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ABSTRACT
Assigning several labels to digital data is becoming easier
because we can perform it in a collaborative manner with
Internet users. However, some suitable labels may be missed
and may not be attached to the data leading to inaccuracies
in classification. In this paper, we propose a novel graph-
based multi-label classifier to support the multi-labeling task.
The core process of our algorithm is to update label weights
of labeled data from their top-k similar data in each label
propagation step. We report that our algorithm is more stable
for F-scores compared to the state-of-the-art ones even though
the some correct labels are missed.
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INTRODUCTION
Defining categories and dividing digital data into these cate-
gories play key processes. For example, Wikipedia has numer-
ous articles and categories. Wikipedia editors can not only edit
them but can also add new articles and categories using the
discussions on them. Thus, when some Wikipedia categories
are updated, some articles can be assigned new categories. As
another example, if we want to train classifiers on historical
news articles or on heterogeneous dataset, e.g., the New York
Times and Japan Times, we sometimes reassign their labels.

Thanks to the increasing number of Internet users, this task has
becoming easier because many people can work on such tasks
following the same policies used on sites such as Wikipedia.
Nevertheless, this task is still quite challenging. For example,
some Wikipedia articles report mass murder by bombing 1
2. Although there are two common Wikipedia categories,
"Mass murder" and "Terrorist incidents", in these articles,
another category "suicide bombing" is assigned to only the
1https://en.wikipedia.org/wiki/2016_Davao_City_bombing
2https://en.wikipedia.org/wiki/2016_Brussels_bombings
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Figure 1. Effect of missing labels in multi-label classification. The x and
y axes represent the number of missing labels and the micro-averaged
F-scores of SVM, random forest and label propagation, respectively.

latter Wikipedia article. Moreover, these three categories are
not assigned to another article 3. Thus, even though these
articles report the same topic, the attached categories are not
the same.

The missing of labels is a very serious issue to achieve good
accuracy because almost all classifiers assume that labeled
data prepared by people are correct. We show how the missing
correct labels worsens the accuracies of SVM, random forest
and label propagation on a multi-label dataset called the SIAM
2007 Text Mining Competition dataset 4, whose documents
are assigned 3.4 labels on average in Fig. 1. We can see that
if only one label is missed, all their micro-averaged F-scores
worsen by about 5%. If more than two labels are missing, the
scores can decrease by about 10%.

In this paper, we propose a novel graph-based algorithm for
multi-label classification, label propagation using amendable
clamping (LPAC), in order to decrease the impact of missing
labels on accuracy. Our algorithm enhances cluster assumption
[7], which means that similar nodes tend to have common
labels, during label propagation.

Contributions: The core contribution of this paper is to up-
date label weights of labeled data in order to make label prop-
agations for missed labels in each label propagation step. This
process takes cluster assumption in clamping; in other words,
even though some suitable labels in labeled data are missed,

3https://en.wikipedia.org/wiki/Bombing_of_Sandhurst_Road_
School
4https://catalog.data.gov/dataset/
siam-2007-text-mining-competition-dataset
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our algorithm adds the weight from their similar data after
propagating labels.

The original LP algorithm also takes the cluster assumption,
but we enhance it by adding weights of top-k nearest neigh-
bors. Some researchers improve the original LP algorithm
to take label correlation [3, 5], to allow transductive learning
[4], and to smooth affects of incorrect labels [2, 7, 6]. The
closest studies to our study is the smoothing problem of incor-
rect labels because these studies solve the problems by taking
cluster assumption. [2] takes the assumption to train kernels.
[7] propagates label values as well as the original LP. Then,
this algorithm adds the initial label values to the current label
values at the end of each iteration. [6] applies KNN to incorpo-
rate similarity into probability matrix; thus, it does not update
label values directly. The core difference between our paper
and these previous studies is the objective. These three past
works assume that some labels are wrongly assigned whereas
we assume that all the attached labels are correct.

TRADITIONAL LABEL PROPAGATION
In this section, we describe the well-known LP algorithm [8].
We first present a formal definition of a graph G = (N,E), as
LP invokes classification on a graph. Let (x1,y1), ...,(xl ,yl)
represent labeled data, and xl+1, ...,xn represent unlabeled data.
For each data xi, we create a node ni ∈ N. We assign a positive
value wi, j to an edge (ni, n j) ∈ E as a similar value between xi
and x j. The value of wi, j is determined as follows:

wi, j = exp(−
‖vi− v j‖2

α2 )

where vi is a vector of xi and α is a hyper-parameter.

Because a graph can be represented as a matrix, LP is usually
invoked by multiplying a probabilistic transition matrix P by a
label matrix Y to propagate label. The probabilistic transition
matrix P represents the probability of transition from ni to n j,
and is defined by normalizing the similarity metrics as follows:

P(i, j) =
wi, j

∑
n
k=1 wi,k

The label matrix Y is defined as [Y l : Y u] ∈ R|D|×|NC|, where
| D | is the number of data, | NC | is the number of classes, Y l

is the label matrix for labeled data, and Y u is the label matrix
for unlabeled data. The value of Y l(i,c) is 1 if xi is in class c;
otherwise, it is 0.

The entire algorithm for LP is as follows: first, the two initial
matrices, P and Y , are constructed. Then, the multiplication
of them is repeated until all elements are fixed, or the iterative
process achieves a certain number. During the iteration, values
of Y l are reset before invoking the next iteration–this is known
as clamping. This clamping assumes that all the labeled data
are perfectly assigned suitable labels.

LABEL PROPAGATION USING AMENDABLE CLAMPING
We extend the traditional LP to make label propagations for
missed labels by adding the following two steps:

1. Enhancing propagating label values of similar documents.

2. Updating Y l from labels of similar documents.

For the first extension, we add (M�P) ∗Yt in matrix multi-
plication where � is the Hadamard product and M ∈ N|N|×|N|
is a matrix representing KNN of the data; Mi j is 1 if the ith
data is in the top-k similar ones of the jth data, otherwise it
is 0. We call this extension local-propagation because M�P
allows propagating label values only for top-k similar data.
In contrast, we call P ∗Yt , which is used in traditional LP,
global-propagation. To adjust the balance between local- and
global-propagations, we introduce a hyper-parameter β as
follows:

Propt = βP ·Yt +(1−β )(M�P) ·Yt

We then take cluster assumption, which means that the data
tend to form discrete clusters, and points in the same cluster
are more likely to share a label. For this, we calculate the
averages from the top-k similar documents, and set them as
the result of label propagation. The following equation invokes
this process.

M ·Propt

k

For the second extension (updating the values of labeled data
by similar data), we perform KNN again. Then, we calculate
the average values of the top-k similar data for each label.
These values are set before invoking the next iteration as fol-
lows:

Y l
t+1 =

M ·Y l
t+1

k

Finally, we show our entire algorithm in Alg. 1. Lines 4 and 6
correspond to the above two extensions, respectively.

Algorithm 1 Label propagation using amendable clamping
1: Construct a probablistic transition matrix P and M defined.

2: Let Y0 = [Y l
0 : 0]

3: for t = 1 to T −1 do
4: Propt = βP ·Yt +(1−β )(M�P) ·Yt
5: Yt+1 = M ·Propt/k
6: Y l

t+1 = M ·Y l
t+1/k

7: end for
8: return YT

EXPERIMENTAL RESULTS

Experimental Design
Dataset. We used the SIAM 2007 Text Mining Competition
dataset, which is a subset of the Aviation Safety Reporting
System (ASRS) dataset. It provides various types of aviation
safety events reported by pilots, controllers, mechanics, flight
attendants, and dispatchers. In this dataset, there are 4,819
labeled data, 4,819 unlabeled data, and 22 classes. On average,
a labeled data is assigned 3.41 labels.

We first extract some data from this dataset to remove labels;
we then remove labels for the data. Both the extraction ratio



and removal ratio are increased from 10% to 100%, in 10%
increments, and are selected at random. For all the cases, we
check the Micro-averaged F-scores measured by the 10-fold
cross-validation of classifiers that are trained on the dataset.

As our demonstration focuses on document classification, we
apply latent dirichlet allocation (LDA) [1] to all our data in
order to assign weights between edges.

Algorithms. We compared LPAC with five baselines: LP,
dynamic LP (DLP) [5], LP through Linear Neighborhoods
(LNP) [6], random forest and SVM. DLP, which is the state-
of-the-art LP algorithm, uses label correlation in the label
propagation phase. LNP, which is an extension of the LP
algorithm, discovers the structure of the entire data set through
the linear neighborhoods of each data.

Parameters. We set T (the iteration number of LP), the di-
mension of the LDA and β to 1,000, 1,000 and 0.1 respectively.
All these values were empirically chosen based on analyzing
the results on the small held-out development dataset. Note
here that DLP uses two additional parameters (λ and α). We
set them to the same values used in [5]. Finally, we set a
threshold for label assignment after the iteration of LP-based
algorithms because these algorithms only assign a score for
each label to each data point. To determine this threshold, we
used 10% of unlabeled data, and selected 0.2 as the thresh-
old because using this value was the best for F-scores of our
algorithm. We used the same threshold for other LP-based
algorithms.

Discussions of Accuracies
We show the results in Fig. 2. We can see that LPAC outper-
forms the comparative algorithms. Figs. 2 (a) ∼ (f) show the
accuracies of each classifier trained on datasets in which 0%
∼ 100% of the documents do not have correct labels. The
accuracies of the LPAC almost match the result achieved when
the classifier is trained on a dataset in which 10% of the doc-
uments have missing labels. In contrast, all baselines tend to
provide decreased accuracy once the ratio of missing-label
documents exceeds 30%. In particular, once the missing-label
ratio reaches 50%, accuracies of DLP, Random Forest and
SVM rapidly decrease from about 10% to 50%. Note that
LNP and LP also tend to keep their accuracies, but the scores
are lower than LPAC.

To better enable comparison between all classifiers, Fig. 3
shows their F-scores in the cases that we extracted 50% and
70% of documents for removing labels, respectively. When
the ratio of documents had missing labels reaches 40%, the
F-scores of three baselines (DLP, Random Forest and SVM)
begin to more early decrease compared with 0 ∼ 40%. More-
over, when the ratio is 70%, SVM and random forest sharply
fall accuracies. In the case of 70% of documents extracted, the
accuracies of almost all baselines begin to decrease when the
ratio of missing labels exceeds 20%. Conversely, we can see
that LPAC maintains a stable accuracy for all ratios of missing
labels.

Next, we show the correlation between F-scores and the num-
ber of labeled documents for LPAC in Fig. 4. We plot results
of three cases where 0%, 50% and 70% of documents had
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(a) LPAC
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(b) DLP
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(c) LNP
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(d) LP
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(e) Random Forest
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(f) SVM

Figure 2. Each sub-figure shows the Micro-averaged F-scores for six
classifiers. The x axis represents the ratio of documents that has missing
labels. The y axis represents the ratio of missing labels. The color of
each cell represents the F-score. A red cell indicates better accuracy
than blue.
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Figure 3. Each sub-figure shows the results achieved when 50% and 70%
of documents had missing labels, respectively. In the two sub-figures, the
x axis represents the ratio of missing labels whereas the y axis represents
the F-score.

missing labels. Fig. 4 shows that there is a positive correlation
between them. Indeed, the correlation coefficiencies of them
are 0.76, 0.72 and 0.75, respectively. Thus, we can say that
the more there are correct labels are assigned to training data,
the better accuracy we can obtain.

Next, we show how many iterations each LP-based algorithm
needs to convergence the propagating labels in Fig. 5. As this
figure shows, LPAC is the lowest of the four LP-based algo-
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Figure 4. Correlation between the number of training label and F-scores
of LPAC. The x axis represents the number of training data in each cat-
egory. The y axis represents the value of F-scores. The blue, yellow and
green points represent the F-score when 0%, 50% and 70% of docu-
ments had missing labels, respectively.
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Figure 5. The number of iterations of LP-based algorithms.

rithms. This is because that LPAC makes label propagation
by averaging label values of not only all data but also ones of
similar documents in order to enhance take cluster assumption
during propagating labels.
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Figure 6. The analyzing time of LP and LPAC. The x axis represents
the size of training datasets. The y axis represents the analyzing time
(seconds) of each method.

Finally, we show the analyzing time of LP and LPAC in Fig. 6.
We can see that both of the two lines draw exponential growth.
The analyzing time of LPAC is about twice as slow as the one
of LP if we use 10,000 data; however, it is not problem for
many objectives since the LPAC’s analyzing time is about two
minutes.

CONCLUSION
In this paper, we proposed a novel graph-based multi-label
classification (LPAC) to apply to a moderately challenging
multi-labeling task. LPAC enforces label propagations by two
extensions: propagating labels according to top-k similar data
and updating labeled data by taking cluster assumption. As
demonstrated in our experiments, these two extensions make
the F-score of LPAC stable compared to those of algorithms
proposed by previous studies.

Future work will identify (a) the effective utilization of label
correlation. Once our algorithm is extended to take care of
label correlation, we can implement label recommendations.
This suggestion should be helpful especially in the case that
there are many labels such as Wikipedia category system. Fu-
ture work will also identify (b) how effectively our algorithm
works on a real dataset that contains missing labels data like
Wikipedia as discussed in Introduction. Finally, as a future
work we will study (c) establishing algorithm that can be
trained on dataset including both of wrong and missing. Al-
though this paper assumes that there are no data attached any
wrong labels, real datasets might contain both of the two kinds
of labels at the same time. We will explore how to reduce the
noises.
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