It's obvious that a qualitative solution to these problems for a large spectrum of practical scientific 

applications requires an estimation of the execution time of applied programs [7]. For example, such 

an estimation is used to cluster jobs in the allocation of resources to them [8]. Generally, job runtime 

estimates are implemented by the user or some runtime prediction procedure [9]. 

Most of traditional job management systems and many workflow management systems are based 

on the use of estimates for program execution time that are specified by the user. This is a simple and 

very flexible approach. However, the errors of such estimates are usually highly large in practice. 

There are various methods for predicting program execution time [10]. Among them are static and 

dynamic methods of program analysis. 

The use of methods and tools of static analysis of program code without real program execution in 

heterogeneous environments is characterized by high overheads to additional programming. Such 

overheads are owing to the need to simulate operating the processor of the target computing node for 

executing a large spectrum of programs written in various programming languages. 

In practice, the method of frequency characteristics has proven itself well [11]. It is based on the 

use of special tools for dynamic analysis of programs [12, 13]. Algorithms based on the use of such 

analysis differ in the sets of studied software and hardware characteristics [14]. Each algorithm 

determines specific relations between these characteristics. In this regard, the method of profiling the 

program on some reference node is most applicable in practice [15]. Its results are then extrapolated 

relative to the characteristics of the target node. Within this method, the accuracy of estimating the 

program execution time largely depends on the selection of scaling coefficients for computation 

speedup. These coefficients are determined by the ratios of characteristics for the reference and 

target nodes. 

However, our practical experience in applying continuous integration of applied software 

represented in [6] allows us to draw the following conclusion. If the target nodes are available, then 

testing the programs in them can simplify the program runtime prediction in comparison with the 

dynamic analysis. 

3.  Models for Predicting Computational Jobs Runtime 

The computational model of the environment is determined by the structure 

𝕄 =< 𝐴, 𝑍, 𝐹, 𝑀, 𝑆, 𝐽, 𝑅, 𝑄, 𝑂, 𝑀𝐻 >, 



 

 

 

 

 

 

where 𝐴, 𝑍, 𝐹, 𝑀, 𝑆, 𝐽, 𝑅, and 𝑄 are, respectively, the sets of applied software packages, parameters, 

operations, program modules, problem-solving schemes, jobs, resources, and constraints to the job 

execution and resources use. 𝑂 is the set of relations between the above-listed objects. The data 

structure 𝑀𝐻 represents the computational history that reflects the functioning of modules from 𝑀. If 

necessary, a description of components of the model 𝕄 can be found in details in [2]. 

Operations from 𝐹 determine computational actions on the set 𝑍 of parameters. Parameters can be 

represented by scalars, vectors, and matrices of various basic data types or arbitrary data structures. 

Each operation 𝑓𝑖 ∈ 𝐹 is implemented by the module 𝑚𝑗 ∈ 𝑀, where 𝑖 ∈ 1, 𝑛𝑓
̅̅ ̅̅ ̅̅ , 𝑗 ∈ 1, 𝑛𝑚

̅̅ ̅̅ ̅̅ ̅, 𝑛𝑓 is the 

number of operations, and 𝑛𝑚  is the number of modules. One module can implement several 

operations. Each operation 𝑓𝑖 has two subsets 𝑍𝑖
𝑖𝑛, 𝑍𝑖

𝑜𝑢𝑡 ⊂ 𝑍 of parameters. The subset 𝑍𝑖
𝑖𝑛 consists of 

input parameters. Their values must be known in order to calculate values of parameters from 𝑍𝑖
𝑜𝑢𝑡. 

Parameters of the subsets 𝑍𝑖
𝑖𝑛 and 𝑍𝑖

𝑜𝑢𝑡 reflect the purpose and semantics of formal parameters of the 

module 𝑚𝑗 that implements the operation 𝑓𝑖. Parameters are transferred between modules in the form 

of data files. 

Schemes from 𝑆 represent problems-solving processes in packages. The scheme 𝑠 ∈ 𝑆 that 

performs operations from 𝐹 is an analogue of the tiered-parallel form of the algorithm graph. Within 

the computational model under consideration, a scheme is a connected subgraph of an oriented acyclic 

bipartite graph. Such a graph represents schematic knowledge about algorithms for studying a subject 

domain. The example of such a graph is represented in Figure 1. Operations and parameters are 

depicted on it by filled and unfilled circles. The problem-solving scheme represented by the graph 

includes 3 tiers. Tier 1 contains the operation 𝑓3. The second consists of the operations 𝑓4, 𝑓5, and 𝑓6. 

Finally, two operations 𝑓7 and 𝑓8 are placed on tier 3. 
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Figure 1. Bipartite directed graph of the problem-solving scheme. 

 

Two special operations 𝑓1 and 𝑓2 are emphasized in the computational model. This allows us to 

maintain a commonality for computations planning when constructing problem-solving schemes using 

their formulations [16]. The operations 𝑓1 and 𝑓2 model the conditions of the problem. They 

respectively define a subset of parameters whose values are known, and a subset of the parameters 

whose values need to be calculated. Thus, the operation 𝑓1 defines the subsets 𝑍1
𝑖𝑛 = ∅ and 𝑍1

𝑜𝑢𝑡 ≠ ∅. 

The operation 𝑓2 determines the subsets 𝑍2
𝑖𝑛 ≠ ∅ and 𝑍1

𝑜𝑢𝑡 = ∅. In the above example, 𝑍1
𝑖𝑛 = ∅ and 

𝑍1
𝑜𝑢𝑡 = {𝑧1} (Figure 2). At the same time, 𝑍2

𝑖𝑛 = {𝑧7, 𝑧8, 𝑧9} and 𝑍2
𝑜𝑢𝑡 = ∅. 

The execution of a problem-solving scheme in the environment is specified by a computational job. 

A job includes a list of modules of a problem-solving scheme. In addition, it contains requirements to 

the environment that determine the computing resources needed to execute the listed modules. These 

requirements include the number of processors or cores, sizes of RAM and disk memory, execution 

time, etc. 
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Figure 2. The operations 𝑓1 and 𝑓2. 

 

We propose new models for predicting the job runtime in the heterogeneous environment. In these 

models, we consider cases of job execution in modes of data readiness and fork/join, resource 

virtualization, and job restarts.  

Let the matrix 𝐏 of dimension 𝑘 × 𝑘 represent information on the precedence of 𝑘 operations of the 

problem-solving scheme. The element 𝑝𝑖𝑗 = 1 (𝑝𝑖𝑗 = 0) of the matrix 𝐏 means that the operation 𝑓𝑗 in 

the problem-solving scheme precedes (does not precede) the operation 𝑓𝑖 and 𝑍𝑖
𝑖𝑛 ∩ 𝑍𝑗

𝑜𝑢𝑡 ≠ ∅ (𝑍𝑖
𝑖𝑛 ∩

𝑍𝑗
𝑜𝑢𝑡 = ∅). The matrix 𝐃 of dimension 𝑘 × 𝑘 reflects estimates of the data volumes transmitted 

between operations. The matrix element 𝑑𝑖𝑗 ≥ 0 shows the amount of data transmitted by the 

operation 𝑓𝑖 to the operation 𝑓𝑗. The matrix 𝐖 of dimension 𝑘 × 𝑘 provides information about the 

interconnect bandwidth between nodes where modules that implement scheme operations are 

launched. The matrix element 𝑤𝑖𝑗 ≥ 0 demonstrates the interconnect bandwidth between nodes, in 

which the modules implementing the operations 𝑓𝑖 and 𝑓𝑗 operate.  

The estimate 𝐸𝑠 of the job runtime in the asynchronous mode based on data availability is defined 

as follows: 

𝐸𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢),   𝑢 =

𝑑𝑗𝑖

𝑐𝑗𝑖(𝑡)𝑤𝑗𝑖
 . (1) 

The variables in the formulas (1) are interpreted as follows: 

 𝑒𝑖
𝜏 (𝑒𝑗

𝜏) is the estimate of the period 𝜏 elapsed from the beginning of the job execution to the 

completion of the operation 𝑓𝑖 (𝑓𝑗), 

 𝑒𝑖
𝑞
 is the estimate of the wait time in a queue for the module that implements the operation 𝑓𝑖 

(at a time when all the necessary data is ready to execute it), 

 𝑒𝑖 is the predictive estimate of the module runtime, 

 𝑘 is the number of scheme operations, 

 0 < 𝑐𝑗𝑖(𝑡) ≤ 1 is the coefficient of decrease in interconnect bandwidth between nodes, in 

which the modules implementing the operations 𝑓𝑖 and 𝑓𝑗 operate, at the time 𝑡. 

Let the matrix 𝐒 of dimension 𝑚 × 𝑘 be a tiered-parallel form describing the scheme execution in 

the fork/join mode, and 𝑚 is the number of scheme tiers. The element 𝑠𝑙𝑖 = 1 means that the operation 

𝑓𝑖 must be performed on the lth tier. The transition to operations of the (l+1)th tier is possible provided 

that all operations on the lth tier are completed. The estimate 𝐸𝑠
′ of the job runtime in the fork/join 

mode is defined as follows: 

𝐸𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖 + 𝑣),   𝑣 = ∑
𝑑𝑗𝑖

𝑐𝑗𝑖(𝑡)𝑤𝑗𝑖
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗  . (2) 

We use formulas (1) and (2) to define other estimates. Among them the estimates of the job 

runtime with virtualized resources, module restarts, user estimates of the module runtime, and 

estimates adjusted based on the computational history. 



 

 

 

 

 

 

In the environment with virtualized resources, the estimate 𝐸𝑣𝑠 of the job runtime in the 

asynchronous mode is defined as follows: 

𝐸𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖 + 𝑒𝑖

𝑣𝑚𝑟 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢). 

The variables 𝑒𝑖
𝑣𝑚𝑙 and 𝑒𝑖

𝑣𝑚𝑟 are, respectively, estimates of the time it takes to launch and remove 

virtual machine with a module that implements the operation 𝑓𝑖. The estimates 𝑒𝑖
𝑣𝑚𝑙 and 𝑒𝑖

𝑣𝑚𝑟 are 

determined experimentally for virtual machines of various configurations. 

For the same environment, the estimate 𝐸𝑣𝑠
′  of the job runtime in the fork/join mode is defined as 

follows: 

𝐸𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖 + 𝑒𝑖

𝑣𝑚𝑟 + 𝑣). 

In the asynchronous mode with restarting modules, the estimate 𝐸𝑟𝑠 of the job runtime is defined as 

follows: 

𝐸𝑟𝑠  = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖 + 𝑒𝑖
𝑟𝑢𝑛 + 𝑒𝑖

𝑟𝑒𝑠 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢). 

The variables in the formula above are interpreted as follows: 

 𝑒𝑖
𝑓
 is the estimate of the time it takes for the detection and identification of a failure, 

 𝑒𝑖
𝑟𝑒𝑠 is the estimate of the time it takes for the restart of a module that implements operation 

𝑓𝑖,  

 𝑒𝑖
𝑟𝑢𝑛 is the module runtime to failure.  

These variables are required in the case of a hardware-software failure. The estimates 𝑒𝑖
𝑓
 and 𝑒𝑖

𝑟𝑒𝑠 

are determined by the average execution time of such processes by a meta-monitoring system for 

different types of software and hardware failures. 

At the same time, in the fork/join mode with restarting modules, the estimate 𝐸𝑟𝑠
′  of the job runtime 

is defined as follows: 

𝐸𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖 + 𝑒𝑖
𝑟𝑢𝑛 + 𝑒𝑖

𝑟𝑒𝑠 + 𝑣). 

Let us now look at a case for applying user's estimates. In the asynchronous mode, the estimate 𝐸𝑢𝑠 

of the job runtime is defined as follows: 

𝐸𝑢𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
′ + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢), 

where 𝑒𝑖
′ is the user’s estimate of the module runtime. 

The estimate 𝐸𝑢𝑠
′  of the job runtime in the fork/join mode is defined as follows: 

𝐸𝑢𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
′ + 𝑣). 

In the environment with virtualized resources, the estimate 𝐸𝑢𝑣𝑠 of the job runtime in the 

asynchronous mode is defined as follows: 

𝐸𝑢𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖

′ + 𝑒𝑖
𝑣𝑚𝑟 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢). 

For the same environment, the estimate 𝐸𝑢𝑣𝑠
′  of the job runtime in the fork/join mode is defined as 

follows: 

𝐸𝑢𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑒𝑖

′ + 𝑒𝑖
𝑣𝑚𝑟 + 𝑣). 

In the asynchronous mode with restarting the modules, the estimate 𝐸𝑢𝑟𝑠 of the job runtime is 

defined as follows: 



 

 

 

 

 

 

𝐸𝑢𝑟𝑠  = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖
′ + 𝑒𝑖

𝑟𝑒𝑠 + max
∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗

(𝑒𝑗
𝜏 + 𝑢). 

Meanwhile, the estimate 𝐸𝑢𝑟𝑠
′  of the job runtime in the fork/join mode is defined as follows: 

𝐸𝑢𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 ,   𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑒𝑖
′ + 𝑒𝑖

𝑟𝑒𝑠 + 𝑣). 

Finally, let us consider the use of estimates based on computational history. In the asynchronous 

mode, the estimate 𝐸𝑢𝑠𝑠 of the job runtime is defined as follows: 

𝐸𝑢𝑠𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏,   𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑏𝑖𝑒𝑖
′′ + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢). 

The variable 𝑒𝑖
′′ is the estimate adjusted based on the computational history. Its correction 

coefficient 𝑏𝑖 = ℎ(𝑖, 𝑀𝐻, 𝑇ℎ) > 0 is calculated on the basis of the computational history. The function 

ℎ(𝑖, 𝑀𝐻, 𝑇ℎ) calculates 𝑏𝑖 using the average or median values from the sample time of the execution 

of the module that implements the operation 𝑓𝑖 for the period 𝑇ℎ. 

The estimate 𝐸𝑢𝑠𝑠
′  of the job runtime in the fork/join mode is defined as follows: 

𝐸𝑢𝑠𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑏𝑖𝑒𝑖
′′ + 𝑣). 

In the environment with virtualized resources, the estimate 𝐸𝑢𝑠𝑣𝑠 of the job runtime in the 

asynchronous mode is defined as follows: 

𝐸𝑢𝑠𝑣𝑠 = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑏𝑖𝑒𝑖

′′ + 𝑒𝑖
𝑣𝑚𝑟 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢). 

For the same environment, the estimate 𝐸𝑢𝑠𝑣𝑠
′  of the job runtime in the fork/join mode is defined as 

follows: 

𝐸𝑢𝑠𝑣𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑣𝑚𝑙 + 𝑏𝑖𝑒𝑖

′′ + 𝑒𝑖
𝑣𝑚𝑟 + 𝑣). 

In the asynchronous mode with restarting modules, the estimate 𝐸𝑢𝑠𝑟𝑠 of the job runtime is defined 

as follows: 

𝐸𝑢𝑠𝑟𝑠  = max
𝑖=1,𝑘̅̅ ̅̅

𝑒𝑖
𝜏, 𝑒𝑖

𝜏 = 𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑏𝑖𝑒𝑖
′′ + 𝑒𝑖

𝑟𝑢𝑛 + 𝑒𝑖
𝑟𝑒𝑠 + max

∀𝑗∈1,𝑘̅̅ ̅̅ :𝑝𝑖𝑗=1,𝑖≠𝑗
(𝑒𝑗

𝜏 + 𝑢). 

At the same time, the estimate 𝐸𝑢𝑠𝑟𝑠
′  of the job runtime in the fork/join mode is defined as follows: 

𝐸𝑢𝑠𝑟𝑠
′ = ∑ 𝑒𝑙

𝜏𝑚
𝑙=1 , 𝑒𝑙

𝜏 = max
∀𝑖∈1,𝑘̅̅ ̅̅ :𝑠𝑙𝑖=1

(𝑒𝑖
𝑞

+ 𝑒𝑖
𝑓

+ 𝑏𝑖𝑒𝑖
′′ + 𝑒𝑖

𝑟𝑢𝑛 + 𝑒𝑖
𝑟𝑒𝑠 + 𝑣). 

Estimates of the job runtime for virtual machines can be adapted to the container application case. 

4.  Example 

As an example, we consider the problem of improving the processes of loading and unloading of 

goods in a warehouse through their simulation. To solve this problem, a distributed applied software 

package has been developed using the Orlando Tools framework [17]. This package is a parameter 

sweep application [18]. Simulations models (modules) are created using a special toolkit [19]. 

The heterogeneous distributed computing environment, in which this package is applied, was 

created on the basis of the resources of the public access Irkutsk Supercomputer Center SB RAS [20]. 

We compare the prediction results (jobs runtime and their errors) using different estimations. 

The experiments were carried out in the continuous integration process of package modules. Such 

integration includes the modification, version control, build, testing, delivery, and deployment of 

applied and system software on different nodes of the heterogeneous environment. The experiments 



 

 

 

 

 

 

were carried out on two different clusters: PC-cluster and HPC-cluster. The characteristics of both 

clusters are provided in [17]. Figure 3 and Figure 4 show the actual and predicted jobs runtime on the 

PC-cluster and HPC-cluster, respectively. The jobs runtime are shown for different data size that is 

determined by the number of problem parameter variants. This time was predicted using the three 

methods discussed above. Obviously, the most accurate prediction in both cases was formed on the 

basis of the modules testing. 

 

 

Figure 3. Predictive and actual results for PC-cluster. 

 
Figure 4. Predictive and actual results for HPC-cluster. 

 

Figure 5 and Figure 6 demonstrate the runtime prediction errors obtained through the various 

methods for estimating the module runtime. The errors are shown in percentages relative to the actual 

job runtime on the PC-cluster and HPC-cluster, respectively. 

 

 

Figure 5. Runtime prediction error for the PC-cluster. 
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Figure 6. Runtime prediction error for the HPC-cluster. 

 

These results show that the error in the job runtime predicted based on the module testing decreases 

with increasing the data size in the both cases. In the example, it does not exceed 10%. At the same 

time, a change of the runtime prediction errors obtained owing to user’s estimates or computational 

history can be non-monotonous. In practice, the job runtime predicted based on a user’s estimates is 

usually overstated. The use of computational history can slightly reduce such errors. 

5.  Conclusions 

The rational allocation of resources in solving large problems in a heterogeneous distributed 

computing environment depends on the effectiveness of job maintenance schedules planned by LRMs. 

Usually, these schedules are based on estimates of program execution time.  

In the paper, we propose new models for predicting the job runtime using a variety of estimates. 

Such job specifies the execution of a problem-solving scheme of a distributed applied software 

package (large-scale scientific application) in the environment. Within these models, we take into 

account job execution in modes of data readiness and fork/join, resource virtualization, and job 

restarts.  

The practical significance of the study lies in improving the quality of planning computations and 

resource allocation in heterogeneous environments. Such an improvement is due to reducing the error 

in estimating the job runtime through the application of the proposed models. 
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