
Keyword Extraction from Single Russian Document

Mikhail Vadimovich Sandul
ITMO University

St. Petersburg, Russia
sandulmv@yandex.ru

Elena Georgievna Mikhailova
Saint Petersburg State University, ITMO University

St. Petersburg, Russia
e.mikhaylova@spbu.ru

Abstract—The problem of automatic keyword and phrases
extraction from a text occurs in different tasks of information
retrieval and text mining. The task is the identification of terms
that best describe the subject of a document. Currently there are
a lot of research to solve this problem. Basically, algorithms are
developed for texts in English. The possibility of applying these
algorithms to the Russian texts are not sufficiently investigated.
One of the most known algorithms for solving the problem
of keyword extraction is RAKE. This article examines the
effectiveness of RAKE algorithm for texts in Russian. The work
also applies the hybrid method, which uses the Γ-index metric
for phrases weighting, which were obtained using the algorithm
RAKE. The article shows that this algorithm is more accurate
than PAKE while reducing the number of selected phrases.

I. INTRODUCTION

Organizing data into a database requires expenses on
database designing, data organizing, etc. These expenses are
not necessarily related to the analysis of the data itself. So,
we spend additional time and effort on preprocessing to get
new knowledge from a data. The worst part is that organizing
some types of a data into a database can lead to a loss of the
content. Usually it’s impossible to convert text documents into
a table (in case of relational DB) without loss of its meanings.
Thus, texts are usually stored unchanged as BLOB-fields. As
a result, we can say that using databases for analysing texts is
not efficient.

As we can see, it is hard to bring structure into a text for
analysis. However, we would like to extract useful information
from it anyway. The branch of science which deals with such
problems is called Text Mining[1].

Nowadays a lot of real-world problems are subjects of
study of Text Mining starting from typical Data Mining
problems such as classification and clustering to exclusively
Text Mining problems like automatic keyword extraction and
annotation[1].

Currently, amount of unstructured text information con-
stantly grows. Keywords can help to get new knowledge from
it because they let us understand the meaning of a text without
reading it. Automatic keyword extraction is the subject of study
of Text Mining.

Keywords can be applied to improve the functionality of
information retrieval systems. For example, Phrasier[8] system
uses keywords to find documents related to the primary one
and words themselves serve as links between documents. That
allows a user to navigate within documents much faster. An-
other example is Keyphind[9]. It is the search engine for digital
libraries. Keywords are used there as the main source for

building index. They are also used to enrich the presentation
o search results.

Despite the wide range of applications, most documents
do not have assigned keywords. Most approaches are focused
on manual assignment of keywords. Usually, this procedure is
done by specialists in the relevant field. In their work, they may
use a fixed taxonomy or rely on author’s judgment to provide
a representative list[2]. The main goal of further investigations
is automatization of this process.

Early approaches to automatic keyword extraction focus
on corpus-oriented statistics of individual words. However,
they have some flaws. For instance, while some words might
be evaluated as keywords within the whole corpus, keywords
within a single document or several documents might not[2].
Also, such methods can not help us in finding keywords
consists of two or more words. To avoid these drawbacks, we
focus on approaches that operate on a single document.

We will describe keyword as a sequence of one or more
words which provide a representation of the document’s con-
tent. An algorithm should return us a list of such sequences.
Ideally, this list represents in condense for the essential content
of a document. However, there is no need for these sequences
to form coherent text. To avoid ambiguity, further in the article
we will refer to such sequences as key phrases to highlight
that they may contain more than one word. We will use the
term ”keyword” only to emphasize that we are dealing with a
single-word sequence.

To evaluate the efficiency of an algorithm we use Precision
and Recall metrics. Recall is the fraction of correctly extracted
keywords among all keywords in a document:

correctly extracted

all keywords in a text

Precision is the fraction of correctly extracted keywords to a
count among all extracted keywords:

correctly extracted

all extracted

Different approaches to automatic keyword extraction exist:
supervised and unsupervised machine learning algorithms,
statistical approaches, approaches based on linguistic features.
They all can be used to solve our problem. These methods can
be divided into groups if they domain-dependent or domain-
independent, corpus-oriented or made for single documents,
require training set or not. In this particular work will be
considered domain-independent methods which do not require
training set.

30



II. RELATED WORK AND BACKGROUND

A. TextRank

TextRank[3] is the agile graph-based method that can be
used not only for key phrase extraction but also for creating
annotation for a text.

Representing data as a graph is one of the approaches to
retrieve information. The basic idea implemented by a graph-
based ranking model is that of ”voting” or ”recommendations”.
When there an edge exists from one vertex to another, it is
basically casting a vote for that other vertex. The more votes
a vertex gets, the more important it becomes. Moreover, an
importance of the vertex determines the importance of its
”votes”, and this information is also taken into account by
ranking model.

Formally, let G = (V,E) be a directed graph with the set
of vertexes V and the set of edges E, where E is the subset of
V ×V . Let In(Vi) be a set of vertexes which has an edge that
goes to Vi. Let Out(Vi) be a set of vertexes to which leads an
edge from Vi. We will define a score of a vertex Vi as follows:

S(Vi) = (1 − d) + d ·
∑

Vj∈In(Vi)

S(Vj)

where d ∈ [0; 1] is a dumping factor, which has a role of inte-
grating into the model the probability to jump from the given
vertex to another random one in the graph. The algorithm starts
with arbitrary values of S(Vi) for each node, the computation
iterates until convergence below given threshold is achieved.

To apply such method to a text, first, we need to introduce
some rules according to which we will build a graph. We need
to define units which will be treated as nodes and relations
between them. We can distinguish the following steps:

1) Identify text units that best define the task at hand, and
add them as vertexes in the graph

2) Identify relations that connect such text units, and add
them as edges between respective vertexes

3) Iterate graph-based algorithm until it converges
4) Sort vertexes by their score and use this score for selection

decisions

Such definition allows us to apply this method to a wide
range of problems. In particular, we will show how to apply
this algorithm to key phrase extraction.

First, we have to decide what to use as units when building
the graph. Authors suggested to this role nouns and adjectives.
They tried different part-of-speech filters but this one showed
the highest performance. Two lexical units were related if they
co-occur within a window of maximum N words, where N can
be set anywhere from 2 to 10. As a result, authors constructed
an unweighted and undirected graph. The initial score for
each vertex was set to 1. After this, authors ran the algorithm
described earlier. Once a final score was obtained for each
vertex in the graph, first T vertexes with the highest scores
were selected. T may be set to any fixed value or may depend
on various factors for instance, on a text size. Then, sequences
of adjacent keywords are collapsed into a key phrases.

The dataset used in the experiments is a collection of
500 abstracts from the Inspec database, and the corresponding
manually assigned key phrases. Results are shown on Tab. 1.

It should be noted, that due to algorithm definition, the
number of vertexes in a graph depends on the number of
distinct words in a text. So, for large texts algorithm can be
very long to run.

Precision 32.1%
Recall 36.2%

Tab. 1. TextRank evaluations

B. PageRank on Synonym Networks

The problem of a graph growth can be partially solved
by merging words into groups. This can also improve the
efficiency of the algorithm. One way to form groups is to define
equivalence classes. Authors suggest merging words by their
meaning. PageRank on Synonym Networks[7] implements
this idea. They need a thesaurus for that matter. Each class
can be represented by a unique number. Every word in a
text is replaced by a unique number that corresponds to the
equivalence class of the word. Then the algorithm described
in the previous paragraph is applied to the modified text.

C. RAKE

RAKE[2] (Rapid Automatic Keyword Extraction) is a
relatively effective algorithm that operates on individual docu-
ments, easily applied to new domains and does not depend
on the structure of a document or specific grammar rules.
RAKE is based on the observation that key phrases frequently
contain multiple words but rarely contain standard punctuation
or stop-words. As a stop-words, we denote function words
like ”and”, ”of”, ”the”, or other words with minimal lexical
meaning. It is worth to mention that such words are also
ignored in building an index in information retrieval systems.
The algorithm requires the list of such words.

In addition to a stop-word list, sets of phrase- and
word-delimiters needed. RAKE uses stop-words and phrase-
delimiters to partition a document into a set of candidate
key phrases. Word delimiters are used to split candidates into
individual words.

RAKE begins key phrase extraction with partitioning a text
into candidate key phrases. On the next step, the set of unique
words is obtained by splitting candidates into individual words
with word-delimiters. After this, scores are calculated for
each word. Authors propose metrics based on word frequency
and word degree. Word frequency (freq(w)) is a number of
occurrences of the word in candidates. Word degree (deg(w))
is a total length of all candidates which contain the word. The
score of a word is defined as

s(w) =
deg(w)

freq(w)

Then a score is calculated for each candidate key phrase and
defined as the sum of its member word scores.

Authors evaluated the efficiency of the algorithm on the
Inspec set, the set of 500 abstracts with manually assigned
key phrases. The same dataset was used in testing TextRank
effectiveness. They also compared performance of the algo-
rithm with different stop-word lists. The results are shown on
the Tab. 2.

31



As we can see, the difference in the Precision with gener-
ated stop-word list based on keyword adjacency (KA stoplist)
and with Fox’s stop-word list is quite noticeable. This means
that RAKE is strongly depends on the provided set of stop-
words.

stop-word list Precision Recall
KA stop-word list 33.7% 41.5%
Fox stop-word list 26.0% 42.2%

Tab. 2. RAKE evaluations

D. Position Weighing

Position Weighing[6] is based on the fact that a word’s
position plays an important role in linguistics. Words in
different positions carry different entropy. For example, if a
word appears in an introduction or in a conclusion it usually
carries more information. This observation also applies to
words within the same paragraph: words appeared in a leading
and summarization sentences are often more important than
those in other positions of the same paragraph.

Authors propose their approach called Position Weight. For
each word position they suggest computing a score which
strongly depends on a paragraph and a sentence where the
word occurrence is found and on a form of the word. Here is
the formula:

pw(ti) = pw(ti, pj) ∗ pw(ti, sk) ∗ pw(ti, wr)

Where pw(ti, pj) represents the score of an occurrence ti
within the paragraph j; pw(ti, sk) represents the score of an
occurrence ti within the sentence k; pw(ti, wr) represents the
score of an occurrence ti as a word for r. Then the total weight
of a term t in a document d computed as the sum of all position
scores:

PW (t, d) =

m∑

i=1

pw(ti)

We can conclude from the definition of the algorithm that
it relies on the structure of a document. Also, we should notice
when assumptions about a document structure are violated (for
example, there are no clues to determine a type of sentences
and paragraphs), the algorithm is reduced to simply calculating
the frequency of a word.

E. Statistical Approach

1) Weighing of Individual Words: In addition to the fre-
quency of a word, one can also obtain information about
the distribution of a word. The authors of the approach
suggest using this information to determine the significance
of individual words. The metrics proposed in [5] are based
on the phenomenon of the attraction of keywords in the text.
So, for example, the authors give the distribution of distances
to the nearest neighbor for the word ”NATURE” in the book
”The Origin of Species” by Charles Darwin (Fig. 1). On the
graph, you can see that the distribution of distances resembles
an exponential distribution. In the case of noise words, this
property is much weaker. Thus, keywords tend to form clusters
in a text unlike noise words.

Fig. 1. Distribution of distances to the closest neighbor

2) σ-index: To study the spatial distribution of a given
word in a text, first, we denote by ti the absolute position in
the corpus of the i−th occurrence of a word. Thus we obtain a
sequence of such positions: {t0, t1, . . . , tn+1}, assuming there
are n + 2 occurrences. Next, we need to compute the average
distance between two successive words:

µ =
1

n + 1

n∑

i=0

(ti+1 − ti)

The following step is to obtain the standard deviation:

s =

√√√√ 1

n + 1

n∑

i=0

((ti+1 − ti) − µ)2

To eliminate the dependence on the frequency of occurrence
for different words, authors suggest normalizing the token
spacing, thus they define σ-index as follows:

s/µ

Given that standard deviation grows rapidly when inhomogene-
ity of a distribution spacing ti+1 − ti increases. However, a
value of sigma can be strongly affected by the change of a
single occurrence position. Also, high values of sigma do not
always imply a cluster concentration.

3) Γ-index: To solve such problems, authors suggest con-
sidering the average separation around the occurrence at ti.
They define it as follows:

d(ti) =
(ti+1 − ti) − (ti − ti−1)

2
=

ti+1 − ti−1

2

. For each position ti the cluster index γ is computed:

γ(ti) =

{
µ−d(ti)

µ , if d(ti) < µ

0, else

Finally, the score of a word is obtained from the average of
all its cluster indexes:

Γ =
1

n

n∑

i=1

γ(ti)

Γ-index is more stable than σ-index. However, it is more time-
consuming to evaluate than σ.

32



Precision 31.8%
Recall 74.2%

Tab. 3. Evaluations for RAKE without any modification

4) Extracting of Key Phrases: The metrics described above
makes it possible to rank only individual words. In [4], pro-
posed several ways to generalize metrics to two-word phrases:

First Way: Rank whole word sequences. The weight of the
sequence is calculated similarly to a single word. The problem
is that the frequency of the desired phrases may be insufficient
for analysis.

Second way: Make up all possible unique phrases of a
given length. To compute the score of a phrase we need to
sum up all score of individual words from which the phrase
consists. The problem with this approach is that the number
of phrases grows exponentially with the given length.

III. EXPERIMENTS

A. Data Description

We used the book ”Abel Theorem in Solutions Problems”
written by Alekseev V.B. as a test data. The text consists
of 39519 words 1576 of which are unique. The alphabetical
index at the end of the book was used to evaluate the retrieval
capabilities of different key phrase extractors. The choice of
the test data is explained, firstly, by a large volume of the
text, which allows us to give more accurate estimates of the
efficiency of algorithms, and secondly, by the requirements of
the statistical approach to a number of occurrences of analyzed
words (for small texts this condition may not be fulfilled even
for one word).

B. Getting Evaluations

We measured the efficiency of algorithms in terms of Recall
and Precision. The result of each algorithm is a set of phrases.
To obtain the Precision estimate, we must determine how many
key phrases are in the result set. We will assume that the phrase
from the result set is a key phrase if it fully contains any key
phrase from the reference set and the order of words does not
count. To obtain the Recall estimate, we must determine how
many key phrases from the reference set are in the result set.
Also, we will assume that the phrase from the reference set
is in the result set if it is fully contained in any phrase in the
result set without regard to the order of words. In addition,
all the words in all phrases in both sets were stemmed, which
solves the problem with comparing different forms of a word.

C. RAKE

The algorithm requires a set of stop-words. We used
publicly available one from ranks.nl site. To avoid the problem
with different forms of words We used SnowballStemmer
from the nltk library for Python. Every word in every phrase
was stemmed. For each stemmed phrase was kept the count
of unstemmed ones from which it could be obtained. These
numbers were used in computing scores for individual words.
Results are shown on Tab. 3:

0.1

0.2

0.3

0.4

2.5 5.0 7.5 10.0

length

pr
ec

is
io

n

0.2

0.4

0.6

2.5 5.0 7.5 10.0

length

re
ca

ll

Fig. 2. The dependence of the efficiency on the restriction on the
length of a phrase

Max. length Precision Recall NWords
4 40.8% 73.0% 9327
5 41.5% 73.6% 7293

Tab. 4. RAKE evaluations with phrase length limitations

The result set contained 4320 phrases and all these phrases
were unique in terms of word forms. However, we faced the
problem: the output contained long phrases, for example, the
longest one consisted of 10 words. We would like to have
shorter phrases. It was decided to set the limit for the maximum
phrase length. All phrases with length above the limit were
split into shorter ones. From words that make up the long
phrase, all possible phrases of a given length were made
without taking into account the word order. Also, the limit
was set for the maximum degree of each word to support this
changes.

Next, We studied the dependency of efficiency on the
restriction on the length of a phrase. As we can see on the Fig.2
the highest precision was reached when the maximal phrase
length was limited to 4 or 5 words. On Tab. 5 are shown exact
evaluations for RAKE with phrase length limitations.

It makes sense to consider only such restrictions on length,
since at these limitations Precision reaches its highest values,
with Recall close to maximum. It can be seen that the number
of words extracted by the algorithm has increased dramatically.
At the same time, the number of correctly extracted words also
increased, because there is an increase in Precision.

This way of generating candidates, in theory, can cause an
exponential growth of their number. By the length of a phrase
we will understand the number of words it consists of. Let
k be a restriction on the maximum length of a phrase, m -
the maximum length of a phrase that hit the derivation of the
algorithm. By the definition of the algorithm, phrases obtained
after partitioning do not have intersections in the text, i.e. for
any two different phrases, their positions in the text will not

33



0.40

0.45

0.50

0.55

0.60

0 2500 5000 7500

nwords

pr
ec

is
io

n phrase_length

4

5

0.2

0.4

0.6

0 2500 5000 7500

nwords

re
ca

ll

phrase_length

4

5

Fig. 3. Comparison of estimates for RAKE with 4 and 5 words
phrase length limitations. Graph shows dependence on the number
of words with the highest ranks extracted

overlap. Let N be the number of words in a text. Thus, the
number of such phrases is not greater than N

m . We assume
that m > k. When generating new phrases, the word order is
not taken into account, so the number of new phrases can be
calculated as the number of combinations without repetitions:

Ck
m =

m!

(m − k)! · k!

Thus, we can give the following estimate of the new number
of phrases:

N

m
· Ck

m

As we can see, the growth is proportional to the number
of combinations. By definition of the algorithm, the length
of the key phrase in average can not be more than the
average sentence length. The average sentence consists of 10-
11 words[10], which means that the average value of m will
not exceed this number. In this way, we can conclude that the
increase in the number of candidates will be within reasonable
limits for random texts.

Limiting the size of the result set, we can improve Precision
of an algorithm. But discarding part of the results may lead
to the decreasing of Recall. Fig. 3 shows the dependence of
Precision and Recall on the number of selected candidates.

D. Statistical Approach

The statistical approach provides the way of measuring the
significance of individual words. Nevertheless, key phrases can
consist of more than one word. In this connection, the question
arises how to form a set of candidates. The solutions proposed
in [4] showed good results, but they require a large amount of
memory to store all candidates. For example, the number of all
possible key phrases formed of two words (without taking into
account the order) will be equal to the number of combinations.
So, for the text used in the work, the number of unique words

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

nwords

pr
ec

is
io

n filter

filtered

unfiltered

0.00

0.05

0.10

0.15

0 1000 2000 3000 4000 5000

nwords

re
ca

ll

filter

filtered

unfiltered

Fig. 4. Dependence of estimates for statistical approach on the
number of words with the highest ranks extracted when phrase
length is limited to two words

0.92

0.94

0.96

0.98

1.00

0 1000 2000 3000 4000 5000

nwords

pr
ec

is
io

n filter

filtered

unfiltered

0.05

0.10

0.15

0.20

0 1000 2000 3000 4000 5000

nwords

re
ca

ll

filter

filtered

unfiltered

Fig. 5. Dependence of estimates for statistical approach on the
number of words with the highest ranks extracted when phrase
length is limited to three words

is around 1500, thus there will be around 106 phrases of two
words and around 109 phrases of three words. Actually, there
is no need to store all candidates as we only need first T of
them with the maximal score.

Selection of candidates: We will consider the case of se-
lecting phrases from two words. This problem can be addressed
to the next. Given two sorted arrays A[1 . . . n] and B[1 . . . n].
We want to print all n2 sums A[i]+B[j] of two elements from
different arrays in descending order. There is the solution to
the problem that performs in O(n2log(n)) time and requires
O(n) space.

34



Description of the solution of the problem of arrays: We
will use max-heap to store tuples consist of a sum A[i] +
B[j] and a couple of indexes (i, j) which defines such sum.
Elements in the heap are ordered by the first element of a
tuple.

At the beginning, heap stores all pairs such as: ∀j =
0 . . . n : (A[0] + B[j], (0, j)).

The step of the algorithm is that the first element is
extracted from the heap - this is the element with the largest
sum. Suppose that indexes (i, j) were associated with that sum.
We print extracted sum and then put a new sum in the heap
A[i + 1] + B[j] with the pair of respective indexes. When the
elements of the arrays are finished, the remaining content of
the heap is displayed. From the definition of the solution, the
validity of estimates of time and space consumption is obvious.

Correctness of the solution: To prove the correctness of
the solution it is handy to consider square matrix formed from
all possible sums. We denote such matrix as C and it forms as
follows: C[i, j] = A[i] + B[j]. Since the elements of arrays A
and B are sorted, we can notice that the elements of the matrix
are decreasing from left to right and from top to bottom. In
other words: ∀i, j : c[i, j] ≥ c[i + 1, j] and c[i, j] ≥ c[i, j + 1].

At each step, the following invariant is supported: the heap
stores the maximal element of each column that have not been
printed yet. Since the maximal element that should get into the
output is in one of the columns, this proves the correctness.

Efficiency of the algorithm: Before calculating scores, each
word was stemmed with SnowballStemmer taken from nltk
version 3.2.2. Thus, words that differ only by their forms were
merged into equivalence classes. Then, scores were calculated
for such classes. We used Gamma-index in the experiments.
Also, at the stage of selecting words for weighing, it was
decided to use a filter along the length of the word: those
words which length was less than the specified threshold did
not participate in the weighing and in the construction of
candidates. In the experiments with filtering the threshold value
for the word length was set to 3. Experiments were carried out
for phrases of two and three words.

On Fig. 4 and Fig. 5 is shown that the use of the filter have
almost no impact on Recall and Precision of the algorithm.

The considered algorithm shows high Precision. This is
due to the construction of candidates. Γ-index accurately ranks
individual words, hence top-scored ones are most likely to
be actual key phrases or to be contained in multi-word key
phrases. Because of the way of constructing candidates and
due to the definition of efficiency metrics top-scored candidates
are most likely to be treated as properly extracted key phrases.

Based on the results of the experiments, it can be concluded
that the metrics Γ-index correctly ranks individual words.
Nevertheless, artificially constructed phrases can not ensure
the high Recall of the algorithm.

E. Hybrid approach

The advantage of the statistical approach is the high Preci-
sion of the ranking of single words. And the main drawback is
the complexity of constructing candidates and incapability to
ensure high Recall with those candidates. On the other hand,

the RAKE algorithm allows us to create phrases that provide a
relatively high Recall, but proposed ranking formula does not
allow to achieve high Precision while limiting the number of
candidates. In this connection, the idea of using Γ-index for
ranking of a single word, but use phrases that are obtained
as a result of the RAKE algorithm. Fig. 6 and Fig. 7 show a
comparison of corresponding methods.

0.4

0.6

0.8

1.0

0 2500 5000 7500

nwords

pr
ec

is
io

n method

hybrid

rake

0.2

0.4

0.6

0 2500 5000 7500

nwords

re
ca

ll

method

hybrid

rake

Fig. 6. Comparison of the efficiency of algorithms RAKE and
Hybrid when the length of phrases is limited to 4 words. The graph
shows dependence of estimates on the number of words with most
ranks extracted for considered methods

0.4

0.6

0.8

1.0

0 2000 4000 6000

nwords

pr
ec

is
io

n method

hybrid

rake

0.2

0.4

0.6

0 2000 4000 6000

nwords

re
ca

ll

method

hybrid

rake

Fig. 7. Comparison of the efficiency of algorithms RAKE and
Hybrid when the length of phrases is limited to 5 words. The graph
shows dependence of estimates on the number of words with most
ranks extracted for considered methods

35



IV. CONCLUSION

In the work it was shown that, with certain additions, the
RAKE algorithm and the statistical approach can be used to
extract key phrases from Russian texts. In addition, the paper
proposed new Hybrid method that uses Γ-index for weighing
phrases that are obtained as a result of RAKE algorithm.
And it was shown that the algorithm allows to achieve higher
Precision and Recall comparing to other algorithms considered
in the paper.

V. REFERENCES

1. Analysis of data and processes[Text] / A.A. Barsegyan,
M.S. Kupriyanov, I.I. Kholod, and others. – BVH-
Petesburg, 2009.-510 p.

2. Michael Berry. Text Mining: Applications and Theory[] /
Michael Berry, Jacob Kogan – 2010, John Wiley and Sons,
Ltd.-205 p.

3. Rada Mihalcea, Paul Tarau. TextRank: Bringing Order into
Texts // In Proceedings of EMNLP 2004 (ed. Lin D and
Wu D), pp. 404-411

4. Siddiqi, S., Sharan, A. Keyword and keyphrase extraction
from single Hindi document using statistical approach //
2015 2nd International Conference on Signal Processing
and Integrated Networks (SPIN) 2015, pp. 713-718

5. Juan P. Herrera, Pedro A. Pury. Statistical Keyword Detec-
tion in Literary Corpora // The European Physical Journal
B, 2008, pp. 135-146

6. Xinghua Hu, Bin Wu. Automatic Keyword Exctraction
Using Linguistic Features //Sixth IEEE International Con-
ference on Data Mining - Workshops (ICDMW’06), 2006,
pp. 19-23

7. Zhengyang Liu, Jianyi Liu, Wenbin Yao, Cong Wang. Key-
word Extraction Using PageRank on Synonym Networks //
2010 International Conference on E-Product E-Service and
E-Entertainment, 2010, pp. 1-4

8. Jones S., Paynter G. Automatic extraction of document
keyphrases for use in digital libraries: evaluation and appli-
cations // Journal of the American Society for Information
Science and Technology, 2002

9. Gutwin C, Paynter G, Witten I, Nevill-Manning C., Frank
E. Improving browsing in digital libraries with keyphrase
indexes // Decision Support Systems 27(12), 1999, pp. 81-
104

10. S.A. Sharov. Frequency dictionary [Online]. Avail-
able: http://www.artint.ru/projects/frqlist.php [Accessed:
20.05.2017]

36


