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Abstract. Confidential data security is associated with the cryptographic primitives, asymmetric 
encryption, elliptic curve cryptography, homomorphic encryption, cryptographic pseudorandom 
sequence generators based on an elliptic curve, etc. For their efficient implementation is often 
used Residue Number System that allows executing additions and multiplications on parallel 
computing channels without bit carrying between channels. A critical operation in Residue 
Number System implementations of asymmetric cryptosystems is base extension. It refers to the 
computing a residue in the extended moduli without the application of the traditional Chinese 
Remainder Theorem algorithm. In this work, we propose a new way to perform base extensions 
using a Neural Network of a final ring. We show that it reduces 11.7% of the computational cost, 
compared with state-of-the-art approaches. 

1. Introduction
Currently, many cryptosystems use Montgomery multiplication [1] and exponentiation by numbers with
high resolution. Often, Redundant Residue Number Systems (RRNS) are used to implement this
operation due to the possibility of parallelizing its arithmetic [2]. For scaling RNS operations, a base
extension is required to obtain the new extended moduli system.

This operation is the most computationally expensive since traditional methods of converting a 
number from RRNS to Weighted Number System (WNS) and calculating the Redundant Residue 
Number System (RRNS) with a new modulo base are used to perform it.  

Thus, an important task is to find an efficient algorithm for expanding the RNS base. In this paper, 
we study traditional algorithms for converting a number from RNS to WNS, two algorithms for the RNS 
base extension considering integer arithmetic and floating-point arithmetic. We also design and analyze 
the efficiency of the neural network method for this operation. 

The outline of the paper is as follows. Section 2 describes the concept of RNS. Section 3 discusses 
base extension in Residue Number System. Section 4 describes base extension based on translating a 
number from RNS into a WNS. Section 5 includes base extension based on scaling a number using the 
number range function in RNS. Section 6 contains the use of neural networks to expand the base. The 
study of the effectiveness of algorithms is performed in Section 7. The conclusion is presented in Section 
8.



 

2.  The concept of RNS 
In this section, we introduce basic concepts of RNS, its operations, and the translation of numbers from 
WNSC and back. 

RNS is a non-positional number system based on modular arithmetic. The representation of a number 
in RNS is based on moduli comparison of two integers and the Chinese Remainder Theorem (CRT) [3]. 
Let us consider the following notations (Table 1). 
 

Table 1. Notations used in the work 

Notations Description 
𝑖    𝑖-th number 
𝑗 			𝑗-th number  
𝑋    Integer number in WNS 
𝑝&    𝑖-th RNS moduli  
𝑥&    |𝑋|)* remainder of the division 𝑋 by modulo 𝑝& 
𝑃    dynamic range RRNS 
𝑃&    Base modulo 
𝑦&    WNS coefficient 
𝑤&    Core Function weight 
𝐵&    Orthogonal basis 
𝑘&    Approximate coefficient 
𝑔&    Range coefficient 
𝑚&    Orthogonal basis weight 
𝑟3    Number range 

 
RNS can be defined as a set of mutually prime moduli (𝑝5, 𝑝7, … , 𝑝9), whose vector is called the basis 
of RNS, and its dynamic range 𝛲 = ∑ 𝑝&9

&>5 . Every integer 𝑋, which belongs to the range [0, 𝛲 − 1], can 
be represented in RNS. A set of residues is presented as (𝑥5, 𝑥7, . . . , 𝑥9), where 

𝑥5 ≡ 𝑋(𝑚𝑜𝑑 𝑝5) 
𝑥7 ≡ 𝑋(𝑚𝑜𝑑 𝑝7) 

. . . . . . . . . . . . . . . . . . . . . . . .. 
𝑥9 ≡ 𝑋(𝑚𝑜𝑑 𝑝9) 

Based on the corollary of CRT, the uniqueness of the representation of non-negative integers from the 
interval [0, 𝛲 − 1] is guaranteed. The main advantage of representing a number in RNS is determined 
by the fact that operations such as addition, subtraction, and multiplication can be performed by the 
formula: 

𝐴 ∗ 𝐵 = (𝑥5, 𝑥7, . . . , 𝑥9) ∗ (𝛽5, 𝛽7, . . . , 𝛽9) = 
= ((𝑥5 ∗ 𝛽5)𝑚𝑜𝑑 𝑝5), ((𝑥7 ∗ 𝛽7)𝑚𝑜𝑑 𝜌7), . . . , ((𝑥9 ∗ 𝛽9)𝑚𝑜𝑑 𝑝9), 

(1) 

where * denotes operations such as addition, multiplication, or subtraction.  
Such operations are called modular [4]. For their execution in RNS, one cycle of processing 

numerical values is sufficient. This processing takes place in parallel. The value of the number in each 
category is independent of other categories.  
Let RNS be given by a base (𝑝5, 𝑝7, . . . , 𝑝9) and a number with a residue system 𝑋 = (𝑥5, 𝑥7, . . . , 𝑥9). 
Let (𝑝5, 𝑝7, . . . , 𝑝9) be RNS bases, then the number 𝑋 can be represented as 

𝑋 = (𝑦9 ⋅ 𝑝5 ⋅ 𝑝7 ⋅. . .⋅ 𝑝9M5 + 𝑦9M5 ⋅ 𝑝5 ⋅ 𝑝7 ⋅. . .⋅ 𝑝9M7+. . . +𝑦O ⋅ 𝑝5 ⋅ 𝑝7 + 𝑦7 ⋅ 𝑝5 + 𝑦5),  (2) 



 

where 0 ≤ 𝑦Q < 𝑝5 ⋅ 𝑝7 ⋅. . .⋅ 𝑝QM5(𝑘 = 1, . . . , 𝑛) are RNS coefficients. 
The ranges of numbers represented in RNS and WNS are the same. We can talk about a one-to-one 

correspondence between the set of representations of numbers in RNS and WNS. 

3.  Base Extension in Residue Number System 
The base extension is one of the main non-modular operations in RNS [5]. The base extension of the 
number in RNS is possible for the following reasons. Firstly, it lacks the significance of the order of 
numbers in a number record. Secondly, both codes and verified numbers are represented as residues, 
which allow such codes to be considered completely arithmetic.  

Based on these properties, we can conclude that modular arithmetic can effectively solve the problem 
of building both fault-tolerant and high-performance systems. Due to its properties, RNS [6] has a basis 
for modifying encryption methods, increasing their cryptographic strength, and performance of 
information security. Many publications demonstrate the practical application of RNS in digital 
communication systems, global communication systems, wireless networks, fault-tolerant hybrid 
memory structures, and others. In this paper, we study the calculation of RNS using various algorithms 
and methods. 

This operation may be necessary when performing the division, calculating positional characteristics, 
or when overflow is detected after adding or multiplying numbers, for example, Montgomery 
multiplication.  

The problem of the base extension can be formulated as follows: To find the residual representation 
of a number on a new base (new bases). If the representation of a number on other bases is known, to 
find the residue of division by other numbers. One of the ways to extend the base is to translate the 
number into a positional number system and calculate the residue of the division by a new module. This 
path is not efficient in terms of the number of operations. Another method of the base extension is to 
determine the digit of a number on a new base, using positional characteristics of the number as the 
range of 𝑃′, where 𝑃′ is the range of 𝑋 in the extended base. 

4.  Base Extension Based on Translating a Number from RNS into WNS 
We study the following algorithms for returning a number in WNS: CRT based method; Translation 
Method of the Mixed Radix Conversion (MRC); Modified CRT Method; Core function method; 
Diagonal Function Method; Approximate method. 

For these methods, the general operation is the operation of finding the residue of the modulo 
division. This operation is not displayed in the description of the algorithms since it is obvious. 

4.1.  CRT based method 
CRT based method calculates the formula [7]: 

𝑋 =	∑ U𝑥& ∙ W
5
X*
Y
)*
∙ 𝑃&U

X

9
&>5 ,    (3) 

where Z 5
X*
Z
)*

 is a multiplicative inversion 𝑃& modulo 𝑝&.  

Also, the calculation of this method can be represented as 

𝑋 = |𝐴5 + 𝐴7 +⋯+ 𝐴9|X,    (4) 

where 𝐴& = 𝑥& ∙ Z
5
X*
Z
)*
∙ 𝑃& 

Algorithm 1. Base extension with CRT  
Input:(𝑥5, 𝑥7, … , 𝑥9), (𝑝5, 𝑝7, … , 𝑝9) 𝑃 = ∏ 𝑝&9

&>5 , 𝐵& = 𝑃& ⋅ Z
5
X*
Z
)*

, for 𝑖 = 1, 𝑛]]]]]. 

Output:	𝑋 
1. 𝑠𝑢𝑚	 = 	0 
2. for 𝑖 = 1 to 𝑛 do: 



 

2.1 𝑠𝑢𝑚	+= 	𝑥5 ∙ 𝐵& 
3. 𝑋	 = |𝑠𝑢𝑚|X 
4. return 𝑋 
To illustrate base extension with CRT, let us consider the following Example 1. 

Example 1 (Base extension with CRT). The initial data includes a set of residues 𝑥5 = 1, 𝑥7 =
1, 𝑥O = 0 and a set of moduli 𝑝5 = 3, 𝑝7 = 5, 𝑝O = 7. We calculate 𝑃 = 𝑝5 ⋅ 𝑝7 ⋅ 𝑝O = 105, 𝑃5 =

c
de
=

35, 𝑃7 =
c
df
= 21,	

𝑃O =
c
dh
= 15. Then the restoration of the number from (2) is the following. 

𝐴5 = 𝑥5 ∙ Z
5
Xe
Z
)e
∙ 𝑃5 = 1 ∙ 2 ∙ 35 = 70, 𝐴7 = 𝑥7 ∙ Z

5
Xf
Z
)e
∙ 𝑃7 = 1 ∙ 1 ∙ 21 = 21, 

𝐴5 = 𝑥5 ∙ Z
5
Xe
Z
)e
∙ 𝑃O = 0 ∙ 1 ∙ 15 = 0, 𝑋 = |𝐴5 + 𝐴7 + 𝐴O|c = |70 + 21 + 0|X 

4.2.  MRC method 
MRC performs converting a number from RNS to WNS. Also, in this algorithm, is traced in a 
generalized form 𝑦& = |𝑈& ∙ 𝑉&|k*, which is defined as the translation coefficient, where 𝑈& defined as 
follows: 

𝑈5 = 𝑥5, 𝑈7 = |𝑥7 − 𝑥5|ke, 𝑈O = |𝑥O − 𝑥7 − 𝑥5𝑈7|kf.  (5) 

Yassin and Moore [8] found that 

𝑉5 = 1, 𝑉7 = Z 5
)e
Z
)f
= 1, 𝑉7 = Z 5

)e)f
Z
)h
= 1,   (6) 

the number is restored to WNS by (2).  

Algorithm 2 Base extension with MRC 
Input:(𝑥5, 𝑥7, … , 𝑥9), (𝑝5, 𝑝7, … , 𝑝9) 
Output:	𝑋 
1. 𝑈5 = 𝑥5, 𝑘5 	= 0, ℎ	 = 	0 
2. for 𝑖 = 2 to 𝑛 do 
2.1 ℎ	 ∗= 	𝑛&M5 
2.2 𝑈& = (𝑥& − 𝑥5 − 𝑘&M5)	𝑚𝑜𝑑	𝑝& 
2.3 𝑘& 	= 𝑈& ∗ ℎ − 𝑘&M5 
3. 𝑝 = 1, 𝑠𝑢𝑚	 = Un  
4. for 𝑖 = 2 to 𝑛 do 
5.1 𝑝 ∗= 𝑝&M5 
5.2 𝑠𝑢𝑚	+= 𝑝 ⋅ |Uo|dp	𝑚𝑜𝑑	𝑝& 
5.3 𝑋 = 𝑠𝑢𝑚 
6. return 𝑋 

To illustrate base extension with MRC, let us consider the following Example 2. 

Example 2 (Base extension with MRC). The initial data contains a set of moduli 𝑝5 = 127, 𝑝7 =
63, 𝑝O = 50, 𝑝r = 13 and a set of residues 𝑥5 = 78, 𝑥7 = 41, 𝑥O = 47, 𝑥r = 7. 𝑉5 = 1, 𝑉7 = 1	𝑉O =
1	𝑉r = 1 are the same. 

First, we need to find the coefficients:  

𝑦5 = 𝑈5 ∙ 𝑉5 = 78, 
𝑦7 = 𝑈7 ∙ 𝑉7 = (41 − 78)uO ∙ 1 = 26, 
𝑦O = 𝑈O ∙ 𝑉O = (47 − 78 − 127 ∙ 26)vn ∙ 1 = 17, 



 

𝑦O = 𝑈r ∙ 𝑉r = (7 − 78 − 127 ∙ 26 − 127 ∙ 63 ∙ 17)5O ∙ 1 = 9. 

Based on the obtained values, the number in WRS is calculated according to (2)  
78 + 26 ∙ 127 + 17 ∙ 127 ∙ 63 + 9 ∙ 127 ∙ 633 ∙ 50 = 3	739	847 

4.3.  Modified CRT Method 
In general, this method is the standard CRT method [9] modified by translating coefficients 𝑦& defined 
in WNS [10], which are calculated as follows: 

𝑦5 =
XeZ

e
xe
Z
xe
M5

Xe
	and	𝑦& =

X
)e)*

Z 5
X*
Z
)*

.    (8) 

A number in WRS is restored by (9) [10]: 

𝑋 = 𝑥5 + 𝑝5|𝑦5𝑥5 + 𝑦7𝑥7|)f + 𝑝5𝑝7 Z|
}e~e�}f~f�}h~h

)f
�Z
)h

 	

+⋯+ 𝑝5𝑝7 …𝑝9M5 ��
𝑦5𝑥5 + 𝑦7𝑥7 + 𝑦O𝑥O +⋯𝑦9𝑥9

𝑝7𝑝O …𝑝9M5
��
)�

 

Algorithm 3. Base extension with modified CRT 
Input:	(𝑥5, 𝑥7, … , 𝑥9), (𝑝5, 𝑝7, … , 𝑝9), (𝑃5, 𝑃7, … , 𝑃9), 𝑦& for 𝑖 = 1, 𝑛]]]]]. 
Output: 𝑋 
1. 𝑋	 = 	𝑎5 
2. 𝑝 = 𝑝5 
3. 𝑡𝑒𝑚𝑝	 = 	1 
4. for 𝑖 = 1 to 𝑛 do: 
4.1 𝑋	+= 	𝑝 ∙ ((𝑦& ∙ 𝑥&)//𝑡𝑒𝑚𝑝)	𝑚𝑜𝑑	𝑝&  
4.2 𝑝 ∗= 	𝑝& 
4.3 𝑡𝑒𝑚𝑝	 ∗= 	𝑝& 
5. return 𝑋 
To illustrate base extension with modified CRT, let us consider the following Example 3. 

Example 3 (Base extension with modified CRT). The input in this example is a set of residues 
𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, 𝑥r = 4) calculated by 𝑝5 = 3, 𝑝7 = 5, 𝑝O = 7, 𝑝r = 11, 𝑃5 = 385, 𝑃7 =
231, 𝑃O = 165, 𝑃r = 105. 

In the beginning, we calculate the coefficients yo. 

𝑦5 =
O�vZ eh��Zh

M5

O
= 128, 𝑦7 =

55vv
O∙v

Z 5
7O5
Z
v
= 77, 𝑦O =

55vv
O∙�

Z 5
5uv
Z
�
= 110, 𝑦r =

55vv
O∙55

Z 5
5nv
Z
55
= 70 

Then, based on the calculated coefficients, the number is restored 

𝑋 = 1 + 3 ∙ (128 + 154)v + 15 ∙ ��
128 + 154 + 330

5
��
�
+ 105 ∙ ��

128 + 154 + 330 + 280
35

��
55
	

= 1 + 3 ∙ 2 + 15 ∙ 3 + 105 ∙ 3 = 367 

4.4.  Core function method 
In addition to using sequential MRC to translate a number from RNS to WNS, it uses core functions 
[11-13]. This method is about calculating the weights of the function (9): 

𝑤& ≡ UZ 5
X*
Z
)*
⋅ 𝐶(𝑃)U

)*

,     (9) 

where 𝐶(𝑃) is a range from moduli range,  
𝐵& = 𝑃& ∙ Z

5
X*
Z
)*

,     (10) 



 

which allow the calculation of these functions [11]: 
𝐶(𝑋) = |∑ 𝑥& ∙ 𝐶(𝐵&)9

&>5 |X,     (11) 
and use them to translate the number  

𝑋 = X
�(X)

W𝐶(𝑝) + ∑ �*
)*

9
&>5 𝑥&Y,    (12) 

 
Algorithm 4 Base extension with Core Function 
Input:(𝑥5, 𝑥7, … , 𝑥9), (𝑝5, 𝑝7, … , 𝑝9), 𝑃, (𝑃5, 𝑃7, … , 𝑃9), 𝐶(𝑃), 𝐶(𝐵&), 𝑤& for 𝑖 = 1, 𝑛]]]]]. 
Output: 𝑋 
1. 𝑠𝑢𝑚 = 0 
2. for 𝑖 = 1 to 𝑛 do: 
2.1 𝑠𝑢𝑚	+= 	𝑥& ∙ 𝐶(𝐵&) 
3.	𝐶 = |𝑠𝑢𝑚|�(X) 
4. 𝑡𝑒𝑚𝑝 = 0 
5. for 𝑖 = 1  to 𝑛 do: 
5.1 𝑡𝑒𝑚𝑝+= (𝑤&/𝑝&) ∙ 𝑥& 
6. 𝑋	 = 	 X

�(X)
∙ (𝐶 + 𝑡𝑒𝑚𝑝) 

7. return 𝑋 
To illustrate base extension with Core Function, let us consider the following Example 4. 

Example 4 (Base extension with Core Function). The input in this example is a set of residues 
𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, and 𝑥r = 4 calculated by 𝑝5 =3, 𝑝7 =5, 𝑝O =7, 𝑝r =11, 𝑃 = ∏ 𝑝&r

&>5 = 1155, 
𝑃5 =

X
)e
= 385,	

	𝑃7 =
X
)f
= 231, 𝑃O =

X
)h
= 165, 𝑃r =

c
d�
= 105. 

Let 𝑤5 = 0, 𝑤7 = 0, 𝑤O = 0, 𝑤r = 1. 
Further, the coefficients are calculated 

𝐵5 = 𝑃5 ⋅ Z
5
Xe
Z
)e
= 385 ∙ Z 5

O�v
Z
O
= 385, 𝐵7 = 𝑃7 ⋅ Z

5
Xf
Z
)f
= 231 ∙ Z 5

7O5
Z
v
= 231, 

𝐵O = 𝑃O ⋅ Z
5
Xh
Z
)h
= 165 ∙ Z 5

5uv
Z
�
= 330, 𝐵r = 𝑃r ⋅ Z

5
X�
Z
)�
= 105 ∙ Z 5

5nv
Z
55
= 210 

Calculating the functions, the following values were obtained 
С(𝐵5) = ∑ 𝑤& |

�e
)*
� =r

&>5 |�e
)�
� = 35,  С(𝐵7) = ∑ 𝑤& |

�f
)*
� =r

&>5 |�f
)�
� = 21, 

С(𝐵O) = ∑ 𝑤& |
�h
)*
� =r

&>5 |�h
)�
� = 30, С(𝐵r) = ∑ 𝑤& |

��
)*
� =r

&>5 |��
)�
� = 19 and  

𝐶(𝑃) = ∑ 𝑤& |
X
)*
� =r

&>5 | X
)�
� = 𝑃r =105 

𝐶(𝑋) = 	��𝑥& ∙ 𝐶(𝐵&)
r

&>5

�
�(X)

= |1 ⋅ 35 + 2 ⋅ 21 + 3 ⋅ 30 + 4 ⋅ 19|5nv = 33 

Thus, the number is restored from the calculated values 

𝑋 =
𝑃

𝐶(𝑃)
�𝐶(𝑝) +�

𝑤&
𝑝&

r

&>5

𝑥&� =
1155
105 �33 +

4
11�

= 11 ⋅
367
11

= 367 

4.5.  Diagonal Function Method 
The Diagonal function is calculated using the following formula: 

𝐷(𝑋) =��
𝑋
𝑝&
�

9

&>5

 



 

𝐷(𝑋) = ��𝑘�& ⋅ 𝑥&

9

&>5

�
��

 

where 𝑘�& = Z− 5
)*
Z
��

 and 𝑆𝑄 = ∑ 𝑃&9
&>5  is Sum of Quotients. 

This method is similar to the Core function method, with some exceptions. The weight  wo = 1 for 
all i of this function is 1 [15-17], so the formulas in Section 4.4 look as follows: 

𝑋 = X
��
W𝐷(𝑋) + ∑ ~*

)*
9
&>5 Y    (13) 

Algorithm 5. Base extension with Diagonal function 
Input:(𝑥5, 𝑥7, … , 𝑥9), (𝑝5, 𝑝7, … , 𝑝9), 𝑃, (𝑃5, 𝑃7, … , 𝑃9), 𝑆𝑄, 𝑘�& = �− 5

do
�
¢£

 for 𝑖 = 1, 𝑛]]]]]. 

Output: X 
1. 𝑠𝑢𝑚 = 0 
2. for 𝑖 = 1 to 𝑛 do: 
2.1 𝑠𝑢𝑚	+= 	𝑥& ∙ 𝑘�& 
3.	𝐷 = |𝑠𝑢𝑚|�� 
4. 𝑡𝑒𝑚𝑝 = 0 
5. for 𝑖 = 1  to 𝑛 do: 
5.1 𝑡𝑒𝑚𝑝+= (𝑤&/𝑝&) ∙ 𝑥& 
6. 𝑋	 = 	 X

��
(𝐷(𝑋) + 𝑡𝑒𝑚𝑝) 

7. return 𝑋 
To illustrate base extension with Diagonal function, let us consider the following Example 5. 

Example 5 (Base extension with Diagonal function). The input in this example is a set of residues 
𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, 𝑥r = 4 calculated by 𝑝5 = 3, p7 = 5, pO = 7, pr = 11, 𝑃 = ∏ 𝑝&r

&>5 = 1155, 
𝑃5 =

X
)e
= 385, 𝑃7 =

X
)f
= 231,	

𝑃O =
X
)h
= 165, 𝑃r =

c
d�
= 105, and 𝑆𝑄 = 𝑃5 + 𝑃7 + 𝑃O + 𝑃r = 886.  The coefficients Diagonal 

function are calculated as follows: 
𝑘�5 = Z− 5

)e
Z
¢£
= Z− 5

O
Z
��u

= 295, 𝑘�7 = Z− 5
df
Z
£¢
= Z− 5

v
Z
��u

= 177, 𝑘�O = Z− 5
dh
Z
¢£
= Z− 5

�
Z
��u

= 253,  

𝑘�r = �−
1
𝑝r
�
��
= �−

1
11
�
��u

= 161 

Calculating D(X), we obtained: 

𝐷(𝑋) = ��𝑘�& ⋅ 𝑥&

r

&>5

�
¢£

= |295 ⋅ 1 + 177 ⋅ 2 + 253 ⋅ 3 + 161 ⋅ 4|��u = |2052|��u = 280 

Thus, the number is restored from the calculated values: 

𝑋 =
𝑃
𝑆𝑄

�𝐷(𝑋) +�
𝑥&
𝑝&

9

&>5

� =
1155
886 �280 +

1
3
+
2
5
+
3
7
+
4
11�

=
1155
886

⋅
325162
1155

= 367 

4.6.  Approximate method 
An approach of the approximate method is to modify CRT using fractional values, which first defined 
in [16], to determine the sign of a number in RNS, so we can set the approximate coefficient (14). 

𝑘& = §
|5/cp|¨*

)*
∙ 2©ª,     (14) 

where 𝑁 = ⌈log7(𝑃 ⋅ 𝜇)⌉, and 𝜇 = ∑ 𝑝&9
&>5 − 𝑛. Next, the number is calculated as (15) 



 

𝑋 = �
²∑ Q*∙~*�
*³e 	²f´∙X

7´
�,     (15) 

Algorithm 6. Base extension with CRT approximate method  
Input:(x5, x7, … , x¶), (p5, p7, … , p¶), P, (P5, P7, … , P¶), N, ko = §

|5/cp|ºp
dp

∙ 2»ª for i = 1, n]]]]]. 
Output: X 
1. sum = 0 
2. for i = 1 to n do: 
2.1 sum+= ko ∙ xo 
3. sum = sum	AND	2» − 1 
4. X = (sum ∙ P) ≫ N 
5. return X 
To illustrate base extension with CRT approximate method, let us consider the following Example 

6. 

Example 6 (Base extension with CRT approximate method). The input in this example is a set of 
residues 𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, 𝑥r = 4 calculated by 𝑝5 = 3, 𝑝7 = 5, 𝑝O = 7, 𝑝r = 11, 𝑃 = ∏ 𝑝&r

&>5 =
1155, 𝑃5 =

X
)e
= 385, 𝑃7 =

X
)f
= 231, 𝑃O =

X
)h
= 165, 𝑃r =

c
d�
= 105,  𝜇 = ∑ 𝑝&9

&>5 − n = 3 + 5 +
7 + 11 − 4 = 22	 and 𝑁 = ⌈log7(𝑃 ⋅ 𝜇)⌉ = ⌈log7(1155 ⋅ 22)⌉ = 15. 
Calculating the coefficients, the following values were obtained 

𝑘5 = §
|5/ce|¨e

)e
∙ 2©ª 	= §|5/O�v|h

O
∙ 25vª = 10923, 𝑘7 = §

|5/cf|ºf
)f

∙ 2©ª = §|5/7O5|�
v

∙ 25vª = 6554, 

𝑘O = §
|5/ch|ºf

)h
∙ 2©ª = §|5/5uv|Á

�
∙ 25vª = 9363, 𝑘r = §

|5/c�|º�
)�

∙ 2©ª = §|5/5nv|ee
55

∙ 25vª = 5958 
Calculate |∑ ko ∙ xo¶

o>5 |7Â, we have: 

��𝑘& ∙ 𝑥&

9

&>5

�
7´
= |10923 ⋅ 1 + 6554 ⋅ 2 + 9363 ⋅ 3 + 5958 ⋅ 4|7e� = |75952|7e� = 10416 

Thus, based on the coefficients, we can translate the number 

𝑋 = Ã
|∑ 𝑘& ∙ 𝑥&9

&>5 |7´ ∙ 𝑃
2©

Ä = �
10416 ∙ 1155

25v
� = 367 

5.  Base Extension Based on Scaling a Number with the Number Range Function in RNS 
We concentrate on two algorithms for extension of the range of the base: 

• Extension method using integer arithmetic. 
• Extension method using floating point arithmetic. 

For both methods, the general operation is the operation of finding the residue of the division modulo. 
Therefore, this operation is not displayed in the description of the algorithms, since it is obvious. 

5.1.  Extension method using integer arithmetic 
The first method uses the equation as shown in (16) [19].  

𝑥9�Å = �∑ U𝑥& ∙ Z
5
X*
Z
)*
U
)*

∙9
&>5 |𝑃o|dÆÇ − 𝑣 ⋅ |𝑃|)ÉÇ�

)É
Ç

,   (16) 

This method can be considered as calculating CRT without decreasing the dynamic modulo range P. 
This means that the converted value can have multiples of P. 

Algorithm 7. Base extension with new CRT 
Input:(x5, x7, … , x¶), Êp5, p7, … , p¶, pËÌ, P, v, |P|dÆÇ, (P5, P7, … , P¶), pË

Î, Z 5
cp
Z
dp

 and |Po|dÆÇ for i = 1, n]]]]]. 

Output: xË 



 

1. sum = −v ⋅ |P|dÆÇ 
1. for i = 1 to n do: 

1.1 sum	+= 	 Uxo ∙ Z
5
cp
Z
dp
U
dp

∙ |Po|dÆÇ 

2. xË 	= sum	mod	pËÎ 
3. return xË 
To illustrate base extension with new CRT, let us consider the following Example 7. 

Example 7 (Base extension with new CRT). The input in this example is a set of residues 𝑥5 =
1, 𝑥7 = 2, 𝑥O = 3, 𝑥r =4 calculated by 𝑝5 = 3, 𝑝7 = 5, 𝑝O = 7, 𝑝r = 11, base extends by 𝑝5Î = 17, 𝑃 =
∏ 𝑝&r
&>5 = 1155, 𝑃5 =

X
)e
= 385, 𝑃7 =

X
)f
= 231, 𝑃O =

X
)h
= 165, 𝑃r =

c
d�
= 105, and |𝑃5|)eÇ =

|385|5� = 11, |𝑃7|)eÇ = |231|5� = 10, |𝑃O|)eÇ = |165|5� = 12, |𝑃r|)eÇ = |105|5� = 3, Z 5
Xe
Z
)e
=

Z 5
O�v
Z
O
= 1, Z 5

Xf
Z
)f
= Z 5

7O5
Z
v
= 1, Z 5

Xh
Z
)h
= Z 5

5uv
Z
�
= 2, Z 5

X�
Z
)�
= Z 5

5nv
Z
55
= 2, and |𝑃|)ÉÇ = |1155|5� = 16. 

We use from Example 6 ∑ ko ∙ xo¶
o>5 = 10923 ⋅ 1 + 6554 ⋅ 2 + 9363 ⋅ 3 + 5958 ⋅ 4 = 75952 then  

v = |∑ Ïp∙ÐpÑ
p³e
7Â

� = |�vÒv7
7e�

� = 2. 
 

𝑥r�5 = Ó��𝑥& ∙ �
1
𝑃&
�
)*
�
)*

∙ |𝑃o|dÆÇ
9

&>5

− 𝑣 ⋅ |𝑃|)ÉÇÓ

)É
Ç

= ||1 ⋅ 1|O ⋅ 11 + |2 ⋅ 1|v ⋅ 10 + |3 ⋅ 2|� ⋅ 12 + |4 ⋅ 2|55 ⋅ 3 − 2 ⋅ 16|5� = 10 

5.2.  Extension method using floating-point arithmetic 
This method, instead of an approximate conversion (a conversion with the excess flow), estimates 𝑣 and 
uses the exact value for the conversion [19, 21-25]. Equation (17) can be reformulated to find 𝑣 as 
follows: 

𝑣 = Ô∑ U𝑥& ∙ Z
5
X*
Z
)*
U
dp

∙ 5
dp

9
&>5 Õ	,    (17) 

The key problem of this method is to ensure that the estimate of v is correct. Since v is estimated 
using floating-point operations, errors due to limited accuracy can occur and lead to a value of v to be 
equal to one. 

Algorithm 8. Base extension with CRT fractions number 
Input:(x5, x7, … , x¶), Êp5, p7, … , p¶, pËÌ, P, (P5, P7, … , P¶), for i = 1, n]]]]]. 
Output: aË 
1. for 1 to n do: 
1.1 vo =

5
dp
∙ xo	mod	po ∙ Z

5
cp
Z
dp

 

2. for 1 to n do: 
2.1 F	+= 	 (xo ∙ po)dp ∙

c
dp
− vo ∙ Po	 

3. aË 	= 	F	mod	pË 
To illustrate base extension with CRT fractions number, let us consider the following Example 8. 

Example 8 (Base extension with CRT fractions number). The input in this example is the set of 
residues 𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, 𝑥r = 4) calculated by moduli 𝑝5 = 3, 𝑝7 = 5, 𝑝O = 7, 𝑝r = 11. The 



 

base is extended by 15, 𝑃5 = 385, 𝑃7 = 231, 𝑃O = 165, 𝑃r = 105. We use from Example 7 Z 5
Xe
Z
)e
=

Z 5
O�v
Z
O
= 1, Z 5

Xf
Z
)f
= Z 5

7O5
Z
v
= 1, Z 5

Xh
Z
)h
= Z 5

5uv
Z
�
= 2, Z 5

X�
Z
)�
= Z 5

5nv
Z
55
= 2 

𝑣 = ×��𝑥& ∙ �
1
𝑃&
�
)*
�
)*

⋅
1
po

9

&>5

Ø = Ã
|1 ⋅ 1|O
3

+
|2 ⋅ 1|v
5

+
|3 ⋅ 2|�
7

+
|4 ⋅ 2|55
11

Ä = �2
367
1155

� = 2 

Using (16) let's calculate xr�5, we have: 

𝑥r�5 = Ó��𝑥& ∙ �
1
𝑃&
�
)*
�
)*

∙ |𝑃o|dÆÇ
9

&>5

− 𝑣 ⋅ |𝑃|)ÉÇÓ

)É
Ç

= ||1 ⋅ 1|O ⋅ 11 + |2 ⋅ 1|v ⋅ 10 + |3 ⋅ 2|� ⋅ 12 + |4 ⋅ 2|55 ⋅ 3 − 2 ⋅ 16|5� = 10 
Using rational numbers, allows reducing computational complexity of calculation v. 

6.  Base Extension with NN 
To increase efficiency of the base extension, we use NN [20]. The calculation of the new residue is 
based on the range of the number, which can be defined as: 

𝑟3 	= |∑ 𝑥&𝑔&9
&>5 |)�,    (18) 

where 𝑔& = ZÙ*
)*
Z
)�

, 𝑚& is orthogonal basis weight, ∀𝑖, 𝑖 ≠ 𝑛; 𝑔9 = 𝑝9 − Z
5
X
Z
)�

. 

Based on CRT and orthogonal bases, the number A in the base p5, p7, … , p¶M5 can be written as:  
𝑋 =	∑ 𝑎&𝐵& − 𝑥Å𝑃9

&>5      (19) 
Thus, substituting (19) into (18) we obtain the following: 

𝑋 = Z∑ 𝑥&|𝐵&|)É + 𝑥Å(𝑝Å − |𝑃|)É)
9M5
&>5 Z

)É
  (20) 

For base extension, it is necessary:  
• Calculate number range 𝑥Å in the base system 𝑝5, 𝑝7, … , 𝑝9M5 according to the expression (18); 
• Find the residue 𝑥Å according to the (19). 

The proposed method of base extension is characterized by the calculation of small modulo p¶ 
instead of calculation of the large modulo P in traditional CRT. The residue of the number on an 
extendable base can be obtained using modular NN. Moreover, the constants of expressions (19), (20) 
can be calculated in advance and used in the network structure. NN presented in Figure 1. 

 
Figure 1. NN architecture of modular code base system extension 

 



 

The input network receives modular values x5 ÷ x¶. At the first stage, the modular neural network 
modulo p¶ by weighted summation of the modular values of the number x5 ÷ x¶ with coefficients g5 ÷
g¶ calculates the range of a number rÞ, and the modular network modulo pË calculates the value 
∑ ao|Bo|dÑàe
¶M5
o>5 . The second step is calculating xË = |X|dÆ using a computational model (20).  

Each set of bases of modular code is characterized by orthogonal bases, based on which, extending 
the base system, it is necessary to recalculate the bases BoÎ, i = 1, n + 1]]]]]]]]]]. For recalculation, the input data 
includes orthogonal bases Bo, i = 1, n]]]]], base systems p5, p7, … , p¶ and the values of the extendable base 
pË. Thus, we get the following expression: 

𝑚&
Î𝑃&Î ≡ 𝑚&𝑃&(𝑚𝑜𝑑	𝑝&)     (21) 

where 𝑚&
Î is the orthogonal basis weight 𝐵&Î. Based on the fact that 𝑃&Î = 𝑃Î/𝑝& and 𝑃& are prime, the 

orthogonal bases of the extended base system can be calculated as follows 
𝐵&Î ≡

XÇ

)*
∙ �Ù*
)É
�
)*

     (21) 

To solve this problem in a neural network basis, it is necessary to calculate two constants: � 5
dÆ
�
dp

 and 

PoÎ =
cÇ

dp
. Figure 2 shows the NN structure. 

 
Figure 2. NN structure of recalculation of bases of the extended base 

 
The proposed algorithm has less computational complexity compared to the methods described 

above. However, the method involves multiplying by pre-calculated constants. Assuming that these 
constants are usually known in advance, we can conclude that the algorithm is more efficient. 

To illustrate base extension with NN, let us consider the following example. 

Example 9. The initial data is a set of residues 𝑥5 = 1, 𝑥7 = 2, 𝑥O = 3, 𝑥r = 2 and a set of moduli 
𝑝5 = 2, 𝑝7 = 3, 𝑝O = 5, 𝑝r = 7. Then the extension of the base modulo 𝑝Å = 11 is the following. 
The representation range of numbers is in a system with bases 𝑝5, 𝑝7, 𝑝O	𝑃 = 2 ∙ 3 ∙ 5 = 30, orthogonal 
bases are equal 𝐵5 = 15, 𝐵7 = 10, 𝐵O = 6. We calculate the range, while 𝑔5 = 4, 𝑔7 = 5, 𝑔O = 3, 𝑔r =
3:𝑟3 = |4 ∙ 1 + 5 ∙ 2 + 3 ∙ 3 + 3 ∙ 2|� = |4 + 10 + 9 + 6|� = 1.. 

Putting the obtained value in (25) we get: 
𝑥Å = |1 ∙ |15|55 + 2 ∙ |10|55 + 3 ∙ |6| + 1 ∙ (11 − |30|55)|55 = |4 + 20 + 18 + 3|55 = 1. 

7.  Performance Analysis 
For the implementation of the algorithms, Python was chosen. It uses long arithmetic (work with high-
bit numbers) without connecting additional libraries and APIs.  



 

We consider 128-bit numbers, sets of 7 moduli (6 in the “vector length”, 1 extending range) with a 
24-64 bit lengths. 

All methods are implemented as separate functions. Each function is called separately to work with 
the already calculated RNS for the "vector length".  

The study is carried out in 2 stages. The first one considers the efficiency of algorithms with a static 
"vector length" and a dynamic modulo length in bits. The second stage is the opposite of the first stage: 
the length of the moduli is static, and the “vector length” is dynamic. 

7.1.  The First Stage of the Research 
Figure 3 shows execution time obtained at the first stage. Our algorithms show the best results. 

 
Figure 3. Execution time of base extension algorithms versus bit depth 

 
The growth dynamics of the execution time of the algorithms is uneven. It can be explained by the 

fact that as the length of the numbers of moduli increases, their basis increases by 10¶ times, where n 
is the difference in the length of numbers.  

It also depends on many other parameters that can affect the speed of a function in Python. 
The most important result is the fact that algorithms with integer arithmetic have shown their 

efficiency equal to about 200% and, unlike traditional algorithms, work more stably. Based on the 
analysis of NN, we can see the advantage of this method over others. In general, we can observe a low 
drop in productivity with an increase in the capacity of the moduli, which allows us to declare the 
promise of using this method as the best for systems with a dynamic range of RNS moduli. 

7.2.  The Second Stage of the Research 
The second stage of research shows a similar result to what was obtained in the first stage (Figure 4). 
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Figure 4. Execution time of base extension algorithms versus the moduli vector length 

 
With a vector length of six, the execution time of traditional algorithms is almost identical, except 

for the approximate method. Arithmetic-based algorithms show better performance. With a vector 
length of two, a performance is increased about 100%. With a vector length of six is 400% faster. We 
show that NN is the most suitable method, since this method is the most productive. 

8.  Conclusion 
In this paper, we studied the algorithms for base extension in RNS. We analyze algorithms for both 
traditional base extension methods and methods implemented using integer and floating-point 
arithmetic. We show the superiority of the NN-based algorithm. It uses machine learning to calculate a 
new residue. The number of pre-calculated constants is small and does not require large computing 
power. Thus, the result of this work is the definition of the base extension algorithm using NN as the 
most suitable for practical use in various computing systems with RNS. 
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