
ODPReco - A Tool to Recommend Ontology
Design Patterns ?

Maleeha Arif Yasvi[0000−0001−8155−8804] and Raghava
Mutharaju[0000−0003−2421−3935]

Knowledgeable Computing and Reasoning Lab,
IIIT-Delhi, India

{maleeha18112,raghava.mutharaju}@iiitd.ac.in

Abstract. Ontologies evolve over time due to changes in the domain
and requirements of the application. Maintaining an ontology over time
and keeping it up-to-date with respect to the changes in the domain and
requirements of application is hard. But a high quality ontology can sig-
nificantly reduce the effort and cost of ontology maintenance. Ontology
Design Patterns (ODPs) can be used to improve the quality of an on-
tology and make it more modular and reusable. But with around 220
(and increasing) ODPs across six different categories, it is not easy to
determine the right set of ODPs to choose for a particular use case even
for experts. This becomes even more difficult in the case of refactoring
existing ontologies using the right set of ODPs. We describe here a pro-
posal for a work-in-progress tool named ODPReco that can recommend
the possible ODPs to use in a given ontology. ODPReco analyzes the
lexical, structural, and behavioural aspects of an ontology, along with
learning from existing ODP implementations to recommend ODPs that
can be used for refactoring an ontology.

Keywords: Ontology Design Pattern · Ontology Maintenance · Refac-
toring Ontologies · Modular Ontologies

1 Introduction

Ontologies capture the state of the world (domain) at the point of their creation.
But over time, there will be changes in the domain and the applications that
depend on the ontology will evolve as well. So an ontology is not a static piece
of artifact that can be built once and used over the lifetime of the application.
It needs to evolve with the changes in the domain and application requirements.
The developers maintaining the ontology may change over time and they might
want to make changes to the class hierarchy, relationships among the classes,
make some classes as properties etc. There is a body of work on ontology evo-
lution [14, 2] and maintenance. One of the crucial factors that is always stressed
upon is that, the quality of the ontology plays a very important role in ontology

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 Maleeha A. Y., Raghava M.

maintenance. A good quality ontology is modular, easy to understand, and more
amenable to changes [7]. This makes it easier to maintain the ontology, which in
turn reduces the maintenance cost. This holds true for the maintenance of soft-
ware artifacts as well. It is said that around 80% of the software development
cost goes into maintenance and a good quality software can significantly reduce
the cost [1].

Ontology Design Patterns (ODPs) [6] are solutions to common modelling
problems. They are generally small in size and can be used as building blocks in
developing modular ontologies. Large monolithic ontologies can be refactored to
use ODPs and thus improve their quality. But it is not easy for ontology devel-
opers, especially the inexperienced ones to identify the right ODPs to use for a
particular ontology (or use case that the ontology is modelled for). This is due to
the number and variety of ODPs that are available. ODP repository1 lists nearly
220 (and counting) ODPs spread across six different categories. We propose a
work-in-progress tool named ODPReco that analyzes the lexical, structural, and
behavioural aspects of an ontology to recommend a set of ODPs that can be
used to refactor a non-modular ontology. ODPReco also learns from existing
ODP implementations. If a non-modular ontology (or part of it) is similar to an
existing ontology that has implemented ODPs, then the non-modular ontology
can also make use of the same ODPs.

2 Approach

In order to recommend ODPs, ODPReco would need a list of all the available
ODPs including their details such as the description, competency questions, and
use cases. Along with that, a collection of ontologies in which the ODPs used
are clearly indicated is also required. This helps the tool to learn from existing
ODP implementations. The following two datasets satisfy these requirements.
We will refer to these datasets as our collection.

a) ODPs from the ODP repository. We will have a local copy of all the ODPs
from the repository and create an index based on the details of each ODP
such as the name, description, competency questions, use cases, similar pat-
terns, class names, and property names.

b) MODL: Modular Ontology Design Library [12]. It is a downloadable cu-
rated collection of well-documented ODPs. It contains annotations indicating
which patterns were used and also the axioms that are part of the pattern.

We will discuss two complementary techniques to ODP recommendation in
the following sections.

2.1 Ontology Analysis

We will be analyzing a given ontology on the following dimensions.

1 http://ontologydesignpatterns.org/



ODPReco 3

a) Lexical Analysis. The names of classes, properties, and instances from the
ontology are compared with the ones from our collection. Apart from names,
we will be including other descriptive text such as labels and comments.
Word embeddings can be used to get a ranked list of similar words (and
hence ODPs that can contain these words) present in our collection.

b) Structural Analysis. We will be comparing the axioms of the given on-
tology with the ones from our collection. We can generate embeddings for
the axioms by converting them into a fixed format. An example for axioms
involving cardinalities is given below. Each axiom type will have a format
along the same lines.

〈AxiomTypeID〉 〈ClassesInAxiom〉 〈PropertiesInAxiom〉 〈Cardinality〉

Using the embeddings generated from the given ontology as well as the ones
from our collection, we will generate similarity scores and rank the axioms
(and the corresponding ODPs that are associated with these axioms).

c) Behavioural Analysis. The behavioural aspect of the ontology can be an-
alyzed by making use of the competency questions associated with the given
ontology. They represent the ontology requirements and help in capturing
the scope an ontology. These competency questions are compared with the
ones associated with the ODPs and a similarity score is generated. We are
aware of the fact that most ontologies do not have competency questions
associated with them. But if available, we will analyze the behaviour of the
ontology using the competency questions.

The scores obtained from these three dimensions of an ontology are integrated
and normalized. Weights can also be assigned to each of these three dimensions.
Depending on the scores, the top k ODPs can be recommended to the user for
the given ontology.

2.2 Supervised Machine Learning on Existing ODPs

Chess [8] and cooking recipes [11] ontologies along with the MODL collection
can be considered as labeled data. The ODPs used in these ontologies are clearly
known and they are well documented. This can be used as training data. During
the training phase, we should capture features that can help in determining why
a particular ODP has been used in an ontology. The three types of analysis
discussed in the previous section - lexical, structural, and behavioural aspects of
the ontology can be used as features. There could be other aspects of an ontology
that can be used as features, but we have not yet looked into all the possibilities.
After learning the machine learning model, we can now use the given ontology
to predict the classes (ODPs) it should belong to. So this becomes a multi-
label classification problem. But there are some obvious disadvantages to using
machine learning in this context.

– Training data is limited.



4 Maleeha A. Y., Raghava M.

– The coverage of the training data is limited, i.e., not all possible 220 ODPs
are covered in the training data. So there will be a bias towards the ODPs
that are most frequently used in the training data.

– There are large number of classes (220). So prediction will not be accurate.

Due to these reasons, it is important to complement the machine learning
model with an alternative, which is to predict (recommend) ODPs by analyzing
the ontology.

We are currently implementing the ideas discussed here. ODPReco will be
available publicly and it could also be made into a protégé plug-in.

3 Related Work

In the software engineering community, there has been work on recommending
software design patterns by analysing the code. We plan to adapt that work to
the case of recommending ODPs for a given ontology. We briefly discuss some
of the techniques used for recommending software design patterns. Along with
this, we will also discuss work related to ODPs.

In [13], code smells (characteristics of the code) are analyzed to recommend
software design patterns. Design pattern recommendation systems are devel-
oped using various techniques. One such technique is the text based approach
[5]. In this approach, the description and the scenario of the design patterns
provided are preprocessed. Pre-processing includes tokenization, stop word re-
moval and stemming. Vector space model is used to represent the collection of
design patterns in the form of unigrams and bigrams and the most suitable de-
sign pattern for a given problem scenario is selected which is based on the cosine
similarity and TF-IDF. Another approach for recommending patterns is based
on question-answering [10]. It is an interactive approach in which questions are
asked from the user and the user answers them with a yes/no/do not know.
Based on these answers, weights are assigned and software design is predicted.
In [9], case based reasoning is used. Structural, behavioural and semantic aspects
are considered in [3] to recommend patterns. The structural aspects are gener-
alization, attribute, aggregation, and specialization methods. The behaviour of
the design pattern can be analyzed through the control flow graphs [13]. The
semantic aspect can be analyzed using the programming guidelines and naming
conventions. Software design patterns are also recommended using the classifi-
cation techniques [4].

Ontology Design Patterns [6] are small, self-contained ontologies that pro-
vide a solution to a commonly occurring modelling problem across different
domains. ODP repository has around 220 ODPs that are divided into six cate-
gories, structural, reasoning, correspondence, presentation, lexico-syntactic and
content ODPs. MODL [12] is a well documented ODP library that contains
ontologies which are clearly annotated with the ODPs.

Even for experienced ontology developers, it is hard to know which among
the 220 patterns is a good fit for a given use case. This task becomes hard for
inexperienced ontology developers. Our tool, ODPReco, attempts to fill this gap



ODPReco 5

by learning from existing ODP implementations and analyzing the structure of
ontologies to recommend ODPs.

References

1. AL-Badareen, A.B., et. al.: The Impact of Software Quality on Main-
tenance Process. International Journal of Computers 5, 183–190 (2011),
http://www.naun.org/main/NAUN/computers/19-862.pdf

2. Djedidi, R., Aufaure, M.A.: Ontology Evolution: State of the Art and Future Di-
rections. Ontology Theory, Management and Design: Advanced Tools and Models
pp. 179–207 (2010). https://doi.org/10.4018/978-1-61520-859-3.ch008

3. Dong, J., Zhao, Y., Peng, T.: A Review of Design Pattern Mining Techniques.
International Journal of Software Engineering and Knowledge Engineering 19, 823–
855 (2009). https://doi.org/10.1142/S021819400900443X

4. Dwivedi, A.K., Tirkey, A., Rath, S.K.: Software design pattern mining using
classification-based techniques. Frontiers of Computer Science 12(5), 908–922 (Oct
2018). https://doi.org/10.1007/s11704-017-6424-y

5. Hamdy, A., Elsayed, M.: Automatic Recommendation of Software De-
sign Patterns: Text Retrieval Approach. JSW 13, 260–268 (2018).
https://doi.org/10.17706/jsw.13.4.260-268

6. Hitzler, P., et. al.: Ontology Engineering with Ontology Design Patterns: Founda-
tions and Applications. IOS Press, Amsterdam, The Netherlands (2016)

7. Hitzler, P., Shimizu, C.: Modular Ontologies as a Bridge Between Human
Conceptualization and Data. In: Graph-Based Representation and Reasoning -
23rd International Conference on Conceptual Structures, ICCS 2018, Edinburgh,
UK. Lecture Notes in Computer Science, vol. 10872, pp. 3–6. Springer (2018).
https://doi.org/10.1007/978-3-319-91379-7 1

8. Krisnadhi, A., Hitzler, P.: Modeling with ontology design patterns:chess games as a
worked example. In: Ontology Engineering with Ontology Design Patterns (2016).
https://doi.org/10.3233/978-1-61499-676-7-3

9. Nahar, N., Sakib, K.: Automatic Recommendation of Software Design Patterns
Using Anti-patterns in the Design Phase: A Case Study on Abstract Factory p. 8
(2015)

10. Palma, F., Farzin, H., Guhneuc, Y., Moha, N.: Recommendation system for design
patterns in software development: An DPR overview. In: 2012 Third International
Workshop on Recommendation Systems for Software Engineering (RSSE). pp. 1–5
(Jun 2012). https://doi.org/10.1109/RSSE.2012.6233399

11. Sam, M., Krisnadhi, A.A., Wang, C., Gallagher, J., Hitzler, P.: An Ontology Design
Pattern for Cooking Recipes: Classroom Created. In: Proceedings of the 5th Inter-
national Conference on Ontology and Semantic Web Patterns-Volume 1302. pp. 49–
60. CEUR-WS.org (2014), http://dl.acm.org/citation.cfm?id=2878937.2878943

12. Shimizu, C., Hirt, Q., Hitzler, P.: MODL: A Modular Ontology Design Library
(2019), https://arxiv.org/pdf/1904.05405.pdf

13. Smith, S., Plante, D.R.: Dynamically recommending design patterns. In: SEKE
(2012), https://pdfs.semanticscholar.org/9ea6/731b7a517.pdf

14. Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H.,
Motta, E., Plexousakis, D., Sabou, M.: Ontology evolution: a process-
centric survey. The Knowledge Engineering Review 30(1), 45–75 (Jan 2015).
https://doi.org/10.1017/S0269888913000349


