USING AN ASPECT ORIENTED LAYER
IN SOA FOR ENTERPRISE APPLICATION
INTEGRATION

Chinthaka D. Induruwana
Supervisor John Gurd
School of Computer Science

The University of Manchester

Service Oriented Architecture
(SOA)

« SOA is a method for achieving EAL.

« SOA enables loosely coupled services
to be individually deployed.

— This means that a particular system can be
constructed by joining smaller, loosely
coupled components. The benefit of this is
that smaller components are easier to
develop, test and reuse.

Aspect Oriented Software
Development (AOSD)

« Complements object oriented and procedural
programming languages
« Aims to improve modularity

« Separates concerns
— Functional

— Non-functional

* Non-functional concerns that crosscut are referred to as
crosscutting concerns in AOP terminology and aspect can
be used to encapsulate them

(Gregor Kiczales et al, 1997)

Non-functional concerns / Aspects

» Logging
— The logging concern deals with the
encapsulation of the logging behaviour. When
certain points of the program execution are
reached, the system log is updated to store a
record of the program execution.

« Security

— The security concern deals with different
security aspects of the EAI. For example, the
security mechanism used to communicate
between the different services.

Current flexibility issues when applying
SOA to EAI (1 of 3)

V-
Service
(x1)
V2
Service | > NQX Service
(x2) (y2)
Key
Intergration log
TITIITITIT Logging
I Securi ty

Current flexibility issues when applying
SOA to EAI (2 of 3)

« Crosscutting

— The implementation of a concern such as logging can
result in the code for the implementation being
scattered across the system.

« Code tangling

— The implementation of a crosscutting concerns with
non-AQOP results in code tangling. Such that the code
for a particular concern becomes intermixed with
code for another concern.

Current flexibility issues when applying
SOA to EAI (3 of 3)

— Ad-hoc solution (integration logic is hardwired
to services)

— The current integration lacks flexibility,
scalability and reliability

A novel layer in enterprise application integration
(1 of 3)

Service Service
(x1) < » (y1)

Transformation

Cross-service
Concerns

Key
Service Service . _
(x2) < ’ (y2) Intergration logic
Logging
I Security

Application service integration layer (ASIL).
(Induruwana, 2005) 8

A novel layer in enterprise application
integration (2 of 3)

 Join-points
— Well defined places in the program execution flow
where aspects can be advised.

* Advice
— Advice is the behaviour of the aspect at the join-point.
» Weaving

— Weaving is the process of composing a core
functionality model with aspects and creating the final
working system.

A novel layer in enterprise application
integration (3 of 3)

Service X1 (Business Object x1(a))
Aspect: Security

Advice: WS-Security

Joinpoint: Message

IDL

|

ASIL

O wew

Service X2 (Business Object x2(a))
Aspect: Security

Advice: WS-Security

Joinpoint: Message

IDL

|

ASIL

10

ASIL Layer

Client
1

Plane SOAP Message

I

ASIL

|

Advise 1 Logging

|

Advice 2 Security

Metadata layer
1. WSDL
description

------------ s
7

|

Advice 3 ...

: 2. ASIL-IDL ”
. description of non- :

|

ASIL

I

Enhanced SOAP Message

I
Service

11

IT Advantages

» Encapsulation of integration logic.

— The advantage is that if a particular set of services is
upgraded, or another one is integrated, and the XML
message specification changes, only the
transformation rule at one site needs to be altered.

« Encapsulation of cross-service concerns.

— The advantage is that it enables the non-functional
concerns of the system to be handled in a uniform
and consistent fashion across the enterprise.
Examples are logging and fault tolerance.

12

Business motivations for ASIL

Enterprise wide standardisations
Increased organisation agility

Decreased future business automation
costs

— By decreasing the IT response time to adapt
to business process change

13

Novel features

* No other AO approaches for EAL.

* ASIL enables vendor/platform independent
aspect descriptions.

— In other AO-middleware the aspects are
dependent on a particular framework, and as
a result have to be modified when reused
within a different framework. Therefore not
suitable for EAI.

14

References

Gregor Kiczales, J.l., John Lamping, Jean Marc
Loingtie R, Cristina Videria Lopes, Chris Maeda,
Anurag Mendhekar, Aspect-Oriented Programming.
ECOOP 1997:p. 220-243

Induruwana, C.D, Using an Aspect Oriented Layer in
SOA for Enterprise Application Integration. Pending
Publication Workshop ICSOC 2005

Sayavedra, A.L.a.L., EAl Business Drivers. EAI
Journal, 2003. 2:p.27-29

15

Questions?

16

Aspect oriented evaluation

criteria

Programming Model N — New
E — Extension of/Based on standard model

Primary Entities 0O - Objects WS — Web Services
C — Components A —Agents

C{model) — Component Standard Model | Oth — Other kind

Weaving Model

C — Compile Time
D — Deploy Time
L — Load Time

B — RunTime

Joint Point Model

[— Invasive
NI — Non invasive

Aspect Reusability

A — High (Always)
— — Medium (Depends on the software developer)
¥ _ Low (Never)

Application
Extensibility/Adaptability

A — High (Both runtime and previous development phases)
= — Medium (Only one of the alternatives)
¥ — Low (Neither of them)

Monica Pinto, L.F.F., Pablo Sanchez, Matthew Webster, Adrian Colyer, Neil Loughran, Nikos Parlavantzas,

Survey of Aspect Oriented Middleware. Survey Version: 1.0 AOSD-Europe-ULANC-10, 2005.

17

Hierarchical structures for
middleware evaluation

Extension of
Binding Types

Customisability of
Binding Management

Binding Adaptation

| Customisability of Resource
Resource Management Adaptation
Platform
Requirements ~,
3 _Configurability
Extensibility of
Resource
W Managemeant Policies

Binding

Management

Customisabil
S{-Usefulness i isability
Reliability
|
™

Monica Pinto, L.F.F., Pablo Sanchez, Matthew Webster, Adrian Colyer, Neil Loughran, Nikos Parlavantzas, 18
Survey of Aspect Oriented Middleware. Survey Version: 1.0 AOSD-Europe-ULANC-10, 2005.

Ease of

