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Abstract. An analysis of the performance of texture features is carried out in the problem 
of supervised classification of soil and vegetation objects based on panchromatic images 
of WorldView-2. The 19 commonly used Haralick texture features calculated for 
different directions of adjacency are considered. The mutual dependencies of features and 
the sensitivity to the choice of adjacency direction are investigated by using correlation 
analysis. The most informative features which allowed us to achieve a sufficiently high 
accuracy of thematic processing (classification error is less than 1%) are selected. 
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1 Introduction 

The development of aerospace optoelectronic systems for monitoring the Earth's surface in the visible and near 
infrared (VNIR) spectral range resulted in creating devices with very high spatial resolution (VHSR). A number of 
commercial satellite systems, such as WorldView-2, 3, 4, GeoEye-1 and Pleades have a spatial resolution of 1.24-2 m 
in multispectral channels and 0.31-0.5 m in a panchromatic channel. The use of this VHSR images opens up new 
possibilities for solving various problems dealing with remote sensing of soil and vegetation cover. 

VHSR allows taking into account the distribution of illumination of elements of the forest canopy, consider a 
wider range of texture features and use the results of segmentation of crowns of individual trees when developing 
methods for thematic processing of images of forest territories. The use of VHSR satellite imagery (VHSRSI) 
ultimately contributes to the creation of the technology of accurate remote sensing forest inventory having high 
relevance to the Russian Federation and several other countries. 

Questions of the efficiency of the use of VHSRSI are discussed in various scientific publications of recent years. 
Much attention is paid to the possibility of retrieval of forest structure parameters, such as the size and density of the 
crown, the height of the tree, the diameter of the trunk and the characteristic distance between the trees. For example, 
a technique proposed in [1] for thematic processing of VHSRSI from Quickbird and Pleades performs the search for 
linear dependences of forest structure parameters of pine forests using spectral and texture features of Haralick. The 
technique allowed achieving acceptable accuracy: the average error of retrieval of the diameters of the crowns was 
1.1 m, of the distance between the trees – 0.9 m, of the height – 3 m and of the trunk diameters – 0.06 m. The Fourier 
texture features obtained by processing the VHSR photo were used in [2] to assess the aboveground biomass of forest 
stands of northeastern China. The comparison with lidar data showed that the accuracy of the proposed method was 
about 78%. A similar problem was also considered in [3] for the tropical forests of Cambodia. The authors used the 
Haralick, Fourier and Gabor texture features as applied to images provided by Google Earth. 

The problem of optimizing the feature space arises in various works of this kind. The redundancy of the features 
used causes the problem of the curse of dimensionality in the training of classifiers and regression models. In this 
paper, we consider the problem of determining the effective dimension of a feature space and choosing the most 
informative set of features when processing panchromatic VHSRSI with the aim of classifying the soil-vegetation 
objects. 
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2 Texture Classification Technique 

The texture analysis technique described here was first proposed in [4]. The technique is intended primarily for 
processing images in grayscale. The processing scheme is shown in Figure 1. 

 

 

Figure 1. Scheme for calculating texture features using panchromatic VHSRSI. 

 
At the first stage, it is necessary to evaluate the correct size of the moving window – a rectangular contour that 

selects the analyzed part of the image. The size of the window is determined by the characteristic scale of the 
analyzed textures. If the window size is chosen too small, the result of the texture classification will represent the high 
frequency noise and in some case it may resemble a classification based on the brightness of individual pixels. If the 
window size is too large, the calculation time increases and excessive smoothing of recognized objects occurs. Thus, 
the moving window should have the smallest possible size at which the analyzed textures are clearly distinguishable. 

The panchromatic image is expanded to half the size of the moving window. The center of the window runs 
through all the points of the panchromatic image. When processing panchromatic and multispectral (or hyperspectral) 
images together, to reduce the amount of computation, it is sufficient to run only pixels whose coordinates correspond 
to the pixel centers of the multispectral image. 

For each position of moving window, the gray-level co-occurrence matrix (GLCM) is calculated. GLCM elements 
are the frequencies of occurrence of brightness gradients in a given direction. An example of constructing such a 
matrix in the horizontal direction from left to right is shown in Figure 1. In this paper, we consider a symmetric 
method of constructing GLCM, when along with a given direction, the opposite is also considered. The normalized 
GLCM which is essentially a probability distribution function of the co-occurrence of a given number N  of gray 
levels is calculated as 
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where ,i j  are indices GLCM elements. 
Based on the values ( , )p i j , statistics known as Haralick texture features are calculated. In this paper, the most 

frequently used 19 statistics are investigated. The corresponding calculation formulas are presented in Table 1. When 
calculating the statistics, the following parameters were used: 
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To carry out the classification based on the above-described texture features, three standard methods were 

considered: the normal Bayesian classifier, the k-nearest neighbor method (KNN) and the multiclass support vector 

machine with a Gaussian kernel [5, 6]. The indicated methods have different problem statement, accuracy and 

computational complexity. 

 
Table 1. Haralick texture features. 
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We have performed a series of experiments (the description is beyond the scope of this article) in which the 

effectiveness of these classifiers for solving the considered problem was compared. As a result, an effective 
modification of the KNN method was chosen. The modification consists in the optimized search by using kd-trees 
which increase the calculation speed. The selected number of neighbors 49 provides a balance between classification 
accuracy and learning sustainability. 

 

3 Numerical experiments  

For the calculations, panchromatic images of WorldView-2 of the territory of the Bronnitsky forestry (Moscow 
region) were used. Two test plots containing various groups of objects are considered. The Otra plot is located near 
the Tatarintsevsky pond and contains 4 main types of objects that differ in texture: water surface, field, natural mixed 
stand with a predominance of birch and spruce forest culture. The Lubninka plot is located near the settlement with 
corresponding name. It contains natural forests with a predominance of oak and birch, as well as part of the territory 
of the experimental area on which larch is grown. A distinctive feature of deciduous stands is strict ordering, trees are 
located along straight lines at equal distances from each other and have almost the same size of crowns. When 
conducting texture analysis, of particular interest is the ability to classify natural and cultural plantings. 



The texture features presented in Table 1 (19 parameters) were calculated on the basis of panchromatic images of 
the test areas for 4 adjacency directions of 0, 45, 90, and 135 degrees. Thus, the initial attribute space has a dimension 
of 76. Most of the attributes turned out to be significantly dependent. Figure 2 shows the correlation matrices for 19 
features in the set of directions. Correlation estimates between the features differ for the considered test plots, 
however, it can be seen that they have a similar structure. 

The analysis of correlations by threshold values showed the following. 35% of the considered features have 
mutual correlations of more than 0.8 for both plots. The relationship between these variables is primarily explained by 
the way they are built. A relatively small part of the features has a weakly expressed mutual dependence. A 
correlation of less than 0.5 has 30% of the characteristics for the Otra plot and 25% for the Lubninka plot, and a 
correlation of less than 0.3 has 16% and 8% of the characteristics, respectively. Thus, the relationship between these 
signs significantly depends on the choice of scene. 

 

 

Figure 2. Matrices of correlation modules of texture features for test plots: a) – Otra, b) – Lubninka. 

 
The results of the correlation analysis of characteristics for 4 selected directions are presented in Table 2. It can be 

seen that such features as Autocorrelation, Energy, Entropy, SumAverage, SumEntropy, SumSquares and 
SumVariance do not depend on the choice of direction. The most sensitive to the choice of direction are Contrast and 
DiffVariance. It should be noted that the above conclusions can be made for both test plots. 

 
Table 2. The minimum and maximum correlation of the texture features of Haralik in the directions of the adjacency 

of pixels for the areas of Otra and Lubinka. 

Feature name 
Otra Lubninka 

ρmin α(ρmin) ρmax α(ρmax) ρmin α(ρmin) ρmax α(ρmax) 

Autocorrelation 1 90-0 1 135-45 1 90-0 1 135-45 

ClusterProminence 0.99 90-0 1 135-90 1 90-0 1 135-45 

ClusterShade 0.99 135-45 0.99 135-90 0.99 90-0 1 135-45 

Contrast 0.81 135-45 0.95 135-90 0.83 135-45 0.94 90-45 

Correlation 0.96 135-45 0.98 135-90 0.78 135-45 0.94 135-0 

DiffEntropy 0.96 90-0 0.99 135-90 0.92 135-45 0.97 90-45 

DiffVariance 0.72 135-45 0.94 135-90 0.79 135-45 0.92 90-45 

Dissimilarity 0.93 90-0 0.97 135-90 0.9 135-45 0.96 90-45 

Energy 1 90-0 1 135-45 0.99 135-45 1 135-0 

Entropy 1 90-0 1 135-90 0.99 135-45 1 135-0 

Homogeneity 0.96 90-0 0.99 135-90 0.92 135-45 0.96 90-45 

Homogeneity2 0.96 90-0 0.99 135-90 0.92 135-45 0.96 90-45 



InfMeasureCorr1 0.94 90-0 0.97 135-90 0.94 135-45 0.96 135-0 

InfMeasureCorr2 0.98 90-0 0.99 135-45 0.95 135-45 0.99 135-0 

MaxProb 0.99 90-0 1 90-45 0.95 90-0 0.96 90-45 

SumAverage 1 90-0 1 135-45 1 90-0 1 135-45 

SumEntropy 1 90-0 1 90-45 1 135-45 1 90-0 

SumSquares 1 90-0 1 135-45 1 90-0 1 135-45 

SumVariance 1 90-0 1 135-90 1 90-0 1 135-45 

 
To effectively reduce the feature space, the regularized method of stepwise forward selection was used [7]. The 

problem with the standard method of stepwise forward selection is that the resulting sequence of the most informative 
features has high sensitivity to small changes in the training set. The regularized method allows getting a more stable 
result. Possible fluctuations in the selection results usually correspond to the least informative members of the 
sequence of characters. The stability of selection increases with an increase in the number of repeated calculations of 
locally optimal sequences of characters. 

When processing data for the Otra plot, the following sequence of features was identified (the direction of 
adjacency is indicated in parentheses): Contrast (45), Autocorrelation (0), DiffEntropy (135), Correlation (90), 
Homogeneity2 (135), Dissimilarity (0) and Correlation (0). The results obtained are consistent with the data presented 
in Figure 3. The first 3 most informative features have the greatest probability of entering the ensemble of locally 
optimal sequences. 

The results of thematic processing of test plots Otra and Lubninka are presented in Figure 4. You can see that the 
target objects were classified quite accurately. Black color on Figure 4b and 4d indicate other objects whose features 
are at a sufficiently large distance from the training set. The areas of other objects correspond mainly to the 
boundaries between the target objects, the road network, and the coastal shallow water (bottom visibility changes the 
texture of the water surface). 

 

 

Figure 3. The probability of occurrence of characters in the ensemble of locally optimal sequences of features. 

 



 

Figure 4. Recognition of target classes by texture features: a) and b) - panchromatic image and thematic map of the 
Otra plot; c) and d) - panchromatic image and thematic map of the Lubninka plot. 

 
To estimate recognition errors, k-fold cross-validation [6], resubstitution (training and test ensembles coincide), 

and independent validation (test and training ensembles are completely different) methods were used. For these 
estimates of error, the designations CV, Resub, and Indep are introduced, respectively. General characteristics of the 
quality of the trained classification are the total probability of error TE, the average omission error TOE, the average 
commission error TCE, and kappa [6]. These errors are presented in Table 3. The proximity of resubstitution and 
cross-validation errors indicates the stability of training. Independent error estimates are significantly greater than 
cross-validation errors. Thus, we can conclude that there are systematic changes in the values of texture features in 
the image. In general, we can talk about high classification accuracy, for both test plots the error estimates do not 
exceed 1%, and high Cohen kappa values indicate excellent agreement between the classification results and expert 
data. 

 
Table 3. General characteristics of classification quality. 

 
Otra Lubinka 

CV Resub Indep CV Resub Indep 

TE 0.001 0.001 0.005 0.006 0.005 0.072 

TOE 0.002 0.001 0.009 0.005 0.004 0.070 

TCE 0.002 0.004 0.002 0.007 0.067 0.006 

kappa 0.998 0.999 0.994 0.990 0.992 0.890 

 
Independent estimates of OE and CE are presented in Table 4 for each considered class. For both test plots, the 

smallest accuracy is achieved with forest crop recognition. For the Lubninka test plot, the recognition errors for the 
territory of the experimental test plot are quite high; this is most likely due to the correspondence of the average size 
of crowns of natural stands and cultural plantings of larch. 

 
Table 3. Class-wise characteristics of classification quality. 

 
water fields 

natural 
forest 

cultivated 
forest 

Otra OE 0.000 0.000 0.002 0.035 

CE 0.000 0.000 0.011 0.006 



Lubinka OE - 0.002 0.070 0.138 

CE - 0.000 0.091 0.109 
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