
Improved Listwise Collaborative Filtering with High-
Rating-Based Similarity and Temporary Ratings

Yoshiki Tsuchiya

University of Tsukuba

Tsukuba, Japan

tsuchiya@cmu.iit.tsukuba.ac.jp

Hajime Nobuhara

University of Tsukuba

Tsukuba, Japan

nobuhara@iit.tsukuba.ac.jp

ABSTRACT

In this paper, we make two proposals to speed up listwise

collaborative filtering and improve its accuracy. The first is

to speed up computation by only using a subset of the rating

information (the high ratings). The second is to improve

accuracy using temporary ratings that estimate the rating

scores that neighboring users are not rating. Experiments

using MovieLens datasets (1M and 10M) demonstrate that

these proposals effectively reduce computation time about

1/50 and improve accuracy 2.22% compared with ListCF, a

well-known listwise collaborative filtering algorithm.

Author Keywords

Recommender system; Ranking-oriented collaborative

filtering;

ACM Classification Keywords

• Information systems, Collaborative filtering

INTRODUCTION
In recent years, due to the development of the Web,

recommender systems have become increasingly important

in various situations; many researchers are now focusing on

recommendation technologies and systems [2,6,7,9,10].

Collaborative filtering (CF) is a widely used

recommendation algorithm that is based on the similarity

between users or items, as calculated from a user and rating

matrix. Various CF algorithms have been proposed, and

they can be divided into two types: rating-oriented [6,9] and

ranking-oriented [2,7,10], as shown in Fig. 1. Rating-

oriented CF algorithms, such as item-based CF [9], predict

the ratings of items that have not been evaluated by users

and make recommendations by calculating the similarity

between users or items. On the contrary, ranking-oriented

CF uses user similarity to predict the item ranking and

recommends items based on this. We will focus on this

method due to its performance. Ranking-oriented CF can be

further divided into two types: pairwise ranking-oriented

[7,10] and listwise ranking-oriented [2]. Pairwise ranking-

oriented CF predicts the order of pairs of items but requires

large computation time.

Figure 1. Collaborative filtering classification

In contrast, listwise ranking-oriented CF predicts the order

of the complete list of items. Although this produces better

accuracy than a typical pairwise CF algorithm, calculating

the required similarities is time-consuming and there is

room to improve the ranking accuracy. In this paper, we

propose an efficient listwise ranking-oriented CF algorithm

that is both faster and has higher ranking accuracy.

The proposed method implements two improvements. First,

when calculating the similarity between users, it only

considers the highest-rated items, greatly speeding up the

calculation. Second, it introduces temporary ratings when

making ranking predictions. Experimental comparisons

using MovieLens 1M (6,040 users, 3,952 movies,

1,000,209 ratings) and 10M (71,567 users, 10,681 movies,

10,000,054 ratings) confirm that the proposed method

reduces about 1/50 computation time of similarity and

improves 2.22% ranking accuracy than a conventional CF

algorithm.

RELATED WORK

Overview of ListCF

In this section, we give an overview of ListCF [2], a well-

known ranking-oriented listwise CF algorithm. ListCF

proceeds in two phases, first calculating the similarities

between users and then predicting ranks for the target user’s

unrated items. The first phase is based on a probability

distribution of item permutations, calculated by combining

the Plackett–Luce [8] and top-k probability [1] models and

finding each user’s neighboring users.

© 2018. Copyright for the individual papers remains with the authors.
Copying permitted for private and academic purposes.
WII'18, March 11, Tokyo, Japan.

mailto:tsuchiya@cmu.iit.tsukuba.ac.jp
mailto:nobuhara@iit.tsukuba.ac.jp

Similarity calculation

In ListCF, the similarity of a pair of users 𝑢 and 𝑣 is

calculated based on a probability distribution of item

permutations for each user, calculated using the Plackett–

Luce model [8], which is a representative permutation

probability model. The flow of similarity calculation is

shown on the left of Fig. 2 and Fig. 3. Let the set 𝐼 =
{𝑖1, 𝑖2, ⋯ , 𝑖𝑛} of items 𝜋𝑖 = (𝜋1

𝑖 , 𝜋2
𝑖 , ⋯ , 𝜋𝑛

𝑖) (∈ 𝐼𝑛) be an

ordered list where 𝜋𝑗
𝑖 ∈ 𝐼 and 𝜋𝑗

𝑖 ≠ 𝜋𝑘
𝑖 if 𝑗 ≠ 𝑘 , and let

Ω𝐼 (⊂ 𝐼𝑛) be the set of all possible permutations of 𝐼. Given

the item ratings (𝑟
𝜋1
𝑖 , 𝑟𝜋2𝑖

, ⋯ , 𝑟𝜋𝑛𝑖) (e.g., on a real interval

in the case of MovieLens [1,5]), where 𝑟
𝜋𝑗
𝑖 is the rating

score of 𝜋𝑗
𝑖, the probability of 𝜋𝑖, 𝑃(𝜋𝑖), is defined using an

increasing and strictly positive function 𝛷(∙) ≥ 0 as

follows:

𝑃(𝜋𝑖) =∏
𝛷 (𝑟

𝜋𝑗
𝑖)

∑ 𝛷 (𝑟𝜋𝑘
𝑖)𝑛

𝑘=𝑗

𝑛

𝑗=1

 (∈ [0,1]), (1)

where the function is defined as 𝛷(𝑟) = 𝑒𝑟. However, this

requires us to consider 𝑛! different permutations of the 𝑛

items, which would take a long time to compute. To speed

up the computation, the top-k probability model 𝑔𝑘 [1] is

introduced as follows:

𝑔𝑘(𝑖1, 𝑖2, ⋯ , 𝑖𝑘) =

{𝜋𝑙|𝜋𝑙 ∈ Ω𝐼 , 𝜋𝑗
𝑙 = 𝑖𝑗 , 𝑗 = 1,⋯ , 𝑘, 𝑙 = 1,⋯ ,

𝑛!
(𝑛 − 𝑘)!

}

(⊂ Ω𝐼), (2)

and the probability of the top-k permutation is calculated as

𝑃(𝑔𝑘(𝑖1, 𝑖2, ⋯ 𝑖𝑘)) =∏
𝛷 (𝑟𝜋𝑗)

∑ 𝛷(𝑟𝜋𝑙)
𝑛
𝑙=𝑗

𝑘

𝑗=1

(∈ [0,1]),

∀𝑗 = 1,⋯ , 𝑘 ∶ 𝜋𝑗 = 𝑖𝑗 . (3)

Let 𝑔𝑘
𝐼 (⊂ Ω𝐼) be the set of top-k permutations of 𝐼, and let

the probabilities of these permutations form the probability

distribution. Then, define 𝐼𝑢,𝑣 (⊂ 𝐼) as the set of items rated

Figure 2. Similarity calculation: conventional ListCF (left),

proposed method (right).

Figure 3. Procedure for similarity calculation of conventional

ListCF.

 by users 𝑢 and 𝑣, and 𝑃𝑢 and 𝑃𝑣 (∈ [0,1]) as the probability

distributions over 𝑔𝑘
𝐼𝑢,𝑣 (⊂ Ω𝐼𝑢,𝑣) calculated by Eq. (3) using

the users’ rating scores. The similarity score is now

obtained from the Kullback–Leibler (KL) divergence [5]

calculated from 𝑃𝑢 and 𝑃𝑣 . Given a pair of users 𝑢 and 𝑣,

the KL divergence of 𝑃𝑢 and 𝑃𝑣 is defined as

𝐷𝐾𝐿(𝑃𝑢 ∥ 𝑃𝑣) = ∑ 𝑃𝑢(𝑔) 𝑙𝑜𝑔2 (
𝑃𝑢(𝑔)

𝑃𝑣(𝑔)
)

𝑔∈𝑔𝑘
𝐼𝑢,𝑣

. (4)

The KL divergence is asymmetric, but ListCF defines the

similarity 𝑠(𝑢, 𝑣)(∈ (−∞, 1]) of users 𝑢 and 𝑣 to be

symmetric as follows:

𝑠(𝑢, 𝑣) = 1 −
1

2
[𝐷𝐾𝐿(𝑃𝑢 ∥ 𝑃𝑣) + 𝐷𝐾𝐿(𝑃𝑣 ∥ 𝑃𝑢)]. (5)

If the set 𝐼𝑢,𝑣 only includes a few items, the similarity will

be high, so this is relaxed by multiplying by the similarity

function by min{𝐼𝑢,𝑣 𝑐⁄ , 1}, where 𝑐 is a threshold. Each

user’s neighboring users can then be found from the

similarities calculated using Eqs. (3)–(5).

Ranking prediction

The flow of ranking prediction is shown on the left of Fig. 4.

Let U be the set of users, 𝑁𝑢(⊂ 𝑈) be the set of the user 𝑢’s

neighbors and 𝑇𝑢(⊂ 𝐼 ∖ 𝐼𝑢) be the set of items whose ranks

are to be predicted. Let �̂�𝑢 (∈ [0,1]) be the probability

distribution of the top-k permutations 𝑔𝑘
𝑇𝑢 (⊂ Ω𝑇𝑢) of 𝑇𝑢 ,

written as

�̂�𝑢(𝑔) =
𝜑𝑢,𝑔

∑ 𝜑𝑢,𝑔′𝑔′∈𝑔𝑘
𝑇𝑢

, (6)

where {𝜑𝑢,𝑔|∀𝑔 ∈ 𝑔𝑘
𝑇𝑢} are unknown variables assigned to

the top-k permutations. In ListCF, the cross entropy is used

as a loss function for prediction. Consider a target user 𝑢,

for whom you want to rank a set of items 𝑇𝑢 , and a

neighboring user 𝑣 ∈ 𝑁𝑢. Let the set of items rated by 𝑣 be

𝐼𝑣 , with 𝑇𝑢,𝑣 = 𝑇𝑢 ∩ 𝐼𝑣 , and 𝑔𝑘
𝑇𝑢,𝑣 (⊂ Ω𝑇𝑢,𝑣) be the set of

top-k permutations of 𝑇𝑢,𝑣. The cross entropy is calculated

Figure 4. Ranking prediction: conventional ListCF (left),

proposed method (right).

using probability distributions �̂�′𝑢 and 𝑃′𝑣 over 𝑔𝑘
𝑇𝑢,𝑣

 as

follows:

𝐸(�̂�′𝑢 , 𝑃′𝑣) = − ∑ 𝑃′𝑣(𝑔) log2 �̂�′𝑢(𝑔)

𝑔∈𝑔𝑘
𝑇𝑢,𝑣

. (7)

ListCF makes predictions by minimizing the following

cross entropy weighted sum:

argmin
𝜑𝑢

∑ 𝑠(𝑢, 𝑣) ∙ 𝐸(�̂�′𝑢 , 𝑃
′
𝑣),

𝑣∈𝑁𝑢

 (8)

s. t ∀𝑔 ∈ 𝑔𝑘
𝑇𝑢 ∶ 𝜑𝑢,𝑔 ≥ 0.

The objective function 𝐹(𝜑𝑢) in Eq. (8) is then transformed

as follows, using Eqs. (5) and (7):

𝐹(𝜑𝑢) = ∑ 𝑠(𝑢, 𝑣)

𝑣∈𝑁𝑢

∙

∑ 𝑃′𝑣(𝑔) [log2 (∑ 𝜑𝑢,𝑔′

𝑔′∈𝑔𝑘
𝑇𝑢,𝑣

)− log2(𝜑𝑢,𝑔)]

𝑔∈𝑔𝑘
𝑇𝑢,𝑣

 (9)

Equation (9) is optimized by the gradient descent method.

Partially differentiating F with respect to 𝜑𝑢,𝑔, we obtain

𝜕𝐹

𝜕𝜑𝑢,𝑔
=

∑
𝑠(𝑢, 𝑣)

ln 2 ∙ ∑ 𝜑𝑢,𝑔′𝑔′∈𝑔𝑘
𝑇𝑢,𝑣

𝑣∈𝑁𝑢

−
∑ 𝑠(𝑢, 𝑣)𝑃′𝑣(𝑔)𝑣∈𝑁𝑢

ln 2 ∙ 𝜑𝑢,𝑔
. (10)

For a given learning rate 𝜂, 𝜑𝑢,𝑔 is updated as follows:

𝜑𝑢,𝑔 ← 𝜑𝑢,𝑔 − 𝜂
𝜕𝐹

𝜕𝜑𝑢,𝑔
. (11)

PROPOSED METHOD

Rapid similarity calculation using only high ratings

Conventional ListCF is slow because it has to calculate

similarities using all rating scores. To speed up computation,

we now

Figure 5. Procedure of similarity calculation of proposed

method.

propose a method of calculating user similarity by focusing

only on high ratings. The flow of similarity calculation is

shown on the right of Fig. 2 and Fig.5. Let 𝐻𝑢 (⊂ 𝐼𝑢) be the

set of items that were rated highly by the target user 𝑢, and

𝐻𝑢,𝑣 (⊂ 𝐼𝑢,𝑣) be the set of items that both 𝑢 and 𝑣 rated

highly. Given the user and rating matrix, we define the

similarity between 𝑢 and 𝑣 as follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) =
|𝐻𝑢,𝑣|

|𝐻𝑢|
 (∈ [0,1]), (12)

where 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) is asymmetric. We define

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) = 0 if 𝑢 = 𝑣 not to add him/herself to

neighborhood users when predicting each user’s ranking. In

conventional ListCF, based on the top-k probability model,

the time complexity is 𝑛! (𝑛 − 𝑘)!⁄ , which is smallest

(i.e., 𝑛) when 𝑘 = 1 . As the proposed method’s time

complexity is 𝑛, it is never worse than that of conventional

ListCF, and often better. Changing how the high ratings are

determined changes the ranking accuracy, as explained in

the experimental section.

Improving ranking accuracy using temporary ratings

We also propose to improve the ListCF’s ranking accuracy

by introducing temporary ratings. In ListCF, the cross

entropy in Eq. (7) is calculated from the probability

distribution of 𝑔𝑘
𝑇𝑢,𝑣

, the set of permutations of 𝑇𝑢,𝑣 .

However, optimizing the objective function may fail if 𝑇𝑢,𝑣

has too few elements, e.g., if it only includes one element

and that item received a low rating from the neighboring

user 𝑣 . In this case, despite the item’s low rating,

optimization generates a high item rank, which is unhelpful

for user 𝑢. Fig. 6 shows how the probability distribution for

target user 𝑢’s unrated items before optimization (upper)

and neighboring user 𝑣’s distribution (middle) give a graph

like the one on the lower. Item 1 was given a low rating by

𝑣 but, since no other items were rated, it is guaranteed to

top the rankings. As a result, 𝑢’s probability distribution is

updated to place item 1 at a higher position. The proposed

method therefore makes ranking predictions after giving

temporary estimated ratings to items that were not rated by

the neighboring user 𝑣. The flow of ranking prediction is

shown on the right of Fig 4 and Fig.7. Let 𝑟𝑢,𝑖 be the rating

given by user 𝑢 to item 𝑖, and let unrated items have a score

of zero.

Figure 6. Examples of unsuitable parameter updates that

occur when users have only one low-rated item in common.

The horizontal axis represents the item number.

Figure 7. Procedure for calculating temporary ratings.

For a given neighborhood user 𝑣 ∈ 𝑁𝑢 and set 𝑇𝑢 =

{𝑡1,𝑡2, ⋯ , 𝑡𝑝} (⊂ 𝐼 ∖ 𝐼𝑢) of items not rated by 𝑢 , 𝑣 ’s

temporary ratings are defined as follows:

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔(𝑣, 𝑡𝑗) =

{

 𝑟𝑣,𝑡𝑗 (if 𝑟𝑣,𝑡𝑗 is nonzero)

∑ 𝑟𝑣′,𝑡𝑗𝑣′∈𝑁𝑣

|𝑁′
𝑣,𝑡𝑗
|

 (if 𝑟𝑣,𝑡𝑗 is zero) , (𝑗 = 1,⋯ , 𝑝),
 (13)

where 𝑁′𝑣,𝑡𝑗 is the set of 𝑣’s neighbors 𝑣′ ∈ 𝑁𝑣 who have

rated item 𝑡𝑗 . If none of 𝑣’s neighbors have rated 𝑡𝑗 , the

temporary rating will still be zero. In that case, we can

obtain a nonzero temporary rating by calculating the

temporary ratings 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔(𝑣′, 𝑡𝑗) for each

neighbor 𝑣′ of 𝑣. By calculating the cross entropy of Eq. (7)

using these temporary ratings (Eq. (13)) and replacing

𝑠(𝑢, 𝑣) in Eq. (8) with 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣) (Eq. (12)), ranking

predictions can then be made in the same way as for ListCF

by using Eqs. (8)–(11). Calculating temporary ratings

allows the neighbors’ probability distributions in situations

such as Fig. 6 to be more reasonable. As a result, since the

parameters are less frequently updated in an undesirable

way, this should improve the ranking accuracy.

EXPERIMENTAL EVALUATION

Overview of the experiment

To confirm the effectiveness of the two proposed changes,

we experimentally compared the methods in terms of

computation time and ranking accuracy using the

MovieLens 1M and 10M datasets, details of which are

shown in Table 1. We selected 10 sets of ratings from each

user’s rating information to create the test dataset and used

the rest as training data. In this experiment, since it is

shown that the ranking accuracy does not improve greatly

by increasing the value of k [2], we compared the proposed

method with conventional ListCF based on the top-1

probability model, as in [3,4]. Also, the threshold 𝑐 of the

similarity function is 300. The normalized discounted

cumulative gain (NDCG) metric was used to assess ranking

prediction accuracy. The NDCG value, considering the top

𝑛 predicted rankings for user 𝑢, is defined as follows:

𝑁𝐷𝐶𝐺𝑢@𝑛 = 𝑍𝑢∑
2𝑟𝑢

𝑝

− 1

log2(1 + 𝑝)

𝑛

𝑝=1

, (14)

where 𝑍𝑢 is a normalization term that ensures the NDCG

value of the correct ranking is 1 and 𝑟𝑢
𝑝

 is the rating of the

pth-ranked item for user 𝑢. For a set of users 𝑈, the overall

NDCG@n score is calculated as follows:

𝑁𝐷𝐶𝐺@𝑛 =
1

|𝑈|
∑𝑁𝐷𝐶𝐺𝑢@𝑛

|𝑈|

𝑢=1

. (15)

Comparison of similarity computation time

In this experiment, we measured the similarity computation

time. We compared the time taken to calculate the user

similarities using both the proposed and ListCF methods,

and then compared the ranking accuracy of ListCF

predictions made using the calculated similarities. The

criterion used to determine high ratings was changed from 1

to 5 in increments of 1, and similarities were obtained for

each criterion. A criterion of 1 means all ratings are used,

while a criterion of 5 means that only items rated as 5 are

used.

 MovieLens 1M MovieLens 10M

Users 6,040 71,567

Items 3,952 10,681

Ratings 1,000,209 10,000,054

Table 1. Detailed Explanation of Dataset

Figure 8. (a) is the comparison of calculation times of similarity and (b)-(d) are comparison of ranking accuracy by using

MovieLens 1M. All horizontal axes represent criteria of high rating and each vertical axis represents minutes (a), NDCG@1 (b),

NDCG@3 (c) and NDCG@5 (d) respectively.

Figure 9. (a) is the comparison of calculation times of similarity and (b)-(d) are comparison of ranking accuracy by using

MovieLens 10M. All horizontal axes represent criteria of high rating and each vertical axis represents hours (a), NDCG@1 (b),

NDCG@3 (c) and NDCG@5 (d) respectively.

Figs. 8(a) and 9(a) show the computation time results for

MovieLens 1M and 10M, respectively, while Figs. 8(b)-(d)

and 9(b)-(d) show the corresponding ranking accuracy

results. The horizontal axes show the high rating criterion in

all graphs, while the vertical axes show calculation time in

Figs. 8(a) and 9(a), NDCG@1 in Figs. 8(b) and 9(b),

NDCG@3 in Figs. 8(c) and 9(c) and NDCG@5 in Figs.

8(d) and 9(d) respectively. As can be seen from Figs. 8(a)

and 9(a), similarity computation is considerably more rapid

for the proposed method than for conventional ListCF. In

addition, Figs. 8(b)-(d) and 9(b)-(d) show that when scores

of 4 and 5 are considered to be high ratings, the rankings

are as accurate as those of the conventional method.

Comparison of ranking accuracy

Next, we conducted experiments to examine the effect of

using temporary ratings on ranking prediction accuracy. We

compared the accuracy of ranking predictions made using

both the proposed and ListCF methods using the similarities

calculated in the previous subsection. We used an initial

𝜑𝑢,𝑔 value of 10 for both datasets with learning rates of

0.025 and 0.01 for MovieLens 1M and 10M, respectively.

The gradient descent method was repeated 50 times. The

computation time results are shown in Fig. 10, while

ranking accuracy results are shown in Figs. 11 and 12.

Figure 10. Ranking prediction times for MovieLens 1M (a) and MovieLens 10M (b).

0

2

4

6

8

10

12

70

75

80

70

75

80

70

75

80

0

10

20

30

40

50

60

70

70

75

80

70

75

80

70

75

80

0

40

80

120

160

ListCF 1 2 3 4 5

s
e
c
o
n
d
s

ListCF prediction proposed prediction

0

10

20

30

40

50

60

ListCF 1 2 3 4 5

m
in

u
te

s

ListCF prediction proposed prediction

(a) (d) (c) (b)

(a) (b) (c) (d)

(a) (b)

Figure 11. Ranking accuracy for MovieLens 1M. Each vertical axis represents NDCG@1 (a), NDCG@3 (b) and NDCG@5 (c).

Figure 12. Ranking accuracy for MovieLens 10M. Each vertical axis represents NDCG@1 (a), NDCG@3 (b) and NDCG@5 (c).

Fig. 10 shows that the computation times for the proposed

ranking prediction method were shorter in all cases. In

addition, Figs. 11 and 12 show that its NDCG@1,

NDCG@3 and NDCG@5 values were better for all cases.

Since MovieLens 1M has less data than MovieLens 10M,

the number of temporary ratings increases, and the

difference between the proposed method and the

conventional ListCF becomes larger than MovieLens 10.

CONCLUSION

In this paper, we have made two proposals. The first is to

calculate user similarity scores using only high ratings,

instead of all ratings, to speed up computation. The second

is to introduce temporary estimated ratings for items that

have not been rated by neighboring users to improve

ranking accuracy.

In experiments using the MovieLens 1M and 10M datasets,

we have compared the computation time and accuracy of

both proposals with those of conventional ListCF. The

results demonstrated that the first proposal provided a

considerable reduction in computation time, compared with

conventional ListCF, while maintaining equal or greater

ranking accuracy. In addition, the second proposal

shortened the prediction time in most cases while always

improving the ranking accuracy.

In the future, we plan on improving the way neighboring

users are selected and search for a better objective function.

REFERENCES

1. Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and

Hang Li. 2007. Learning to rank: from pairwise

approach to listwise approach. In Proceedings of the

24th international conference on Machine learning

(ICML '07), 129-136.

http://dx.doi.org/10.1145/1273496.1273513

2. Shanshan Huang, Shuaiqiang Wang, Tie-Yan Liu, Jun

Ma, Zhumin Chen, and Jari Veijalainen. 2015. Listwise

Collaborative Filtering. In Proceedings of the 38th

International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR '15),

343-352.

http://dx.doi.org/10.1145/2766462.2767693

3. Kalervo Järvelin and Jaana Kekäläinen. 2000. IR

evaluation methods for retrieving highly relevant

documents. In Proceedings of the 23rd annual

international ACM SIGIR conference on Research and

development in information retrieval (SIGIR '00), 41-

48.

http://dx.doi.org/10.1145/345508.345545

4. Kalervo Järvelin and Jaana Kekäläinen. 2002.

Cumulated gain-based evaluation of IR techniques.

ACM Trans. Inf. Syst. 20, 4: 422-446.

5. S.Kullback. 1997. Information Theory and Statistics.

Courier Corporation.

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

70

75

80

85

ListCF 1 2 3 4 5

ListCF prediction proposed prediction

(a) (c) (b)

(a) (b) (c)

http://dx.doi.org/10.1145/1273496.1273513

6. Linden, G., Smith, B., & York, J. 2003. Amazon. com

recommendations: Item-to-item collaborative filtering.

IEEE Internet computing, 7, 1: 76-80.

7. Nathan N. Liu and Qiang Yang. 2008. EigenRank: a

ranking-oriented approach to collaborative filtering. In

Proceedings of the 31st annual international ACM

SIGIR conference on Research and development in

information retrieval (SIGIR '08), 83-90.

http://dx.doi.org/10.1145/1390334.1390351

8. J. I. Marden. 1996. Analyzing and modeling rank data.

CRC Press.

9. Badrul Sarwar, George Karypis, Joseph Konstan, and

John Riedl. 2001. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the

10th international conference on World Wide Web

(WWW '01), 285-295.

http://dx.doi.org/10.1145/371920.372071

10. Shuaiqiang Wang, Jiankai Sun, Byron J. Gao, and Jun

Ma. 2014. VSRank: A Novel Framework for Ranking-

Based Collaborative Filtering. ACM Trans. Intell. Syst.

Technol. 5, 3: 24.

