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ABSTRACT 

In this paper, we make two proposals to speed up listwise 

collaborative filtering and improve its accuracy. The first is 

to speed up computation by only using a subset of the rating 

information (the high ratings). The second is to improve 

accuracy using temporary ratings that estimate the rating 

scores that neighboring users are not rating. Experiments 

using MovieLens datasets (1M and 10M) demonstrate that 

these proposals effectively reduce computation time about 

1/50 and improve accuracy 2.22% compared with ListCF, a 

well-known listwise collaborative filtering algorithm. 
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INTRODUCTION 
In recent years, due to the development of the Web, 

recommender systems have become increasingly important 

in various situations; many researchers are now focusing on 

recommendation technologies and systems [2,6,7,9,10]. 

Collaborative filtering (CF) is a widely used 

recommendation algorithm that is based on the similarity 

between users or items, as calculated from a user and rating 

matrix. Various CF algorithms have been proposed, and 

they can be divided into two types: rating-oriented [6,9] and 

ranking-oriented [2,7,10], as shown in Fig. 1. Rating-

oriented CF algorithms, such as item-based CF [9], predict 

the ratings of items that have not been evaluated by users 

and make recommendations by calculating the similarity 

between users or items. On the contrary, ranking-oriented 

CF uses user similarity to predict the item ranking and 

recommends items based on this. We will focus on this 

method due to its performance. Ranking-oriented CF can be 

further divided into two types: pairwise ranking-oriented 

[7,10] and listwise ranking-oriented [2]. Pairwise ranking-

oriented CF predicts the order of pairs of items but requires 

large computation time.  

 

Figure 1. Collaborative filtering classification 

In contrast, listwise ranking-oriented CF predicts the order 

of the complete list of items. Although this produces better 

accuracy than a typical pairwise CF algorithm, calculating 

the required similarities is time-consuming and there is 

room to improve the ranking accuracy. In this paper, we 

propose an efficient listwise ranking-oriented CF algorithm 

that is both faster and has higher ranking accuracy. 

The proposed method implements two improvements. First, 

when calculating the similarity between users, it only 

considers the highest-rated items, greatly speeding up the 

calculation. Second, it introduces temporary ratings when 

making ranking predictions. Experimental comparisons 

using MovieLens 1M (6,040 users, 3,952 movies, 

1,000,209 ratings) and 10M (71,567 users, 10,681 movies, 

10,000,054 ratings) confirm that the proposed method 

reduces about 1/50 computation time of similarity and 

improves 2.22% ranking accuracy than a conventional CF 

algorithm. 

RELATED WORK 

Overview of ListCF 

In this section, we give an overview of ListCF [2], a well-

known ranking-oriented listwise CF algorithm. ListCF 

proceeds in two phases, first calculating the similarities 

between users and then predicting ranks for the target user’s 

unrated items. The first phase is based on a probability 

distribution of item permutations, calculated by combining 

the Plackett–Luce [8] and top-k probability [1] models and 

finding each user’s neighboring users. 
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Similarity calculation 

In ListCF, the similarity of a pair of users 𝑢  and 𝑣  is 

calculated based on a probability distribution of item 

permutations for each user, calculated using the Plackett–

Luce model [8], which is a representative permutation 

probability model. The flow of similarity calculation is 

shown on the left of Fig. 2 and Fig. 3. Let the set 𝐼 =
{𝑖1, 𝑖2, ⋯ , 𝑖𝑛}  of items 𝜋𝑖 = (𝜋1

𝑖 , 𝜋2
𝑖 , ⋯ , 𝜋𝑛

𝑖 ) (∈ 𝐼𝑛)  be an 

ordered list where 𝜋𝑗
𝑖 ∈ 𝐼  and 𝜋𝑗

𝑖 ≠ 𝜋𝑘
𝑖  if 𝑗 ≠ 𝑘 , and let 

Ω𝐼  (⊂ 𝐼𝑛) be the set of all possible permutations of 𝐼. Given 

the item ratings (𝑟
𝜋1
𝑖 , 𝑟𝜋2𝑖

, ⋯ , 𝑟𝜋𝑛𝑖 )  (e.g., on a real interval 

in the case of MovieLens [1,5]), where 𝑟
𝜋𝑗
𝑖  is the rating 

score of 𝜋𝑗
𝑖, the probability of 𝜋𝑖, 𝑃(𝜋𝑖), is defined using an 

increasing and strictly positive function 𝛷(∙) ≥ 0  as 

follows: 

𝑃(𝜋𝑖) =∏
𝛷 (𝑟

𝜋𝑗
𝑖)

∑ 𝛷 (𝑟𝜋𝑘
𝑖 )𝑛

𝑘=𝑗

𝑛

𝑗=1

 (∈ [0,1]),                 (1) 

where the function is defined as 𝛷(𝑟) = 𝑒𝑟. However, this 

requires us to consider 𝑛! different permutations of the 𝑛 

items, which would take a long time to compute. To speed 

up the computation, the top-k probability model 𝑔𝑘  [1] is 

introduced as follows: 

𝑔𝑘(𝑖1, 𝑖2, ⋯ , 𝑖𝑘)  = 

{𝜋𝑙|𝜋𝑙 ∈ Ω𝐼 , 𝜋𝑗
𝑙 = 𝑖𝑗 , 𝑗 = 1,⋯ , 𝑘, 𝑙 = 1,⋯ ,

𝑛!
(𝑛 − 𝑘)!

} 

(⊂ Ω𝐼),                                         (2) 

and the probability of the top-k permutation is calculated as 

𝑃(𝑔𝑘(𝑖1, 𝑖2, ⋯ 𝑖𝑘)) =∏
𝛷 (𝑟𝜋𝑗)

∑ 𝛷(𝑟𝜋𝑙)
𝑛
𝑙=𝑗

𝑘

𝑗=1

(∈ [0,1]),  

∀𝑗 = 1,⋯ , 𝑘 ∶  𝜋𝑗 = 𝑖𝑗 .                          (3) 

Let 𝑔𝑘
𝐼  (⊂ Ω𝐼) be the set of top-k permutations of 𝐼, and let 

the probabilities of these permutations form the probability 

distribution. Then, define 𝐼𝑢,𝑣 (⊂ 𝐼) as the set of items rated 

 

Figure 2. Similarity calculation: conventional ListCF (left), 

proposed method (right).  

 

Figure 3. Procedure for similarity calculation of conventional 

ListCF. 

 by users 𝑢 and 𝑣, and 𝑃𝑢 and 𝑃𝑣  (∈ [0,1]) as the probability 

distributions over 𝑔𝑘
𝐼𝑢,𝑣  (⊂ Ω𝐼𝑢,𝑣) calculated by Eq. (3) using 

the users’ rating scores. The similarity score is now 

obtained from the Kullback–Leibler (KL) divergence [5] 

calculated from 𝑃𝑢  and 𝑃𝑣 . Given a pair of users 𝑢 and 𝑣, 

the KL divergence of 𝑃𝑢 and 𝑃𝑣 is defined as 

𝐷𝐾𝐿(𝑃𝑢 ∥ 𝑃𝑣) = ∑ 𝑃𝑢(𝑔) 𝑙𝑜𝑔2 (
𝑃𝑢(𝑔)

𝑃𝑣(𝑔)
)

𝑔∈𝑔𝑘
𝐼𝑢,𝑣

.             (4) 

The KL divergence is asymmetric, but ListCF defines the 

similarity 𝑠(𝑢, 𝑣)(∈ (−∞, 1 ])  of users 𝑢  and 𝑣  to be 

symmetric as follows: 

𝑠(𝑢, 𝑣) = 1 −
1

2
[𝐷𝐾𝐿(𝑃𝑢 ∥ 𝑃𝑣) + 𝐷𝐾𝐿(𝑃𝑣 ∥ 𝑃𝑢)].     (5) 

If the set 𝐼𝑢,𝑣 only includes a few items, the similarity will 

be high, so this is relaxed by multiplying by the similarity 

function by min{𝐼𝑢,𝑣 𝑐⁄ , 1}, where 𝑐  is a threshold. Each 

user’s neighboring users can then be found from the 

similarities calculated using Eqs. (3)–(5). 

Ranking prediction 

The flow of ranking prediction is shown on the left of Fig. 4. 

Let U be the set of users, 𝑁𝑢(⊂ 𝑈) be the set of the user 𝑢’s 

neighbors and 𝑇𝑢(⊂ 𝐼 ∖ 𝐼𝑢) be the set of items whose ranks 

are to be predicted. Let �̂�𝑢 (∈ [0,1])  be the probability 

distribution of the top-k permutations 𝑔𝑘
𝑇𝑢  (⊂ Ω𝑇𝑢)  of 𝑇𝑢 , 

written as 

�̂�𝑢(𝑔) =
𝜑𝑢,𝑔

∑ 𝜑𝑢,𝑔′𝑔′∈𝑔𝑘
𝑇𝑢

,                         (6) 

where {𝜑𝑢,𝑔|∀𝑔 ∈ 𝑔𝑘
𝑇𝑢} are unknown variables assigned to 

the top-k permutations. In ListCF, the cross entropy is used 

as a loss function for prediction. Consider a target user 𝑢, 

for whom you want to rank a set of items 𝑇𝑢 , and a 

neighboring user 𝑣 ∈ 𝑁𝑢. Let the set of items rated by 𝑣 be 

𝐼𝑣 , with 𝑇𝑢,𝑣 = 𝑇𝑢 ∩ 𝐼𝑣 , and 𝑔𝑘
𝑇𝑢,𝑣  (⊂ Ω𝑇𝑢,𝑣)  be the set of 

top-k permutations of 𝑇𝑢,𝑣. The cross entropy is calculated  



 

Figure 4. Ranking prediction: conventional ListCF (left), 

proposed method (right). 

using probability distributions �̂�′𝑢  and 𝑃′𝑣  over 𝑔𝑘
𝑇𝑢,𝑣

 as 

follows: 

𝐸(�̂�′𝑢 , 𝑃′𝑣) = − ∑ 𝑃′𝑣(𝑔) log2 �̂�′𝑢(𝑔)

𝑔∈𝑔𝑘
𝑇𝑢,𝑣

.     (7) 

ListCF makes predictions by minimizing the following 

cross entropy weighted sum: 

argmin
𝜑𝑢

∑ 𝑠(𝑢, 𝑣) ∙ 𝐸(�̂�′𝑢 , 𝑃
′
𝑣),

𝑣∈𝑁𝑢

                (8) 

s. t  ∀𝑔 ∈ 𝑔𝑘
𝑇𝑢 ∶  𝜑𝑢,𝑔 ≥ 0. 

The objective function 𝐹(𝜑𝑢) in Eq. (8) is then transformed 

as follows, using Eqs. (5) and (7): 

𝐹(𝜑𝑢) = ∑ 𝑠(𝑢, 𝑣)

𝑣∈𝑁𝑢

∙ 

∑ 𝑃′𝑣(𝑔) [log2 ( ∑ 𝜑𝑢,𝑔′

𝑔′∈𝑔𝑘
𝑇𝑢,𝑣

)− log2(𝜑𝑢,𝑔)]

𝑔∈𝑔𝑘
𝑇𝑢,𝑣

    (9) 

Equation (9) is optimized by the gradient descent method. 

Partially differentiating F with respect to 𝜑𝑢,𝑔, we obtain 

    
𝜕𝐹

𝜕𝜑𝑢,𝑔
= 

∑
𝑠(𝑢, 𝑣)

ln 2 ∙ ∑ 𝜑𝑢,𝑔′𝑔′∈𝑔𝑘
𝑇𝑢,𝑣

𝑣∈𝑁𝑢

−
∑ 𝑠(𝑢, 𝑣)𝑃′𝑣(𝑔)𝑣∈𝑁𝑢

ln 2 ∙ 𝜑𝑢,𝑔
.     (10) 

For a given learning rate 𝜂, 𝜑𝑢,𝑔 is updated as follows: 

𝜑𝑢,𝑔 ← 𝜑𝑢,𝑔 −  𝜂
𝜕𝐹

𝜕𝜑𝑢,𝑔
.                         (11) 

PROPOSED METHOD 

Rapid similarity calculation using only high ratings 

Conventional ListCF is slow because it has to calculate 

similarities using all rating scores. To speed up computation, 

we now  

 

Figure 5. Procedure of similarity calculation of proposed 

method. 

propose a method of calculating user similarity by focusing 

only on high ratings. The flow of similarity calculation is 

shown on the right of Fig. 2 and Fig.5. Let 𝐻𝑢  (⊂ 𝐼𝑢) be the 

set of items that were rated highly by the target user 𝑢, and 

𝐻𝑢,𝑣 (⊂ 𝐼𝑢,𝑣)  be the set of items that both 𝑢  and 𝑣  rated 

highly. Given the user and rating matrix, we define the 

similarity between 𝑢 and 𝑣 as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) =
|𝐻𝑢,𝑣|

|𝐻𝑢|
 (∈ [0,1]),                (12) 

where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣)  is asymmetric. We define 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) = 0  if 𝑢 = 𝑣  not to add him/herself to 

neighborhood users when predicting each user’s ranking. In 

conventional ListCF, based on the top-k probability model, 

the time complexity is 𝑛! (𝑛 − 𝑘)!⁄ , which is smallest 

(i.e.,  𝑛 ) when 𝑘 = 1 . As the proposed method’s time 

complexity is 𝑛, it is never worse than that of conventional 

ListCF, and often better. Changing how the high ratings are 

determined changes the ranking accuracy, as explained in 

the experimental section. 

Improving ranking accuracy using temporary ratings 

We also propose to improve the ListCF’s ranking accuracy 

by introducing temporary ratings. In ListCF, the cross 

entropy in Eq. (7) is calculated from the probability 

distribution of 𝑔𝑘
𝑇𝑢,𝑣

, the set of permutations of 𝑇𝑢,𝑣 . 

However, optimizing the objective function may fail if 𝑇𝑢,𝑣 

has too few elements, e.g., if it only includes one element 

and that item received a low rating from the neighboring 

user 𝑣 . In this case, despite the item’s low rating, 

optimization generates a high item rank, which is unhelpful 

for user 𝑢. Fig. 6 shows how the probability distribution for 

target user 𝑢’s unrated items before optimization (upper) 

and neighboring user 𝑣’s distribution (middle) give a graph 

like the one on the lower. Item 1 was given a low rating by 

𝑣 but, since no other items were rated, it is guaranteed to 

top the rankings. As a result, 𝑢’s probability distribution is 

updated to place item 1 at a higher position. The proposed 

method therefore makes ranking predictions after giving 

temporary estimated ratings to items that were not rated by 

the neighboring user 𝑣. The flow of ranking prediction is 

shown on the right of Fig 4 and Fig.7. Let 𝑟𝑢,𝑖 be the rating 

given by user 𝑢 to item 𝑖, and let unrated items have a score 

of zero.  



 

Figure 6.  Examples of unsuitable parameter updates that 

occur when users have only one low-rated item in common. 

The horizontal axis represents the item number. 

 

Figure 7. Procedure for calculating temporary ratings. 

For a given neighborhood user 𝑣 ∈ 𝑁𝑢  and set 𝑇𝑢 =

{𝑡1,𝑡2, ⋯ , 𝑡𝑝} (⊂ 𝐼 ∖ 𝐼𝑢)  of items not rated by 𝑢 , 𝑣 ’s 

temporary ratings are defined as follows: 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦  𝑟𝑎𝑡𝑖𝑛𝑔(𝑣, 𝑡𝑗) = 

{
 
 

 
 𝑟𝑣,𝑡𝑗           (if 𝑟𝑣,𝑡𝑗  is nonzero)             

   
∑ 𝑟𝑣′,𝑡𝑗𝑣′∈𝑁𝑣

|𝑁′
𝑣,𝑡𝑗
|

 (if 𝑟𝑣,𝑡𝑗  is zero) , (𝑗 = 1,⋯ , 𝑝),
        (13) 

where 𝑁′𝑣,𝑡𝑗  is the set of 𝑣’s neighbors 𝑣′ ∈ 𝑁𝑣  who have 

rated item 𝑡𝑗 . If none of 𝑣’s neighbors have rated 𝑡𝑗 , the 

temporary rating will still be zero. In that case, we can 

obtain a nonzero temporary rating by calculating the 

temporary ratings 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦  𝑟𝑎𝑡𝑖𝑛𝑔(𝑣′, 𝑡𝑗)  for each 

neighbor 𝑣′ of 𝑣. By calculating the cross entropy of Eq. (7) 

using these temporary ratings (Eq. (13)) and replacing 

𝑠(𝑢, 𝑣) in Eq. (8) with 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) (Eq. (12)), ranking 

predictions can then be made in the same way as for ListCF 

by using Eqs. (8)–(11). Calculating temporary ratings 

allows the neighbors’ probability distributions in situations 

such as Fig. 6 to be more reasonable. As a result, since the 

parameters are less frequently updated in an undesirable 

way, this should improve the ranking accuracy. 

EXPERIMENTAL EVALUATION 

Overview of the experiment 

To confirm the effectiveness of the two proposed changes, 

we experimentally compared the methods in terms of 

computation time and ranking accuracy using the 

MovieLens 1M and 10M datasets, details of which are 

shown in Table 1. We selected 10 sets of ratings from each 

user’s rating information to create the test dataset and used 

the rest as training data. In this experiment, since it is 

shown that the ranking accuracy does not improve greatly 

by increasing the value of k [2], we compared the proposed 

method with conventional ListCF based on the top-1 

probability model, as in [3,4]. Also, the threshold 𝑐 of the 

similarity function is 300. The normalized discounted 

cumulative gain (NDCG) metric was used to assess ranking 

prediction accuracy. The NDCG value, considering the top 

𝑛 predicted rankings for user 𝑢, is defined as follows: 

𝑁𝐷𝐶𝐺𝑢@𝑛 = 𝑍𝑢∑
2𝑟𝑢

𝑝

− 1

log2(1 + 𝑝)

𝑛

𝑝=1

,              (14) 

where 𝑍𝑢  is a normalization term that ensures the NDCG 

value of the correct ranking is 1 and 𝑟𝑢
𝑝

 is the rating of the 

pth-ranked item for user 𝑢. For a set of users 𝑈, the overall 

NDCG@n score is calculated as follows: 

𝑁𝐷𝐶𝐺@𝑛 =
1

|𝑈|
∑𝑁𝐷𝐶𝐺𝑢@𝑛

|𝑈|

𝑢=1

.                (15) 

Comparison of similarity computation time 

In this experiment, we measured the similarity computation 

time. We compared the time taken to calculate the user 

similarities using both the proposed and ListCF methods, 

and then compared the ranking accuracy of ListCF 

predictions made using the calculated similarities. The 

criterion used to determine high ratings was changed from 1 

to 5 in increments of 1, and similarities were obtained for 

each criterion. A criterion of 1 means all ratings are used, 

while a criterion of 5 means that only items rated as 5 are 

used.  

 MovieLens 1M MovieLens 10M 

Users 6,040 71,567 

Items 3,952 10,681 

Ratings 1,000,209 10,000,054 

Table 1. Detailed Explanation of Dataset 



 

Figure 8. (a) is the comparison of calculation times of similarity and (b)-(d) are comparison of ranking accuracy by using 

MovieLens 1M. All horizontal axes represent criteria of high rating and each vertical axis represents minutes (a), NDCG@1 (b), 

NDCG@3 (c) and NDCG@5 (d) respectively. 

 

Figure 9. (a) is the comparison of calculation times of similarity and (b)-(d) are comparison of ranking accuracy by using 

MovieLens 10M. All horizontal axes represent criteria of high rating and each vertical axis represents hours (a), NDCG@1 (b), 

NDCG@3 (c) and NDCG@5 (d) respectively. 

Figs. 8(a) and 9(a) show the computation time results for 

MovieLens 1M and 10M, respectively, while Figs. 8(b)-(d) 

and 9(b)-(d) show the corresponding ranking accuracy 

results. The horizontal axes show the high rating criterion in 

all graphs, while the vertical axes show calculation time in 

Figs. 8(a) and 9(a), NDCG@1 in Figs. 8(b) and 9(b), 

NDCG@3 in Figs. 8(c) and 9(c) and NDCG@5 in Figs. 

8(d) and 9(d) respectively. As can be seen from Figs. 8(a) 

and 9(a), similarity computation is considerably more rapid 

for the proposed method than for conventional ListCF. In 

addition, Figs. 8(b)-(d) and 9(b)-(d) show that when scores 

of 4 and 5 are considered to be high ratings, the rankings 

are as accurate as those of the conventional method.  

Comparison of ranking accuracy 

Next, we conducted experiments to examine the effect of 

using temporary ratings on ranking prediction accuracy. We 

compared the accuracy of ranking predictions made using 

both the proposed and ListCF methods using the similarities 

calculated in the previous subsection. We used an initial 

𝜑𝑢,𝑔  value of 10 for both datasets with learning rates of 

0.025 and 0.01 for MovieLens 1M and 10M, respectively. 

The gradient descent method was repeated 50 times. The 

computation time results are shown in Fig. 10, while 

ranking accuracy results are shown in Figs. 11 and 12.  

 

Figure 10. Ranking prediction times for MovieLens 1M (a) and MovieLens 10M (b). 
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Figure 11. Ranking accuracy for MovieLens 1M. Each vertical axis represents NDCG@1 (a), NDCG@3 (b) and NDCG@5 (c). 

 

Figure 12. Ranking accuracy for MovieLens 10M. Each vertical axis represents NDCG@1 (a), NDCG@3 (b) and NDCG@5 (c). 

Fig. 10 shows that the computation times for the proposed 

ranking prediction method were shorter in all cases. In 

addition, Figs. 11 and 12 show that its NDCG@1, 

NDCG@3 and NDCG@5 values were better for all cases. 

Since MovieLens 1M has less data than MovieLens 10M, 

the number of temporary ratings increases, and the 

difference between the proposed method and the 

conventional ListCF becomes larger than MovieLens 10.  

CONCLUSION 

In this paper, we have made two proposals. The first is to 

calculate user similarity scores using only high ratings, 

instead of all ratings, to speed up computation. The second 

is to introduce temporary estimated ratings for items that 

have not been rated by neighboring users to improve 

ranking accuracy. 

In experiments using the MovieLens 1M and 10M datasets, 

we have compared the computation time and accuracy of 

both proposals with those of conventional ListCF. The 

results demonstrated that the first proposal provided a 

considerable reduction in computation time, compared with 

conventional ListCF, while maintaining equal or greater 

ranking accuracy. In addition, the second proposal 

shortened the prediction time in most cases while always 

improving the ranking accuracy. 

In the future, we plan on improving the way neighboring 

users are selected and search for a better objective function. 
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