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Abstract

Active learning provides a solution for annotating huge pools of data
efficiently to use it for mining and business analytics. Therefore, it re-
duces the number of instances that have to be annotated by an expert
to the most informative ones. A common approach is to use uncertainty
sampling in combination with a support vector machine (SVM). Some
papers argue that uncertainty sampling performs badly due to miss-
ing exploration, others report good results using an SVM. This paper
investigates whether uncertainty sampling is able to explore the data
space due to the kernel trick used by the SVMs. Hence, we evaluate
this on multiple synthetic and real datasets and the effects of parameter
tuning and kernel selection for different evaluation criteria.

1 Introduction

In classification tasks, active learning methods intelligently select unlabeled instances to be labeled by an expert.
The aim of active learning is to request labels from those instances that improve the classifier’s performance the
most [22]. To select the most useful instances, active algorithms should (1) explore the data space to find regions
with unexpected labels and (2) do exploitation, i.e., to refine the classifier’s decision boundary [8, 18].

One of the most commonly used methods is uncertainty sampling (US) which preferably samples instances
near the decision boundary. This behavior is often considered as pure exploitation, without exploration in the
strict sense. Some articles argue that this lack of exploration is the main drawback of US [4] and they claim that
this behavior of US may explain its inferiority to the purely exploratory random sampling [11, 22]. Some authors
therefore propose exploratory components for US [2, 20], while others capitalize the exploratory behavior of
SVMs, letting US sample instances near the SVM decision boundary [12]. These characteristics suggest that the
combination of SVMs and US might be promising. The rationale behind this is, that since SVMs use the kernel
trick to learn a linear separation of two classes, sampling close to this decision boundary should be sufficient and
exploration gets unnecessary. But is this truly the case?

In this paper, we investigate to what extend US, when combined with differently tuned SVMs, covers the
original data space to learn a classification model. Furthermore, we propose an evaluation framework to measure
the influence of this coverage (exploration) on the classification performance.

To demonstrate the interplay of US and a classifier in Fig. 1, we depict an exemplary one-dimensional dataset,
where we show how the behavior of US is affected by the behavior of the classification algorithm. We see a
dataset with two classes distributed across three clusters. A Bayesian classifier or even a very simple linear
classifier would probably detect the boundary, whereupon US would not select instances from the cluster at the
right. An SVM may, depending on the fit of its hyperparamters, place instances from the cluster at the right
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inside the decision area, whereupon US would readily consider them. Since the behavior of an SVM depends
on the chosen kernel and the SVMs hyperparameters, we investigate the dependencies between the exploratory
capabilities of US with SVMs and the chosen kernel, also w.r.t. its tuning.

labeled instances unlabeled candidates

current decision boundary

Figure 1: Two-class dataset with three clusters and a linear classifier.

The following section briefly summarizes the background and related work, followed by a description of the
experimental framework in section 3 and the conducted experiments in section 4. Finally, we provide a discussion
and conclude our results.

2 Background and Related Work

Active learning (AL) is a special area of machine learning, more precisely semi-supervised learning. A pool-based
active learner successively selects and removes an instance x ∈ U from a large pool of unlabeled instances U .
An expert annotates this instance with a class label y. This information is added to the labeled set of instances
L ← L ∪ {(x, y)} which forms the training basis for a classifier [22].

Different strategies exist to determine which instances are chosen. A simple but naive approach is selecting
instances at random, which has the benefit of potentially sampling a well distributed set of instances. A common
approach is called uncertainty sampling (US), its underlying rationale being that the learner should select those
instances the classifier is most uncertain about. For SVMs this might be the distance to the decision boundary
(simple margin [23]), probabilistic classifiers might use the posterior estimates.

Uncertainty sampling is solely focused on exploitation of the data [4], i.e. it acquires the labels of instances
that are useful to refining the decision boundary already assessed by the classifier. If the decision boundary
proposed by the model is close to the actual decision boundary for the data, this process of refinement is likely
to perform well. However, if there are unexplored regions in the data space with wrongly predicted labels far
from the decision boundary, they will not be found. One approach to overcome this problem is to alternate
between US for exploitation and an exploration component like random sampling [18, 16] or a semi-supervised
learning method[13, 12]. Another approach is to improve the US selection criterion either by improving the
uncertainty measure [23] or adding additional components to the criterion like expected model change [3, 12],
representativeness and diversity [6, 10, 12] or confidence [15].

A Support Vector Machine (SVM) is a supervised learning model performing binary classification in a kernel-
induced feature space [12]. For the binary classification problem (+/-), an SVM learns a decision hyperplane
that separates the classes in the kernel-induced topological space by a maximal margin. Therefore, an SVM
defines an objective function, where the sign indicates the predicted class of an instance x. The absolute value
of this objective function represents the distance of an instance x to the SVM decision hyperplane. Some of
the most commonly used kernel functions for support vector machines are the Polynomial, RBF, Sigmoid and
Laplacian kernels [21].

In this context, the goal of an SVM is to achieve an optimal separation in the kernel-induced space. As the
hyperplane is gradually ’refined’, exploration becomes less and less important. Indeed, Tong and Koller [23]
assume a quick reduction of the version space size using US since the current hypothesis of an SVM is roughly
in the center of the version space. Hence, choosing an instance near the center should approximately split the
version space in halves [23, 18]. There have been arguments against this, suggesting that the simple margin
implementation of US fails to achieve this approximate halving of the version space in some cases [17, 12]. An
aspect that has to be considered in the discussion about US with SVMs and exploration is the question of how the
SVM hyperparameters are chosen, since it has been shown that they strongly influence the performance of the
active learner [5, 14]. A problem with using common methods to determine appropriate SVM hyperparameters,
such as tuning them through grid search, in the context of AL is that the required labeled data needed for such
approaches is not available at the start of the AL process. However the most commonly used kernel function for
SVM AL of those mentioned above is RBF [6, 7, 13, 16, 18], which requires only one parameter. This popularity
might be due to the fact that the RBF kernel has been shown to learn concepts well even with few available
training examples [17] (as is usually the case in active learning scenarios) and tends to explore the feature space
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more than its alternatives, although it can be more sensible to noise in the data [5]. Lin and Lin recommend
using the RBF kernel for most applications, but also suggest that the Sigmoid kernel can behave similar to RBF
given certain hyperparameters [14].

3 Evaluation Framework

In our experiments, we use pool-based active learning as described in Sec. 2 and stop learning after 50 label
acquisitions (budget B = 50). For uncertainty sampling (US), we use the most commonly used simple margin
(sm) implementation for SVMs by [23]. To compare the exploratory behavior, we additionally use a random
sampler with each classifier (SVM+kernel+tuning). Since an SVM requires at least one instance of each of the
two classes for training the labeled set L set was initialized accordingly.

In Alg. 1, we show our framework to evaluate our active learning experiments. For a given data model M,
we perform US using SVMs with different kernels as defined in [21], namely a polynomial kernel, a radial basis
function kernel, a sigmoid kernel, and a Laplacian kernel.

To tune the hyperparameters of each classifier (SVM+kernel), we perform a grid search on a separate tuning
set Dtune. This is generated by selecting B labeled instances from the data model M, to optimize the classifier
according to the final number of labels. The labels in the Dtune set are used solely for tuning and validating
the hyperparameters. To avoid a bias of the model due to overfitting, the labels in Dtune are not used in the
training or testing of the active learner. Based on the hyperparameter optimization, we select for each kernel (1)
the best parameter setting and (2) a parameter setting that achieved medium results. Surely, the classification
performance will probably decrease by selecting a non-optimal parameter setting. Here, we want to investigate
the influence of the parameter choice for doing exploitation. Hence, we get two different classifiers for each kernel
Ck,t. The search space of the hyperparameter optimization is given in Tab. 1: γ denotes the kernel coefficient,
C is the penalty parameter of the error term of the SVM, d is the degree of the polynomial kernel and coef0 is
the independent term of the kernel function [19].

Parameters Value Space
γ {1e−5, 1e−3, 1e−2, 1e−1, 0.2, 0.4}
C {1, 10, 100, 200, 400, 1000}
d {1, 2, 3, 4}
coef0 {0.0, 0.1, 0.2, 0.3}

Table 1: Search space for hyperparameter tuning

The experiments are conducted based on a set of 200 different seeds that were used for generating resp.
splitting the datasets. For each seed, we generate a test set Dtest which we use for evaluation and a training
set U consisting of solely unlabeled instances. As mentioned above, the labeled set L is initialized with one
instance from each of the two classes. Then, the active learner chooses B instances successively to be labeled.
The unlabeled instance is removed from U and added (with the corresponding label) to L.

As the modelM is not explicitly given for the real world datasets, we split B instances from the real datasets
for hyperparameter tuning. Then, half of the remaining instances is used for testing, the other half for training.

In the evaluation step, we focus on two aspects: (1) the classifier’s performance, and (2) the amount of
exploration. To address the classifier’s performance, we determine the hold-out accuracy on the test set Dtest

for each budget step resulting in a learning curve for each active learner and each classifier. The exploration is
addressed by a score motivated by [6]. Here, we determine the average euclidean distance from each instance
x ∈ Dtest to the nearest labeled instance xl ∈ L (see Eq. 1). This score (avg. min. distance) is determined
after each acquisition, which again results in a learning curve. A low value indicates a good coverage of the data
space, high values indicate that labeled instances are far away. Per definition, this score is decreasing over time,
as more labeled instances are added subsequently to the labeled set.

1

|Dtest|
∑

x∈Dtest

min
xl∈L
||x− xl||2 (1)

Regarding the expected results of the experiments, it is difficult to make predictions as to the differences in
performance and exploration between the different kernel functions. Generally, it is to be expected that the rbf
and laplacian kernel will show a similar but not identical behavior based on their similarity. Among the artifical
datasets the ones referred to as ’Three Cluster Datasets’ (Sec. 4.1) are designed with an expected result in mind:
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Data: data model M, seeds S, budget B = 50, SVM C, active method US
begin

for k ∈ {RBF,Poly,Sigm,Laplace} do
for t ∈ {best,middle} do

Dtune ← getLInst(M, B);
pk,t ← gridSearch(C(k), Dtune, t);
Ck,t ← initializeClassifier(C(k), pk,t);
for s ∈ S do

Dtest ← getLInst(M, 350, s);
L ← getOneLInstPerClass(M, s);
U ← getUInst(M, 350, s);
for i ∈ {1, . . . , B} do

C∗ ← trainClassifier(C,L);
x∗ ← selectInst(US,U , C∗);
y∗ ← getLabel(M, x∗);
U ← U \ {x∗};
L ← L ∪ {(x∗, y∗)};
evaluate(C∗,L, Dtest)

end

end

end

end

end
Algorithm 1: Evaluation framework

since one of the three clusters is unknown to the active learner at the beginning because only two labels are
given in the initial L set, we expect that learners using US with a linear classifier will find this cluster very late.
However, as these clusters are generated with Gaussian distributions, it is likely that both the rbf and laplacian
kernel will perfom better by using this implicit information.

4 Experimental Evaluation

In the experimental evaluation, we use 10 different data models resp. datasets to investigate the exploratory
capabilities of uncertainty sampling and SVMs (see Fig. 2a-2f). Therefore, we used a cluster system running the
NeuroDebian system [9]. First, we discuss the results on an artificial dataset consisting of three clusters and
investigate, if uncertainty sampling acquires labels in every cluster. We then try to generalize the findings on
further artificial datasets from a standard library and on real data.

4.1 Three Cluster Dataset

The first model consists of three Gaussian clusters, two clusters of class one and the other cluster of the second
class. To get more expressive results, we use three different standard deviations (equal for all clusters) to have well
separated clusters as well as overlapping ones (high standard deviation (overlapping): gaussian 2dp0, medium:
gaussian 2dp1, low (well-separated): gaussian 2dp2). Since 2 of the 3 clusters are sampled in the initialization
step, the learner’s task is to discover the remaining cluster in order to perform well.

If a learner-classifier combination was able to find the remaining cluster is summarized in Tab. 2. In each cell,
we show the percentage that the active learner found the unknown cluster within the first B label acquisitions
across all 200 trials. Every classifier has a specific kernel and a set of hyperparameters coming from the grid
search tuning. Here, we choose the best performing hyperparameters (best) as well as non-optimal ones (middle).

Choosing the best set of parameters, the SVMs with a laplacian and an rbf kernel are able to discover the
remaining cluster reliably, whereas the discovery rate of those using a polynomial or sigmoid kernel is less than
25%. Applying not-optimal parameters, the detection rate of an SVM with an rbf decreases, but the rate of
polynomial SVMs increases to approx. 50% and of sigmoid SVMs to higher than 80%. This exploratory behavior
is also indicated by the average minimal distance score in Fig. 3b, 3d. Here, a high discovery rate correlates with
a low value for the avg. min. distance. In this specific dataset, there is a clear correlation of the exploration
score, resp. the discovery rate, and the learning curves in Fig. 3a. The previously mentioned expectation of the
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(a) Example of the ’classification’ dataset
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(b) Example of the ’quantiles’ dataset
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(c) Example of the ’moons’ dataset

10 5 0 5 10 15 20 25 30 35
10

5

0

5

10

15
Gaussian_2d_preset_0

(d) Example of the 3 cluster ’Gaussian’ dataset, preset 0
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(e) Example of the 3 cluster ’Gaussian’ dataset, preset 1

5 0 5 10 15 20 25
4

2

0

2

4

6

8
Gaussian_2d_preset_2

(f) Example of the 3 cluster ’Gaussian’ dataset, preset 2

Figure 2: Examples for the various artificial datasets
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(a) Learning curve with best parameters
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(b) Avg. min. dist curve with best parameters
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(c) Learning curve with middle parameters
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(d) Avg. min. dist curve with middle parameters

Figure 3: Results for the Gaussian 2dp1 dataset
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(a) ’Quantiles’ learning curve
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(b) ’Quantiles’ avg. min. dist curve

Figure 4: Results using best parameters on the generated data using the scikit-learn functions
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(a) ’Classification’ learning curve
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(b) ’Moons’ learning curve

Figure 5: Results using best parameters on the generated data using the scikit-learn functions
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(a) Abalone
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(b) Mammo
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(c) Haberman
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(d) Vertebral

Figure 6: Learning curves on the real-world datasets with best parameters
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Params Kernel/Data p0 p1 p2
best laplace 100% 100% 100%

poly 23% 1% 0%
rbf 100% 100% 100%
sigmoid 18% 7% 22%

middle laplace 100% 100% 100%
poly 67% 49% 56%
rbf 64% 56% 56%
sigmoid 98% 94% 82%

Table 2: Discovery rate of the unknown cluster on the gaussian 2d dataset for the different presets and learner
configurations using uncertainty sampling.

rbf and laplacian kernel learners to perform better based on the Gaussian distributions of the data was shown
to be correct. The accuracy curves of the random learners can also be used to find out, if the tuned SVM is able
to fit the decision boundary. Using the best hyperparameters, all random active learners achieve a performance
higher than 0.9 accuracy which means that these are generally able to perform well. Here, a lack of exploration
also leads to bad performance.

Using non-optimal parameters, the discovery rate might increase, but the ability to find an appropriate
boundary decreases (except for the laplacian kernel), which is not surprising. Hence, an increase of exploration
by changing the kernel does not necessarily increase the accuracy of a classifier, as the classifier is not able
anymore to fit the decision boundary accordingly. Interestingly, uncertainty sampling now performs better
with non-optimal hyperparameters compared to random in general. This observation could be critical to active
learning research: In active learning research, the main focus is to compare different active learning algorithms.
Hence, they fix a classifier and a hyperparameter setting (however this is determined) and compare the active
methods with each other. This experiment shows that random and US methods using the same SVM with the
same kernel can change their order by just varying their hyperparameters.

Note that these experiments are based on normal distributions. We expect circular shapes which might favors
the performance of rbf or laplace kernels. Hence, we perform more experiments using less structured data.

4.2 Synthetic Datasets

The results of the synthetic datasets are given in Fig. 4a-4b and Fig. 5a-5b. All three datasets are provided by
the scikit-learn library [19], namely ’quantiles’, ’classification’ and ’moons’. Here, we only show the results for
the best tuning hyperparameters.

In the exemplary Fig. 4a-4b, a fast decreasing avg. min. distance (high exploration) in the early steps indicates
a fast improvement in terms of accuracy. This tendency is also visible on the other datasets which we provide at
our companion website1. This is also indicated by the observation that the random sampler is similar or better
in the early steps (except for sigmoid on Quantiles) but beaten later by the uncertainty sampling (simple margin
sm) method. This has also been shown by various other authors that an exploration phase in the beginning is
beneficial.

Finding the best SVM+AL combination remains difficult: On Quantiles, the polynomial SVM in combination
with simple margin is superior. On Classification and Moons, the winner is the laplacian SVM + simple margin.

4.3 Real-world datasets

The real-world datasets are chosen from the UCI machine learning repository [1] and include the ’Abalone’,
’Haberman’, ’Mammo’ and ’Vertebral’. Their characteristics are summarized in Tab. 3. We transformed nominal
attributes into multiple binary attributes, numerical attributes were normalized to [0, 1].

On these datasets, we choose to show the learning curves of the well-tuned SVMs in Fig. 6a-6d as one would
do this in practice. The winning kernel differs very much across the datasets. On Abalone, the laplacian kernel
was superior; on Mammo it was the polynomial kernel and on Haberman and Vertebral, the rbf kernel was best.

On Mammo and Vertebral, we observe the same situation as in Sec. 4.2: random sampling outperforms simple
margin in the early learning stage and the latter catches up or surpasses random sampling later on. The results on
Abalone in Fig. 6a show that the laplacian kernel is beneficial. Even more interesting is that random outperforms

1http://kmd.cs.ovgu.de/res/explore-us/
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Name Attributes Size
Abalone 8 4177
Haberman 3 306
Mammo 11 830
Vertebral 6 310

Table 3: Characteristics of the real-world datasets

the simple margin strategy for every other kernel. The same appears on Haberman in Fig. 6c. Only the laplacian
kernel single margin strategy outperforms its random competitor, but the performance of both are far less then
all others.

To summarize, there are quite a lot of cases where a solely exploratory strategy (random) outperforms the
uncertainty sampling approach which was combined with a pre-tuned SVM to potentially add some exploration.

5 Discussion and Conclusion

In this paper, we investigated the exploratory capabilities of uncertainty sampling (US) in combination with
different support vector machines (SVMs). We described an evaluation framework and tested multiple synthetic
and real datasets using this framework. Furthermore, we proposed to use the average minimum distance as an
indicator for exploration.

Although SVM and US are seen as a promising combination for active learning, it does not mitigate the lack
of exploration to which the inferior performance of US is accredited to. The exploiting behavior of US in the
kernel-induced space ends up looking similar to exploratory behavior in the feature space, yet it does not perform
actual exploration in a strict sense.

If non-optimal SVM hyperparameters are used, the exploitation that US performs in the kernel-induced space
becomes less precise which can lead to the behavior showing more exploratory characteristics. However, in a
strict sense this is more a misbehavior of the exploitation than real exploration of the data space. Hence, we
conclude that merely choosing a SVM to perform US does not replace a dedicated exploratory component.

The experimental results affirm that exploration in the beginning of the active learning process is indeed
beneficial to the classification performance. Furthermore, they indicate that the hyperparameter tuning is
critical to classification performance. We propose to validate multiple hyperparameters in an evaluation of
active methods to get rid of the bias induced.
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