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ABSTRACT 

Many methods have been proposed to make machine 

learning more interpretable, but these have mainly been 

evaluated with simple use cases and well-curated datasets. 

In contrast, real-world data presents issues that can 

compromise the proper interpretation of explanations by 

end users. In this work, we investigate the impact of 

missing data and imputation on how users would 

understand, and use explanation features and propose two 

approaches to provide explanation interfaces for explaining 

feature attribution with uncertainty due to missing data 

imputation. This work aims to improve the understanding 

and trust of intelligible healthcare analytics in clinical end 

users to help drive the adoption of AI. 
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INTRODUCTION 
Intelligibility has been proposed as a capability to enable 

systems to explain their inner state, reasoning mechanisms 

and priorities to help users understand and trust them [1, 

12]. A recent review has identified that research on 

explainable systems typically focuses on explanation 

generation algorithms on systems with well-curated data or 

based on theory, and explanation interfaces with simple 

models and small datasets [1]. While some empirical user 

studies have shown explanations to be effective in well-

behaved, albeit simple and synthetic use cases (e.g., [3, 

12]), real data and systems face issues and challenges to 

make data processing and data mining messy. In particular, 

datasets often have missing data and imputation is typically 

used to estimate the true value of the missing data.  

Several methods can be used to impute data, such as 

substituting with zeros, substituting with mean values of the 

missing variable,  carrying forward (or backward) a nearby 

observed value, or model-based imputation (e.g., with 

hidden Markov  [17]). For example, if a patient has never 

been tested for blood calcium (CA), we may assume that 

his level would be in the healthy normal range and impute 

the patient’s reading as the mean of other patients with 

normal CA levels. On the other hand, if a patient had a 

recent high CA level, we may apply carry forward 

imputation to estimate his current level to be the same. 

Data imputation raises a potential problem of how to 

interpret explanations that depend on data features input 

into the model. How would a user trust the importance of a 

feature’s value in influencing an inference outcome if the 

value was not measured, but estimated from imputation? 

We hypothesize that users will have lower trust in cases of 

high data imputation and that some visualization methods 

may help to alleviate this problem.  

In this position paper, we discuss the importance of 

considering how data pre-processing to handle practical 

issues of real-world data affects the usefulness and 

interpretation of explanations about machine learning 

models. We will focus on the use case of disease risk 

prediction using the structured data of electronic medical 

records (EMR). EMRs typically contain a lot of missing 

data, not necessarily due to errors in data collection, but 

because of the wide variety of tests that patients can take 

and that patients only take few necessary tests occasionally 

[17]. For example, a non-diabetic person may not need to 

measure his HbA1c as frequently as a diabetic, and HbA1c 

only needs to be measured once every three months.  

Specifically, we seek to answer the following research 

questions: 

RQ1. What information will clinicians need to interpret 

how a clinical decision support system with disease risk 

prediction makes its decision and how will this change 

given their awareness that some data was imputed? 

RQ2. How can a suitable explanation be generated and 

presented to clinicians to alleviate the loss of trust in 

explanations due to imputation?  

RQ3. How will the imputation-aware explanation model 

and interface be interpreted by clinicians and how will it 

affect their decision making?  

APPROACHES: TWO EXPLANATION INTERFACES FOR 
IMPUTED DATA 

While there are several techniques to generate explanations, 

such as explanations by identifying similar instances [8] or 

by rule associations [11], we will focus on explanations by 

additive feature attribution or influence scores (e.g., LIME 
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[15], QII [4], GA2M [3]). This explanation style has been 

popular for generating explanations for healthcare analytics 

(e.g., Bussone et al. [3], GA2M [3], Prospector [10]). 

We propose two approaches to improve user trust in 

explanations given the increased uncertainty of imputations 

– based on expressing the uncertainty or hiding uncertain 

and, hence, confusing information. 

Visualizing Uncertainty Distribution of Feature 
Attribution Scores due to Imputation 

Visualizing uncertainty is a well-studied approach in HCI 

and information visualization to communicate errors and 

uncertainty to end users [6, 7, 8]. This has been shown to 

improve user trust and decision making, but may also lead 

to information overload or compromise trust [8, 13]. We 

will extend the typical presentation of explanations where 

each feature, 𝑥𝑖, has an influence score, 𝑓(𝑥𝑖) = 𝑓𝑖. With 

uncertainty due to imputation, the influence score will 

become 𝑓(𝑥𝑖 + ∆𝑥𝑖) = 𝑓𝑖 + ∆𝑓𝑖, where ∆𝑥𝑖 is the error 

distribution of feature 𝑥𝑖 and ∆𝑓𝑖 is the propagated 

(calculated) distribution in influence score due to the error. 

The distribution can be calculated by assuming a Gaussian 

distribution or performing a Monte Carlo simulation on 

propagated scores based on estimated error. Drawing from 

various taxonomies evaluated for usability [14], we will 

present the uncertainty in explanations as a distribution of 

influence scores in the form of violin plots (see Figure 1). 

We choose violin plots for their ability to express more 

detail in a probability distribution than box plots, while also 

being compact. 

De-emphasizing imputed features via Uncertainty 
Regularization 

We exploit the tendency for clinicians to suppress or ignore 

uncertain data [16]. Therefore, this approach seeks to hide 

features that have high uncertainty due to imputation.  

Feature Regularization is commonly used to simplify and 

generalize models in machine learning and to reduce 

overfitting, but we will leverage regularization to penalize 

features with higher uncertainty. Features with high 

uncertainty will have reduced influence scores or be hidden. 

Therefore, the explanation will show adjusted influence 

scores where some influences are reduced (e.g., horizontal 

bars shiftwed towards zero), or some features are not shown 

(influence bars hidden). 

For simplicity, we leverage LIME [15] to generate 

explanations and use the simple linear regression with 

regularization as the locally approximate explainer model. 

Training this explainer model involves minimizing the 

following loss function (simplified for brevity): 

ξ(𝑥) = 𝑎𝑟𝑔 min
𝑔

ℒ(𝑓, 𝑔) + Ω(𝑔)               (1) 

where, as defined in [15], ℒ(𝑓, 𝑔) is the local fidelity of the 

explainer model, 𝑔, with respect to the model to be 

explained, 𝑓 and 𝑥 is the data instance being explained. 

Ω(𝑔) is the measure of complexity (converse of 

interpretability). We use Lasso regression as is common for 

simple linear regression with sparsity regularization, so 

Ω(𝑔) = 𝜆1‖𝛽‖1. We extend this term to include a penalty 

for the uncertainty due to imputation, such that 

Ω(𝑔) = 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖𝑬
2                       (2) 

where 𝛽 is the explainer model parameters (coefficients in 

the sparse linear model in our case), 𝜆1 and 𝜆2 are 

hyperparameters to tune the complexity of the explanation, 

and 𝑬 is a diagonal matrix where the 𝑗th element equals to 

the uncertainty 𝜀0𝑗
2 , and ‖𝛽‖𝑬 = (𝛽𝑇𝑬𝛽)1/2. Here both 

sparsity and uncertainty are penalized to increase 

interpretability. By tuning the two hyperparameter 𝜆1 and 

𝜆2, we could change the complexity of the explanation with 

respect to number of features shown and how much to hide 

or de-emphasize uncertain features. 

FUTURE USER EXPERIMENTS: DISEASE RISK 
PREDICTION USE CASE 

We will investigate the impact of missing data on user trust 

in the explanations with an application use case in 

predictive healthcare analytics on electronic medical 

records (EMR). We will specifically focus on diagnosing 

hyperparathyroidism and recruit clinicians as the target 

user. We aim to improve their understanding, trust and 

decision making when using intelligible disease risk 

prediction. We will conduct two user studies: 

Formative user study: to understand the usability 

breakdowns in interpreting explanations given the 

awareness that some data features are based on data 

imputations, and user requirements for intelligibility. We 

will present users with several inference instances (i) 

without explanations, (ii) with explanations, and (iii) with 

missing data indicated. To understand how users interpret 

the explanation information and make their decisions, we 

will have them think aloud as they examine several use 

cases and conduct structured interviews. While we already 

 
Figure 1. Mockup of feature attribution explanations with 

uncertainty visualizations. Each horizontal bar chart represents 

the influence score due to the feature of the row. The vertical line 

in the bar indicates the influence score calculated by current 

methods (e.g., LIME [15]), and the shaded region indicates the 

uncertainty calculated by error propagation due to missing values. 



have hypothesized two approaches to generating 

uncertainty-aware explanations, with this initial study, we 

aim to learn more explanation approaches which users may 

want to better characterize the uncertainty due to imputation 

and what could be shown to regain their trust. 

Evaluative user study: we will implement our two 

explanation interfaces into diagnostic dashboard prototypes 

and perform a comparative evaluation with baselines of no 

explanation and with basic feature attribution explanations 

(e.g., LIME [15]). We note that the amount of uncertainty 

can confound the user’s level of trust in the system [13]. 

Therefore, we will control both the system confidence level 

and amount of imputation in patient cases used in the 

experiment scenarios. These will be varied as a secondary 

independent variable. We will measure the accuracy of user 

diagnosis (correct/wrong with respect to labels from 

hospital discharge reports), speed of decision (from first 

viewing patient data to final decision), confidence in 

diagnosis (7-point Likert scale), trust in the system 

prediction (7-point Likert scale), and understanding of the 

patient case (coded from transcribed interviews and think 

aloud (e.g., see [12, 13]). 

CONCLUSION 

In this position paper, we have discussed the importance of 

considering how data pre-processing, specifically data 

imputation, may compromise the interpretation and trust of 

explainable AI. We briefly presented two approaches to 

address the resultant uncertainty by either visualizing the 

uncertainty or by hiding it. We propose two experiments to 

understand the impact of missing data on the requirements 

for explainable AI and to evaluate the efficacy of the 

proposed solutions. 
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