CEUR-WS.org/Vol-2135/SEIM_2018_paper_11.pdf

Design and testing of LXC-based virtualization
system for resource-constrained MIPS devices

Maxim Menshchikov
Department of Applied Mathematics and Control Processes
Saint Petersburg State University
Saint Petersburg, Russia
maximmenshchikov@ gmail.com

Abstract—Container-based virtualization became a standard
de-facto for many environments, but it’s applicability to resource-
constrained systems is not as trivial question as it seems to be at
first glance. Despite many projects aimed at bringing lightweight
containers, such as Linux Containers (LXC), Docker, Kubernetes,
etc, there are numerous problems in real-world development
that might dramatically increase the impact on resources or
render device unstable. In the paper we focus on Linux-based
resource-constrained systems, studying the impact of LXC on
MIPS CPU. Problems observed during the implementation of our
system were studied and solutions for some of them, specifically
slab overflow, provided. Our interpretation of obtained CPU,
file system and other measures implies a negligible difference
in comparison between host and isolated environment with only
TCP performance reduced by up to 8-9%.

Index Terms—virtualization, containers, Ixc, linux, resource-
constrained devices, embedded devices, internet of things, mips.

I. INTRODUCTION

Embedded devices are used worldwide. They include
routers, IoT/Smart Home devices, smartphones, players, set-
top boxes etc. The way to add functionality to such devices
hasn’t changed over years: there is always a possibility to write
a new module and build a firmware with it. It is assumed that
such module is written by firmware developer and therefore
a right place is taken in internal device infrastructure: it
doesn’t affect stability, performance, and security. The latter
statement can only be taken with a pinch of salt: how can
developers guarantee that there are no unforeseen outcomes
of such functionality?

Mentioned product release schema is quite common, but
what if software company decides to delegate some function-
ality to another company? Trusted partners can make a pack-
age nearly independent upon the generic firmware. Printing
server (such as CUPS'), File server (e.g. Samba?) serve as
good examples of almost independent components. However,
vulnerabilities such as SambaCry®> (a Samba vulnerability
discovered in 2017) leave device open to new threats just due
to external software.

Virtualization helps avoid these risks. Resource-constrained
devices usually have too little raw performance to run a

Uhttps://www.cups.org
Zhttps://www.samba.org
3https://www.samba.org/samba/security/CVE-2017-7494 html

full-fledged virtualization and containers have a remarkable
advantage over traditional virtualization methods. Container
word relates to the environment made of multiple technologies
inside the operating system kernel: PID namespaces [1], user
namespaces [2], network namespaces [3], mount namespaces,
etc. It is an isolated environment in which applications that are
running inside are locked from accessing external resources
unless explicitly or implicitly allowed doing so. Containers
are running on top of main system kernel heavily exploiting
isolation provided by it, which implies better performance and
lower resource consumption.

However, even lightweight virtualization provided by kernel
has serious limitations and consequences which must be ad-
dressed. In this paper we try to build a package virtualization
supporting system and study performance, stability, security,
networking and other effects of LXC (Linux Containers)
virtualization on a specific MIPS-based embedded device and
describe found problems with solutions to them.

A. Existing solutions

The first and the most obvious solution is Docker*. It is
performing very well on desktop-class operating systems and
more widespread embedded devices. Main disadvantages are
in its binary size, the tendency to use Go runtime and com-
pilers (that raises big questions about used toolchains, binary
size, “maturity” of compilers) and its official incompatibility
with MIPS processors.

Project balena® takes Moby project (the foundation for
Docker) and tries to improve its weakest points. It features
smaller single binary, multi-architecture support and more
effective use of network bandwidth. The latter is quite excep-
tional and interesting, but suggested binary size is still quite
big. MIPS architecture is also not supported officially.

If full-fledged virtualization is taken into account, then it
is reasonable to check officially recommended [4] hypervisors
for MIPS, such as prplHypervisor [5] (ex. Hellfire), SELTECH
Fexerox [6], OmniShield [7]. However, these solutions tend to
require more RAM, disk space and computational power for
running isolated kernel alongside with operating system files.

“https://www.docker.com
Shttps://github.com/resin-os/balena

13

B. Motivation

Existing solutions are more focused on more resource-rich
desktop-class platforms. Our main intention is a creation of
a system maintaining low overhead for boards used for more
specific purposes and therefore lacking resources. We would
like to run third-party packages of varying complexity while
having those applications integrate to the device platform in
a natural way. At the same time, the system we build is
quite minimalistic and straight-forward, which enables quicker
development of features.

While we test only MIPS devices, our expectation is that
overhead measurement result will be quite generic among
recent CPUs of various architectures. Still it requires an
additional verification.

C. Positioning

Our system is positioned at a higher level than LXC itself
since it deals with its setup rather than internal details. It shares
the level with Docker/balena, which are far more user-friendly
applications, but unlike containerd-based applications, we
don’t necessarily set up namespaces by our own means be-
sides quotas and access restriction details. Virtualization by
hardware or operating system level hypervisors is definitely
on a lower level than our system.

II. SYSTEM PROFILE

The key components of our system are:

1) CPU: MIPS architecture 600 MHz dual core (in CPU
parallel test similar single core CPU was used to ensure
no core load differences).

2) Kernel: Non-preemptive SMP Linux (exact version can’t
be disclosed).

3) RAM: 256MB.

4) ROM: 128MB.

5) 2.4GHz 802.11bgn [8] and 5GHz 802.11ac [9] Wi-Fi
antennas, traffic offloading hardware, cryptography ac-
celeration, USB ports.

III. CLASSIFICATION OF POINTS OF INTEREST

1) Kernel. Operating system kernel is a key component for
OS-level virtualization provider. We checked how it may
generally prevent developers from developing embedded
solutions running containers.

2) Latency. A device has to remain responsive no matter
how many applications are running and how much do
they exploit the CPU. Third-party applications mustn’t
spoil the main functionality.

3) Raw performance. Containers shouldn’t suffer from
decreased performance to extent set by quotas.

4) Network performance. Download and upload speeds
shouldn’t reduce significantly compared to host environ-
ment.

5) RAM usage. Main device’s activity shouldn’t be spoiled
dramatically by the memory-consuming applications.

6) File system. A device should handle a reasonable num-
ber of containers with bound packages. There must be a
possibility to avoid redundant copies of container files.

7) Fault tolerance. A device must be tolerant to boot fail-
ures and must be able to survive major panic situations.

8) Security problems (throughout the paper). Containers
shouldn’t affect host’s security.

9) Board temperature. Containers shouldn’t have any
influence on board temperature, nor they should lead
to overheating. We consider it dependent upon processor
load and power consumption. Since there is no intention
to perform any serious computations on our CPU, board
temperature wasn’t a target of our research.
Power consumption. Use of applications in containers
shouldn’t lead to increased power consumption com-
pared to runs within host namespace.
Container activation time This criterion is about time
to start the container, which might be crucial in case
of deeply distributed real-time computations. Our use
case didn’t imply any strict requirement for it, so it
wasn’t explored much. It will be indeed mentioned in
file system overview.

10)

1)

In the next section we present the solutions on these aspects,
show observed issues and suggest solutions.

IV. ASPECTS AND SOLUTIONS
A. Kernel

1) Embedded devices often can’t do their job without
hardware support: Operating system kernel has the largest
influence on performance, stability, memory usage and other
aspects. The main problem with embedded devices is in
their dependency upon hardware supplier. Many manufacturers
provide their own kernel for System-on-a-Chip (SoC) or some
special hardware. With resource-constrained devices the situ-
ation is even more serious: often the device has no technical
possibility to do its job without the help of hardware. In
our case networking and cryptography accelerators required
deep changes throughout the kernel to support shorter packet
flow paths altering networking and netfilter cores very heavily.
Justifying the need, CPU alone would have provided much less
network bandwidth. In our experiments, SGHz Wi-Fi antenna
supporting IEEE802.11ac standard [9] was generally providing
gigabit speeds, but could only demonstrate 40 mbit/s without
overflowing the slab caches (we’ll add on this problem later in
RAM section). Summing up, resource-constrained embedded
devices not only depend on the kernel for performance and
correct operability but also do not have any workarounds if
driver functionality does not work as expected.

2) Embedded devices have kernel version lag due to hard-
ware supply: Generally, there is nothing to worry about
regarding virtualization if patched kernel is based on recent
enough kernel and tested properly, however, in our case the
kernel was many versions behind the mainline: it was using
not the latest LTS kernel, but LTS with far enough End Of
Life time without any possibility to upgrade. Consequently,

14

any desire to use container functionality was hitting at rough
implementation in the kernel. To be specific, this version
didn’t have all required bits of user namespace support,
therefore the UID/GID mapping was largely unsupported,
making containers “privileged”. Such containers have ‘root’
user identical to the ‘root’ outside the container, and while it
had both advantages and disadvantages, it involved changing
the policy for packages to “trust only in specific cases”. Of
course, making a package out of Samba and other less-than-
trusted software was no longer an option until the update
from a hardware supplier. Migrating to the latest LTS was
not an option as well due to development time constraints.
We must also point out that the similar problem is common
with Android smartphones [10].

B. Raw performance

Raw performance is worth a special check on resource-
constrained embedded devices, a significant number of which
stick to low-end CPUs. The wide range of provided services
might require a reasonable computational power: VPN services
using packet encryption and decryption without hardware
cryptography acceleration, HTTPS servers (the most popular
use case in our opinion), and quite a few other possible needs.

1) CPU quotas: CPU limits set up using cgroups, allowing
containers to consume up to 50% of CPU, yet if responses
from a main program were getting too rare, software watchdog
was proactively decreasing the CPU share to some lower value
until reasonable response time was achieved. This scheme has
proven to be working well, however, a number of packages
required almost none computational power, so the scheme
wasn’t widely adopted.

Our formula (1) is mathematically trivial. Consider R,, a
normal response rate without additional load and R, to be a
current rate (both in responses per second). The upper thresh-
old T, for containers CPU share was 0.5 (which corresponds
to 50% of CPU time and to [, response interval), the lower
threshold 7; was 0.05 (5% of CPU time).

s=min(Tl+% (T, —T)), Ty) (D
n

Without min, s can potentially grow more than 7;,, which
never happened in our experience, but in our testing 50% was
always a reasonable upper limit to keep main device’s activity
running well.

2) Benchmarking methodology: nbench (the BYTE Maga-
zine’s BYTEmark) was used for benchmarking. When search-
ing for properly supported utility, other utilities such as
sysbench were tested, but most of them were problematic to
compile on MIPS due to extensive use of assembler inlines.
We consider nbench utility a reasonable choice because of its
good cross compilation ability and its focus on single-threaded
raw performance tests which fit our use case well.

CPU limits were disabled and the nbench executed 100
times in a row. The device was rebooted between tests.

Tests of CPU performance when running multiple bench-
mark processes were performed, but our prior investigation had

shown that nbench test isn’t much influenced by the number
of processes (this fact is indeed good for the sanity of the
first test). It was decided to measure time to complete the test.
Two or mote processes were run in a row, an average time was
recorded. To ensure no core load differences, another single
core board with similar characteristics was used. The same
software package was flashed to it.

C. Latency

Latency is the “interval between stimulation and response”.
When evaluating operating system latency, we consider latency
two-fold: scheduler latency and interrupt latency [11].

Scheduler latency is a time interval taken by an operating
system before performing scheduling. Scheduler’s response
delay is based on two main parameters: minimal granularity
and latency. Minimal granularity is a minimal time given to
a process to execute. Latency is a period in which all tasks
should run at least once. Consider 7" a number of executable
tasks, L is a defined latency, G is a minimal granularity.
Therefore scheduler period is based on the following formula.

L if T'<

Period = .
T -G ifT>

QI Qlt~

However, running non-preemptive kernel adds some com-
plexities to the scheduler. The kernel cannot interrupt the pro-
cess executing a kernel call until the return to user mode [11].
Therefore the absence of preemption brings additional security
consideration: there must not be any serious way to interact
with kernel besides regular kernel API. For example, if usage
of some device driver can lead to infinite loops or long
computations, such driver should not be allowed. libusb was
determined to be causing a loop when using DWC2 (Design-
Ware USB2 Core driver) driver®. The latter was actually fixed
in the upstream kernel.

Also supplied kernel might have binaries precompiled for a
preemptive kernel, but even if provided modules are recompil-
able, they still might have interlocking errors like missing spin
lock or dead lock. They might render the kernel unstable in
preemptive mode. So we had to stick with non-preemptive
mode and provided kernel. Instead, libseccomp7 was used
in order to close unneeded kernel API and AppArmor [12]
helped restrict access to all devices except really needed ones.

Interrupt latency is constructed of the time elapsed since the
interrupt is first fired and interrupt is started servicing. The
main contributors to this latency type are drivers disabling
interrupts for a long time. It means containers generally
contribute to interrupt latency in exactly the same way as the
host does, mostly by initiating driver activity via networking,
peripheral or any other kind of access. We haven’t compared
the difference between containers and host because there is
almost no differentiation between namespaces on driver level.

SDWC2 source code: https:/git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/drivers/usb/dwc2
7https://github.com/seccomp

15

D. Networking

1) Virtualization approaches: There are multiple ways to
get access to the network within the container. Methods were
generalized to avoid discussing unnecessary details.

« Shared networking. Applications in container deal with
the same set of network interfaces, routes, and rules.
In certain circumstances, container can control device
from networking stack. Guest can create netfilter rules
to redirect traffic intended for another application or
take control over internal APIs by manipulating IP ad-
dresses. Depending on the purpose, it might be desired
or undesired behavior, but a right practice would be to
avoid such networking type. To name few, one working
scheme to take over the device is to perform Man-in-
the-Middle [13] (MITM) attack against secure manage-
ment protocol unless certificate pinning is used. Another
possibility coming from MITM is an interception of
HTTP/HTTPS Web Interface traffic involving stealing of
end-user login/password.

« Virtual Ethernet (VETH) [14] devices might have per-

formance penalty mostly due to implementation-specific
problems of network namespaces. In our tests con-
tainers take a range of private IP addresses (such as
192.168.2.0/24) and DHCP server manages IP leasing,
although for rarely changing environment static IP ap-
proach can be even more effective.
Hardware traffic processing engines often have fast paths
for forwarded traffic, yet for Virtual Ethernet it will
still go through the main CPU, which will dramatically
decrease possible performance.

2) Benchmarking methodology: The overhead of containers
networking was measured accordingly. The existence of over-
head for containers and host in shared networking scenario
was checked. The test had been performed by using Raspberry
Pi 3 connected to our MIPS device by Ethernet cable. iperf
was used in server mode on Pi side and in client mode on a
device side. Shared networking setup for both host and guest
is demonstrated in Fig. 1.

For isolated networking, setup was harder to accomplish.
The main idea of whole VETH setup is to have a separate
networking namespace, so we couldn’t just repeat the first
scenario. With VETH interface added to the same bridge
as the generic LAN interface (Fig. 2) results were recorded
again. However, in our case packet acceleration hardware,
more specifically its driver, effectively broke TCP commu-
nication for the scenario. Once driver had been disabled we
measured performance again, even though the host side was
left essentially the same as in shared network test.

For TCP the following commands were issued:

Bridae « > eth _ LAN 5| Raspberry Pi
9 interface eth interface
[y A
A4 \ 4
iperf client iperf server
Fig. 1. Shared networking setup
iperf client
A
A
veth | Ixcbridge | Container
interface eth interface
Bridge
eth __LAN | Raspberry Pi
interface eth interface
A
A
iperf server

Fig. 2. Isolated networking setup

to avoid band overflow. Only server’s report was actually
evaluated.

iperf -s -p 5000 -u -w 10000KB #server
iperf -c 192.168.2.3 -p 5000 -u -t 30 \
-b 100MB -w 10000KB #client

iperf -s —-p 5000 #server
iperf -c 192.168.2.3 -p 5000 -t 30 #client

For UDP, the bandwidth parameter was reduced down to
100 mbit/s, and socket size set to 10000KB, automatically lim-
ited to 352KB. There was 5-second interval between attempts

E. RAM usage

During experiment RAM usage was generally good and to
some extent couldn’t be any better. The process running in
container consumed exactly the same amount of memory as
the one which was running outside the container. However,
measuring overhead in a kernel space is an additional problem
which requires a separate study.

1) RAM quotas: One of the interesting questions was what
the system would do when the generic RAM usage would have
risen above the bar so that it wouldn’t be possible to reclaim
any memory for host OS. RAM limit through cgroups was
generally a good way to ensure stability of the host in such
situation. Unlike CPU, RAM quota wasn’t something we could
change dynamically as swap partition was unused. If some
container would have used e.g. 30% of all RAM, we wouldn’t
have any way to squeeze it to 15% in the runtime. The
solution we used was simple: leave 30% of RAM to containers.
However, if generic free RAM counter would go below some
threshold (e.g. 30MB) for some reason, the kill command was
issued to the process in a container using the most of memory.
Obviously, this scheme is only correct when containers aren’t
ought to do any sensitive work. As our applications were using
a fair minimum of memory, this quota rule wasn’t widely
adopted.

16

Incoming traffic |

: An:nna . J Y

{ Packets are collected /

LAN

Forward to

Fetch packets
one by one

Fig. 3. Slab exploitation on non-preemptive kernel

2) Slab injection: In a quest for predictable and stable op-
erability of a device, yet another issue was faced. Linux kernel
uses slab subsystem [15] to decrease memory fragmentation
when allocating objects of the same size. The outcome of it
is barely visible, but if container gets a possibility to cause
a kernel to allocate virtual memory, it might get problematic
because the kernel cannot reclaim memory for slab in atomic
context (reclaiming is done for cached pages — those used
for file caching or other purposes yet essentially free). Drivers
sending a lot of packets in short time frames might be unable
to allocate memory, and further attempts to do so will lead
to hardware queue growth. One of such examples was found
in the Wi-Fi driver which under certain circumstances, such
as build configuration or due to technical need, could be
unable to pass traffic through fast path, and would have had to
allocate regular sockets (note that IEEE802.11ac [9] standard
extends the bandwidth to at least 433mbps ~ 54MB/s). The
exploitation method is shown in Fig. 3.

It was investigated that having a lot of empty slabs was
barely possible to achieve. Virtual memory tuning through
procfs means, such as /proc/sys/vm/min_free_kbytes [16]
and other entries, didn’t have any influence — Wi-Fi driver
could still overfill buffers and get caught in an infinite loop,
which would have caused system reboot after watchdog de-
tected the situation. Our solution included a technique called
slab injection, which was used to fulfill caches with objects
of the same size, selectively leaving one of the objects per
page. This resulted in increased capacity for selected types of
objects which couldn’t be gracefully controlled any other way.

Slab injection must be performed in the kernel mode. Con-
sider s an object size, p to be page size. To make the algorithm
more precise, it is desired to know the number of active and
the total number of objects in the cache (total —active shows
the number of free objects within existing slabs which can
make algorithm ineffective if real active # 0 and total # 0).
The method is shown in Fig. 4. We have also created a GitHub
project for it®.

This technique was proven to be working well on small size
objects, which were of primary interest, however it couldn’t
inject pages to slab caches with object size close to P, i.e.
when page can only fit one object of that size. For such cases
a patch disabling shrinking for certain user-defined caches was
created.

RAM (and to some extent ROM) usage was actually one
of reasons why Docker hadn’t been used. At the moment of
writing Docker was a multi-binary application written in Go.

8https://github.com/mmenshchikov/slab_inject

1: function PREFILLCACHE(cache, active, total)
2: c+1

3: for i + active,total do

4: O. + KMEM_CACHE_ALLOC(cache)
5: c+—c+1

6: end for

7: return O

8: end function

9: procedure FREEPREFILLED(cache, O)

10: c+1

11: while 3O, do

12: KMEM_CACHE_FREE(cache, O.)

13: c+—c+1

14: end while

15: end procedure
16: procedure INJECTPAGE(cache, active, total, s, p)

17: P + PREFILLCACHE(cache, active, total)
18: n < p/s

19: for i < 1,n do

20: O; + KMEM_CACHE_ALLOC(cache)
21: end for

22: for i+ 1,n—1do

23: KFREE(O;)

24: end for

25: FREEPREFILLED(cache, P)

26: end procedure

Fig. 4. Slab injection algorithm

Docker didn’t support MIPS in its build system and source
files. While the build support was fixed (it involved rewriting
of make files, adding .mips.go files, adding 32 bit support
whenever applicable, and fixing gccgo/go selector to choose
target compiler more properly), shared libraries couldn’t be
generated, so we ended up with Docker binaries bigger than
flash size. In our case, even if shared libraries could work,
Go runtime potentially could still be too big, leaving too large
working set for the running process. That were the reasons
Docker porting had been stopped.

F. Fault tolerance and debugging

The important part of any consumer device is a failure tol-
erance. While our main software goes through very intensive
testing proactively detecting both kernel crashes and userland
problems, third-party packages might be less tested and, what’s
even harder to check, built without proper knowledge of
hardware- or software-specific weaknesses leading to kernel
panics.

Our measures against runtime loops employ a watchdog
which operates at kernel and userland levels and proactively
reboots the device if any long-standing lockup is detected.

The other measure is a safe mode. If a device fails booting
for 5 times, the partition with external packages is not loaded
at all.

In all failure cases, the software collects configuration, core
files, and logs, compresses them to a single archive and makes

17

Private
space for
Container 1
Package 1 bind mount
devfs
content
Package 2 bind "
content moun sysfs
Container 1
File
System mount
tmpfs
Package N bind mount
procfs
content

Fig. 5. Container file system sources

it available for an investigation through service provider’s
means.

G. File system

1) Single repository policy: Lack of disk space was the
largest problem in our system. The task was to get a file system
(FS) configurator spawning FS with the following properties:

« Consistent.
o Allows no duplicates.
o Free of “DLL hell” and versioning problems.

Following qualities can only be achieved by using a single
repository policy. The software can not actually receive a new
software package without getting update availability status.
Once the new software is available and loaded, it is assumed
that the package is compatible with other packages installed
to the system. In our case, the presence of the Internet on the
device was essential to functionality and user was not given an
ability to install packages without it, so the system was quite
stable in that aspect.

2) System file security: Another important point is how
to deal with system files: there must be an ability to load
additional packages with libraries, yet packages must have no
capability to write to files they don’t own. A read-only bind
mount sounds like an adequate response to the problem.

Container file system is built from read-only bind mounts of
package content (allowing containers share packages), generic
file systems such as devfs, procfs, sysfs and tmpfs. Whole
container file system is physically located in a separate folder
inside package partition, so free space is directly taken from it.
The scheme of container file system sources is shown on the
Fig. 5. No problem had been found maintaining such a system,
nor any sign of security problems it may bring (besides the
case when such mount is read/write) was detected.

3) Performance and benchmarking methodology: Our file
system is an OverlayFS [17] built on top of squashfs [18]
(read-only part) and ubifs [19]. The dd utility was used to
measure the impact of containers on file system performance:

for i in ‘seqg 1 100 ; do

/tmp/busybox dd if=/dev/zero \
of=/test/file bs=4096 \
count=10000 2> write$i.txt

done

The following script was used for testing read performance.

for i in ‘seg 1 100' ; do

echo 3 > /proc/sys/vm/drop_caches

/tmp/busybox dd if=/test/file \
of=/dev/null bs=4096 \
count=10000 2> read$i.txt

done

Cache dropping was used to prevent the operating system
from filling file system caches, significantly improving perfor-
mance in consequent tests.

4) Container activation time: When the container is not
enabled and some application is about to start inside it,
activation is fairly quick: it is essentially the same as few
mount calls and fork with exec. However, if the container
is running and some package is ought to be bound to it, the
only option is to use shared folders to transfer bind mounts
from host to container. This process is indeed not that trivial,
big packages required up to few seconds to bind. Fortunately,
the whole scheme in which container can’t be shared among
packages however greatly minimizes the possibility of such a
long delay down to zero.

In case of Docker that time could be seriously different:
as docker images tend to include operating system templates,
mount time would be less proper.

H. Container API

Software packages should have an ability to perform system
tasks such as “stop container” request, cron-like application
start management, listing of computers in LAN and so on.

With container networking it could become troublesome to
distinguish the container from others and define access control
rules. Consider two use cases.

o Shared networking was determined to provide no real
possibility to determine the container, granted that con-
tainer always has a possibility to change its network
configuration. Spoofing at container’s side is generally
too trivial for real-world usage, it can be done through
iptables or ip.

e Isolated networking (through Virtual Ethernet (VETH)
devices) provides a full-fledged IP management. With
VETH the determination of IP spoofing within the con-
tainer is trivial just by comparing of IP addresses within
the container with predefined/leased value and specific
netfilter rules. Any newly created networking interface
won’t let the traffic flow outside the container.

Consequently, due to the usage of isolated networking, the
container API server had been set up to listen at specific VETH
interface.

18

TABLE 1
CPU PERFORMANCE MEASURES FOR HOST AND GUEST

TABLE III
NETWORK PERFORMANCE MEASURES FOR HOST AND GUEST

Test Avg.Host | Avg.Guest Diff. Diff. (%) Test Network | Avg.Host (mbit/s) | Avg.Guest (mbit/s)
Numeric Sort 157.8933 157.9457 —0.0524 —0.0333 iperf (TCP) Shared 93.26 85.14
String Sort 6.1465 6.1243 0.0222 0.3618 iperf (TCP) Isolated 86.75 79.64
Bitfield 50020270 | 50159090 —138820 —0.2775 iperf (UDP) Shared 94.92 95.22
FP Emulation 39.7115 39.7496 —0.0381 —0.096 ipert (UDP) Isolated 93.60 94.17
Fourier 51.0747 51.1460 | —0.0713 —0.1395
Assignment 2.8199 2.8622 | —0.0423 —1.5
IDEA 755.0028 | 753.0582 | 2.0346 0.2695 TABLE IV
Huffman 171.1702 | 171.0864 0.0838 0.049 FILE SYSTEM PERFORMANCE MEASURES FOR HOST AND GUEST
Neural Net 0.0635 0.0636 | —0.000095 | —0.1495
LU Decomp. 2.0483 2.0388 0.0095 0.4616
Test Avg.Host (MB/s) | Avg.Guest (MB/s)
dd write (no sync) 18.504 18.634
dd write (sync) 0.897 0.919
TABLE II dd read (dropped cache) 7.241 7.207
TEST TIME MEASURES IN PARALLEL MODE
Test Host (sec) | Guest (sec) | Diff. (sec) | Diff. (%) TABLE V
1 process 333.59 335.800 —2.210 —0.662 POWER CONSUMPTION MEASURES FOR HOST AND GUEST
2 processes 669.86 668.345 1.515 0.226
4 processes 1338.323 1337.288 1.035 0.077 § §
8 processes 2676.929 | 2681.940 | —5.011 | —0.187 Test Host (Watts, diff.) | Guest (Wats, diff.)
nbench (1 process) —0.1 /0.3 —0.1 /0.3
nbench (2 processes) —0.1 /1.2 —0.1 /1.2
nbench (4 processes) —0.1 /1.2 —0.1 /1.2
. nbench (8 process —0.1 /12 —0.1 /12
1. Power consumption perf @p) 08 ; 09 08 ; 99
Power consumption was measured during parallel runs of | iperf+nbench 0.6 / 0.6 —

nbench utility for both dual core and single core variants
of MIPS CPU. The biggest power consumers such as Wi-Fi
antenna were disabled, power consumption in an idle state
was measured. Absolute watt numbers are irrelevant: since our
hardware is not publicly available, it can’t serve as a baseline
for future tests except ours, the difference between power
consumption in an active state and the idle state is provided.
Of course, since idle state boundary might be floating, it was
measured before every test.

V. RESULTS
A. CPU performance

Average results (calculated using bytemark_counter utility®)
are shown in Table I and Table II. All results were uploaded
to GitHub'? for convenient interpretation.

In 60% of tests the guest is faster than the host (we give our
explanation of this fact later). One test shows difference more
than 1% (1.5%), while in 90% of tests measures in absolute
numbers are well lower than 0.5%. 30% of numbers are even
lower than 0.3. The maximum difference is 1.5%, it is reached
in assignment test.

In the second test results seem to be more sporadic, ranging
from 0.662% win of the host over the guest to 0.226% win of
the guest. It is notable that there is no generic trend.

B. Network performance
Raw results had been uploaded to GitHub!'. Average results

are shown in Table III.

9https://github.com/mmenshchikov/bytemark_counter
10nttps://github.com/mmenshchikov/bytemark_counter_results
Mhttps://github.com/mmenshchikov/Ixc_iperf_comparison

TCP tests for the guest show 91.29% and 91.8% of host’s
performance. In UDP tests host gets 99.68%/99.39% of guest’s
speed. While not outlined, the impact on CPU was comparable.

C. File system performance

Average results'? are demonstrated in Table IV.

The difference is low: 0.13 MB/s, 0.022 MB/s and 0.034
MB/s. Therefore the maximum difference is about 130 KB/s
(which is alone not quite small, but incomparable to generic
performance).

D. Power consumption

Average results are shown in Table V. Note that we show
results for single core and dual core counterparts in form single
core result / dual core result. iperf was tested in both shared
and isolated modes, but results were mixed because they don’t
differ.

Overall, no measurable difference in power consumption
between host and guest was found. Two and more processes
indeed had shown the rise of dual core processor consumption
by 0.9W.

VI. DISCUSSION

A. Benchmark

Our interpretation of results led us to a conclusion that
the impact of container-based virtualization is low. Raw CPU
performance is better for a guest than for a host, which
contradicts to common sense (although the similar statistics

2https://github.com/mmenshchikov/Ixc_dd_comparison

19

is provided in another research [20]). In our understanding, it
is scheduling which is to blame since scheduler’s choice of
quantum might substantially differ for the process in another
PID namespace, and we tend to believe the implicit CPU share
between namespaces is quite fair. Another possible reason
might come from a difference between device runs, as the
one added by varying service start time, but it shouldn’t have
any serious impact.

While generally incomparable, dd write test (unsynchro-
nized) outperforms read test solely due to writeback mecha-
nism. A synchronized test is slower due to writethrough, the
direct write to flash. The filesystem cache was dropped before
every reading test, so the result can be considered “pure”.
Since the difference is too small, we assume that containers
don’t add any serious overhead for the file system in our use
case.

As for network performance, UDP protocol tests demon-
strate guest outperforming host — it looks like an effect
of scheduling. At the same time TCP protocol is generally
more consuming and it adds some overhead to container
environment (about 8-9% of host speed).

Power consumption for host and containers was equal. It
didn’t come as surprise, our theoretical understanding also
implied this. It is very notable that for single core processor the
power consumption is even less for nbench testing. Scheduling
and different computational power needed for specific pur-
poses seem to be the reasons for it. Dual core processor faced
the rise of power consumption when second core woke up. In
general, this result shows there is no any difference in energy
consumption between host and lightweight containers, granted
they don’t bring any additional computational costs besides
ones introduced by kernel namespaces.

Overall we can conclude that advantages of containers
overweigh negative impact of additional namespaces in the
kernel. File system performance and raw CPU performance
are almost unaffected by it. Network performance went down,
however, 8-9% is a reasonable price for extra security and
comfort. Power consumption doesn’t rise. Therefore Linux
Containers technology is mature enough for use on resources
constrained devices according to our tests.

Generic latency, network latency, temperature and other
important points were overlooked due to low interest. Those
are definitely worth examination in the future.

B. System design

The suggested system design works well for our use cases,
however, there are problems in each core aspect which might
be crucial for specific purposes. The system is not well-
protected against kernel lockups: maintainers must be extra
careful when allowing specific kernel APIs or access to ker-
nel drivers. That’s mostly vendor-specific limitation than the
design flaw. CPU quotas are operating properly, but a stricter
control over container’s quotas might be needed: otherwise
limits might get reduced too much based on a very imprecise
measure of “application response time”. At the same time,

RAM quotas aren’t flexible at all, and the solution for this
problem is unclear.

File system architecture is providing low overhead (as seen
in tests), however, it is still important to audit overlayfs for
possible inode problems [21]: there is a strong need to know
it for sure if there is an intention to build reliable platform.

Container API needs strict enforcement of IP addresses
inside the container. Our system doesn’t have an access restric-
tion for certain containers, so this is again not a problem. If it
was the case, we could have employed some other mechanism
for communication, e.g. UNIX sockets.

VII. RELATED WORK

The container-based virtualization was first explored
with [22] work, continued to embedded devices with
Cells [23], the virtualization system for Android smartphones.

Service-hosting gateways [24] were one of the first attempts
to define requirements and build a proof-of-concept of a more
constrained device with containers running. A. Krylovskiy [20]
examines containers on Raspberry Pi, the embedded device
built upon ARM CPU. We expand the topic further by using
MIPS CPU with even fewer resources available. The notable
thing is that a lot of studies focus on proof-of-concepts,
while our approach was tested in production. One of the
other examples of a system used in real-world applications
is resinOS [25], but it is still tailored for more resource-rich
devices, most notably due to more RAM and disk space.

ParaDrop [26] is a multi-tenant platform for third-party
services on wireless gateways. While ParaDrop’s goal is to
“push services from data centers to the network edge” [27], our
goal differs in a way to allow partners further extend device’s
software package with the ease and adequate level of security.

Paper [28] provides a high-level overview of lightweight
container problematics on IoT devices, which we partially
cover.

The framework for block-streaming application execu-
tion [29] demonstrates a method of loading software binary
chunks to resource-constrained hardware. Our device is not
that limited by RAM and ROM, it is running Linux and full-
fledged executable files, yet it provides a foundation for even
more constrained devices.

Aimed at performance, another research [30] is concentrat-
ing on Raspberry Pi and Odroid (ARM) single-board comput-
ers running Docker images. Generally, our study differs from
it as we are not focused on performance but rather building a
system from scratch. Also, all tested systems are considerably
faster and have a lot more built-in RAM. Obtained results
are indeed similar, showing a negligible impact of container
virtualization on these systems.

As for full-fledged virtualization, many efforts [31]-[33]
had been put into making it work for embedded MIPS
CPUs in various ways. Moratelli, Zampiva, and Hessel [31]
presented an embedded hypervisor for real-time execution of
applications. Low overhead was observed for single processor
platforms, and a certain penalty detected for multiprocessor
systems. There were updates to the research, e.g. [34], dealing

20

with hardware-assisted interrupt delivery. The approach looks
promising, but just as any virtualization requires slightly more
disk space and computational power. KVM-Loongson [33]
authors develop processors based upon MIPS with an efficient
hypervisor, with only I/O being a serious bottleneck. Still it
is a hardware solution, which is not what most users can
integrate. Hypervisor OmniShield [7] is CPU vendor-backed,
so it is assumed to have a good support in recent MIPS
processors. Also, it brings improvements to hardware-based
domain isolation. All it makes it a good alternative once
sufficient resources are present.

VIII. CONCLUSION AND FUTURE WORK

We managed to create a system for running containers
on resource-constrained embedded devices. Working design
for different aspects was suggested. Major problems found
during the development process, namely slab overflow, packet
acceleration engine troubles, container API considerations,
were explained. We compared the performance of host and
containers and found the difference in most of the tests
quite negligible with host winning only in TCP networking
tests. Speed test result is confirming that LXC environment is
ready for container-based third-party applications. Power con-
sumption measurement doesn’t show any difference between
containerized and native environments.

Our future work would be concentrated on further exami-
nation of container capabilities on embedded devices, as well
as the practical work towards improving disk space and RAM
usage. Additionally, we have an intention to make a security
audit of the described system.

REFERENCES

[1] “Namespaces in operation, part 3: PID namespaces,” (Last accessed
12-April-2018). [Online]. Available: https://lwn.net/Articles/531419

[2] “Namespaces in operation, part 5: User namespaces,” (Last accessed
12-April-2018). [Online]. Available: https://lwn.net/Articles/532593

[3] “Namespaces in operation, part 7: Network namespaces,” (Last accessed
12-April-2018). [Online]. Available: https://lwn.net/Articles/580893

[4] “The MIPS architecture and virtualization,” (Last accessed 12-
April-2018). [Online]. Available: https://www.mips.com/blog/the-mips-
architecture-and- virtualization

[5] A. Aguiar and F. Hessel, “Virtual hellfire hypervisor: Extending hellfire
framework for embedded virtualization support,” in 2011 12th Interna-
tional Symposium on Quality Electronic Design, March 2011, pp. 1-8.

[6] “SELTECH debuts new FEXEROX hypervisor for MIPS.”
[Online]. Available: https://www.mips.com/blog/seltech-debuts-new-
fexerox-hypervisor-for-mips-mcus

[7] “Parallelization, virtualization, security for smart gate-
ways and smart ”things”.” [Online]. Avail-
able: https://www.mips.com/blog/parallelization- virtualization-security-
for-smart- gateways-and-smart-things

[8] M. Gast, 802.11n: A Survival Guide: Wi-Fi Above 100 Mbps.
Media, 2012.

, 802.11ac: A Survival Guide: Wi-Fi at Gigabit and Beyond.

O’Reilly Media, 2013.

“Ars Technica: Android execs get technical talking updates,

Project Treble, Linux, and more,” (Last accessed 12-April-2018).

[Online]. Available: https://arstechnica.com/gadgets/2017/05/ars-talks-

android- googlers-chat-about-project-treble-os-updates-and-linux

M. Bauer, “Paranoid penguin: an introduction to Novell AppArmor,”

Linux Journal, vol. 2006, no. 148, p. 13, 2006.

O’Reilly

[9]
[10]

[12]

[11]
[13]
[14]

[15]
[16]
(17]

(18]

[19]

[20]

[21

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

21

P. Raghavan, A. Lad, and S. Neelakandan, Embedded Linux System
Design and Development. CRC Press, 2005.

Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of cryptogra-
phy and security. Springer, 2011, pp. 759-759.

S. Subramanian and S. Voruganti, Software-Defined Networking (SDN)
with OpenStack. Packt Publishing, 2016.

B. Fitzgibbons, “The Linux slab allocator,” 2000.

D. Bovet and M. Cesati, Understanding The Linux Kernel.
Associates Inc, 2005.

“Overlay Filesystem,” (Last accessed 12-April-2018). [On-
line]. Available: https://www.kernel.org/doc/Documentation/filesystems/
overlayfs.txt

P. Lougher and R. Lougher, “SQUASHFS - a squashed read-only
filesystem for Linux,” 2006.

A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif, “Abstract spec-
ification of the UBIFS file system for flash memory,” in International
Symposium on Formal Methods. Springer, 2009, pp. 190-206.

A. Krylovskiy, “Internet of things gateways meet linux containers:
Performance evaluation and discussion,” in 2015 IEEE 2nd World Forum
on Internet of Things (WF-10T), Dec 2015, pp. 222-227.

“OverlayFS and containers.” [Online]. Available:
https://events.static.linuxfound.org/sites/events/files/slides/overlayfs-
and-containers-vault-2017-miklos-vivek.pdf

S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of zap: A system for migrating computing environments,”
ACM SIGOPS Operating Systems Review, vol. 36, no. SL, pp. 361-376,
2002.

C. Dall, J. Andrus, A. Vant Hof, O. Laadan, and J. Nieh, “The
design, implementation, and evaluation of cells: A virtual smartphone
architecture,” ACM Transactions on Computer Systems (TOCS), vol. 30,
no. 3, p. 9, 2012.

J. Whiteaker, F. Schneider, R. Teixeira, C. Diot, A. Soule, F. Picconi,
and M. May, “Expanding home services with advanced gateways,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 5, pp. 37-43,
2012.

“Introducing resinOS 2.0, the host OS to run containers on
embedded devices,” (Last accessed 12-April-2018). [Online]. Available:
https://resin.io/blog/introducing-resinos/

D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: a multi-tenant plat-
form to dynamically install third party services on wireless gateways,”
in Proceedings of the 9th ACM workshop on Mobility in the evolving
internet architecture. ACM, 2014, pp. 43-48.

P. Liu, D. Willis, and S. Banerjee, “ParaDrop: Enabling Lightweight
Multi-tenancy at the Network’s Extreme Edge,” in 2016 IEEE/ACM
Symposium on Edge Computing (SEC), Oct 2016, pp. 1-13.

R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, “Consoli-
date iot edge computing with lightweight virtualization,” IEEE Network,
vol. 32, no. 1, pp. 102-111, Jan 2018.

X. Peng, J. Ren, L. She, D. Zhang, J. Li, and Y. Zhang, “Boat: A
block-streaming app execution scheme for lightweight iot devices,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1-1, 2018.

R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, vol. 5,
pp. 8835-8850, 2017.

C. Moratelli, S. Zampiva, and F. Hessel, “Full-virtualization on mips-
based mpsocs embedded platforms with real-time support,” in Proceed-
ings of the 27th Symposium on Integrated Circuits and Systems Design.
ACM, 2014, p. 44.

C. Moratelli, S. Johann, and F. Hessel, “Exploring embedded systems
virtualization using mips virtualization module,” in Proceedings of the
ACM International Conference on Computing Frontiers. ACM, 2016,
pp. 214-221.

Y. Tai, W. Cai, Q. Liu, and G. Zhange, “Kvm-loongson: An efficient
hypervisor on mips,” in 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, July
2013, pp. 1016-1022.

C. Moratelli, F. Hessel et al., “Hardware-assisted interrupt delivery op-
timization for virtualized embedded platforms,” in Electronics, Circuits,
and Systems (ICECS), 2015 IEEE International Conference on. 1EEE,
2015, pp. 304-307.

Oreilly &

