

Authors’ addresses: Hannu Jaakkola, Tampere University of Technology, Pori, Finland, hannu.jaakkola@tut.fi; Jaak Henno,

Tallinn University of Technology, Tallinn, Estonia, jaak.henno@ttu.ee; Tatjana Welzer-Družovec, University of Maribor,

Maribor, Slovenia, tatjana.welzer@um.si; Jukka Mäkelä, University of Lapland, Rovaniemi, Finland,jukka.makela@ulapland.fi;

Bernhard Thalheim, Christian Albrechts University, Kiel, Germany, thalheim@is.informatik.uni-kiel.de.

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac, Z. Horváth, T. Kozsik (eds.): Proceedings of the SQAMIA 2016: 5th Workshop of Software Quality, Analysis,

Monitoring, Improvement, and Applications, Budapest, Hungary, 29.-31.08.2016. Also published online by CEUR Workshop

Proceedings (CEUR-WS.org, ISSN 1613-0073).

Why Information Systems Modelling Is Difficult

HANNU JAAKKOLA, Tampere University of Technology, Finland

JAAK HENNO, Tallinn University of Technology, Estonia

TATJANA WELZER DRUŽOVEC, University of Maribor, Slovenia

BERNHARD THALHEIM, Christian Albrechts University Kiel, Germany

JUKKA MÄKELÄ, University of Lapland, Finland

The purpose of Information Systems (IS) modelling is to support the development process through all phases. On the one hand,

models represent the real-world phenomena – processes and structures – in the Information System world and, on the other

hand, they transfer design knowledge between team members and between development phases. According to several studies

there are reasons for failed software projects in very early phases, mostly in bad quality software requirements` acquisition and

analyze, as well as in lacking design. The costs of errors are also growing fast along the software life cycle. Errors made in

software requirements analyze are increasing costs by the multiplying factor 3 in each phase. This means that the effort needed

to correct them in the design phase is 3 times, in the implementation phase 9 times and in system tests 27 times more

expensive than if they would be corrected at the error source; that means in the software requirements analyze. This also points

out the importance of inspections and tests. Because the reasons for errors in the requirements phase are in lacking

requirements (acquisition, analyze) which are the basis of IS modelling, our aim in this paper is to open the discussion on the

question ”Why is Information Systems modelling difficult?”. The paper is based on teachers’ experiences in Software

Engineering (SE) classes. The paper focuses on the modelling problems on the general level. The aim is to provide means for the

reader to take these into account in the teaching of IS modelling.

Categories and Subject Descriptors: D [Software]; D.2 [Software Engineering]; D 2.1 [Requirements / Specifications]; D

2.9 [Management]; H [Information Systems]; H.1 [Models and Principles]; H.1.0 [General]

General Terms: Software Engineering; Teaching Software Engineering, Information Systems, Modelling

Additional Key Words and Phrases: Software, Program, Software development

1. INTRODUCTION

The purpose of Information Systems (IS) modelling is to establish a joint view of the system under

development; this should cover the needs of all relevant interest groups and all evolution steps of the

system. The modelling covers two aspects related to the system under development – static and

dynamic. A conceptual model is the first step in static modelling; it is completed by the operations

describing the functionality of the system. These are, along the development life cycles, cultivated

further to represent the view needed to describe the decisions made in every evolution step from

recognizing the business needs until the final system tests and deployment. The conceptual model

represents the relevant concepts and their dependences in the terms of the real-world. Further, these

concepts are transferred to IS concepts on different levels.

The paper first focuses in the basic principles related to IS modelling. The topics selected are based

on our findings in teaching IS modelling. The list of topics covers the aspects that we have seen as

difficult to understand by the students. The following aspects are covered: Variety of roles and

communication (Section 2), big picture of Information Systems development (Section 3), role of

abstractions and views (Section 4), characteristics of the development steps and processes (Section 5),

varying concept of concept (Section 6) and need for restructuring and refactoring after IS deployment

(Section 7). Section 8 concludes the paper.

These different points of view give – at least partial – answers to our research problems: Why

Information Systems modelling is difficult to teach? Why this topic is important to handle? In our

4

4:30 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

work we recognized problems in learning the principles of Information Systems modelling. If these

problems are not understood, the software engineers’ skills are not at the appropriate level in

industry. The paper could also be understood as a short version of the main lessons in Software

Engineering (SE).

2. UNDERSTANDING THE ROLES AND COMMUNICATION

Software development is based on communication intensive collaboration. The communication covers

a variety of aspects: Communication between development team members in the same development

phase, communication between development teams in the transfer from one development phase to the

next one, and communication between a (wide) variety of interest groups. The authors have handled

the problems related to collaboration in their paper [Jaakkola et al. 2015]. Figure 1 is adopted from

this paper.

Fig. 1. Degrees of collaboration complexity [Jaakkola et al. 2015].

The elements in Fig. 1 cover different collaboration parties (individual, team, collaborative teams

(in the cloud), collaboration between collaborative teams (cloud of clouds) and unknown collaboration

party (question mark cloud). The collaboration situations are marked with bidirectional arrows.

Without going into the details (of the earlier paper) the main message of the figure is the fast growing

complexity in collaboration situations (1*1; 1*n’; nk*n’k’*m’). In increasing amounts there are also

unknown parties (question mark cloud; e.g. in IS development for global web use), which increases the

complexity. The explicit or implicit (expected needs of unknown parties) communication is based on

messages transferred between parties. Interpretation of the message is context-sensitive (i.e., in

different contexts the interpretation may vary). The message itself is a construction of concepts. The

conceptual model represents the structure of concepts from an individual collaborator’s point of view.

An important source of misunderstanding and problems in collaboration is an inability to interact

with conceptual models.

In this paper we concentrate on two important roles – the Systems Analysts and the customer

(variety of roles). The starting point is that the Systems Analysts are educated in ICT Curricula and

they should have a deep understanding of the opportunities provided by ICT in business processes.

The customer should present the deep understanding of the application area instead, and they are not

expected to be ICT experts. What about the Systems Analyst – should he/she also be expert in ICT

 Why Information System Modelling is Difficult • 4:31

applications? We will leave the exact answer to this question open. Our opinion is that, first and

foremost, the Systems Analyst should be a model builder who is filtering the customer’s needs and,

based on abstractions, finally establishes a baseline as a joint view – from the point of view of all

interest groups - to the system under development. The joint view is based on communication between

different parties. The Standish Group has reported communication problems between Systems

Analysts and users - lack of user involvement – to be one of the important sources of IS project

failures (Chaos report [Standish Group 2016]).

3. UNDERSTANDING THE BIG PICTURE OF MODELLING

Information System development is based on two different views, the static one and the dynamic one,

having a parallel evolution path. All this must be recognized as a whole already at the beginning,

including the evolution of requirements through the development life cycle. Figure 2 illustrates flow in

the “big picture” of modelling. In the upper level of IS development the approach always follows the

principles of a “plan driven” approach, even in the cases where the final work is based on Agile or lean

development.

Fig. 2. Static and dynamic evolution path in Information System modelling.

In this paper we do not focus on the discussion of the current trends in software development

models. The traditional plan-driven (waterfall model based) approach is used. It is an illustrative way

to concretize the basic principles of the constructive approach in software development. The same

principles fit in all approaches, from plan-driven (waterfall based) to agile, lean, component based,

software reuse based etc. approaches. According to Figure 2 the Information System development has

its roots in business processes (understanding and modelling). Business processes represent the

dynamic approach to the system development, but also provide the means for the preliminary concept

recognition and the operations needed to handle them. The conceptual model is a static structure

describing the essential concepts and their relationships. The Information System development

continues further by the specification of the system properties (to define the system borders in the form

of external dependencies) and transfers the real-world concepts first into the requirement level, and

further to the architecture and implementation level concepts. Separation of the structure and

behavior is not always easy; people are used to describing behavior by static terms (concepts) and

static state by dynamic terms (concepts).

The role of “work product repository” is not always recognized. The development flow produces

necessary work products, which are used by other parts of the development flow. Conformity between

work products must be guaranteed, but is not always understood clearly. Conformity problems, both

4:32 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

in the horizontal (evolution path of work products) and vertical (dynamic vs. static properties)

direction are typical.

4. UNDERSTANDING THE ROLE OF ABSTRACTIONS AND VIEWS

The IS development is based on abstractions – finding the essence of the system under development.

Figure 3 illustrates the role of abstractions in Information Systems modelling.

Fig. 3. The role of abstractions [Koskimies 2000; modified by the authors].

The Information System is the representative of the real-world (business) processes in the “system

world”. The model (set) of Information System describes the real-world from different points of view

(viewpoint) and a single model (in the terms of UML: Class diagram, state diagram, sequence

diagram, …) provides a single view to certain system properties. Information System is an abstraction

of the real-orld covering such structure and functionality that fills the requirements set to the

Information System. Such real-world properties that are not included in the Information System are

represented by the external connections of it or excluded from the system implementation (based on

abstraction). As seen in Figure 3, the starting point of the model is in the real-world processes, which

are partially modelled (abstraction) according to the selected modelling principles; both the static and

dynamic parts are covered. The individual models are overlapping, as well as the properties in the

real-world (processes). This establishes a need for checking the conformity between individual models;

this is not easy to recognize. An additional problem related to abstractions is to find the answer to the

question “What should be modelled?” and “How to fill the gaps not included in the models?”. No clear

answer can be given. However, usually the problems in Information Systems relate more to the

features that are not modelled than to those that are included in the models. Models make things

visible, even in the case that they include some lacks and errors (which are also becoming visible this

way).

The Information System development covers a variety of viewpoints to the system under

development. Structuring the viewpoints helps to manage all the details of the Information System

related data as well as the dependences between these. In this context, we satisfy by referring to the

widely used 4+1 View model introduced originally by Kruchten [Kruchten 1995], because it is referred

to widely and was also adopted by the Rational Unified Process specification.

 Why Information System Modelling is Difficult • 4:33

Fig. 4. 4+1 architectural view model (Kruchten 1995; Wikipedia 2016]

The aim of the 4+1 view model (Figure 4) is to simplify the complexity related to the different

views needed to cover all the aspects in Information Systems` development; the relations between

different views are not always clear. Views serve different needs: A logical view provides necessary

information for a variety of interest groups, a development view for the software developers, a physical

view for the system engineers transferring the software to the platforms used in implementation, and

the process view to the variety of roles responsible for the final software implementation. Managing

the conformity between the variety of views (models) is challenging. Again, to concretize the role of

views in Information Systems modelling, we will bind them to UML (static path related)

specifications: Logical view – the main artefact is a class diagram; development view – the main

artefact is a component diagram; physical view – the main artefact is a deployment diagram; process

view - the artefacts cover a variety of communication and timing diagrams. Dynamic path decisions

are specified by a variety of specifications, like state charts, activity diagrams, sequence diagrams and

timing descriptions.

One detail not discussed above is the role of non-functional (quality) properties, assumptions and

limitations. Without going to the details, we state that they are changing along the development work

to functionality, system architecture, a part of the development process, or stay as they are to be

verified and validated in qualitative manner.

5. UNDERSTANDING THE CHARACTERISTICS OF THE DEVELOPMENT PATH AND PROCESSES

The purpose of the Information Systems development life cycle models is to make the development

flow visible and to provide rational steps to the developer to follow in systems development. There

exists a wide variety of life cycle models – from the waterfall model (from the 1960s) as the original

one to the different variants of it (iterative – e.g. Boehm’s spiral model), incremental, V-model and,

further, to the approaches following different development philosophies (e.g. Agile, Lean); see e.g.

[Sommerville 2016]. As already noted above, our aim is not to go in detailed discussion of development

models. All of them represent in their own way a model of constructive problem solving, having a more

or less similar kernel with different application principles.

We selected the V-model to illustrate the development path for two reasons. The origin of the V-

model is in the middle of 1980s. In the same issue, both Rook [Rook 1986] and Wingrove

[Wingrove1986] published its first version, which has since been adopted by the software industry as

the main process model for traditional (plan-driven) software development. Firstly, it separates

clearly the decomposition part (top-down design) and composition part (bottom-up design) in the

system evolution, and, secondly, it shows dependences between the early (design) and late (test) steps.

An additional feature, discussed in the next Section, relates to the evolution of the concept of concept

along the development path.

4:34 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

Fig. 5. The V-model of Information System development.

The development activity starts (Figure 5; see also Figure 2) from business use cases (processes)

that are further cultivated towards user requirements (functionality) and the corresponding static

structure. In the top down direction (left side) the system structure evolution starts from conceptual

modelling in the terms of the real-world. These are transferred further to the structures representing

the requirements set to the Information System (in terms of the requirements specification).

Architecture design modifies this structure to fill the requirements of the selected architecture (in

terms of the architecture) having focus especially on the external interfaces of the system. The detailed

design reflects the implementation principles, including interfaces between system components and

their internal responsibilities. Implementation ends the top-down design part of the system

development and starts the bottom-up design. The goal of the bottom-up design is to collect the

individual system elements and transfer them to the higher level abstractions, first to components

(collection of closely related individual elements – in terms of the UML classes) and further to the

nodes, which are deployable sub-systems executed by the networked devices. The bottom-up modelling

includes the sketching and finalizing phases. An additional degree of difficulty in this “from top-down

to bottom-up“ elaboration is its iterative character; the progress is not straightforward, but iterative,

and includes both directions in turn.

6. UNDERSTANDING THE VARYING CONCEPT OF CONCEPT

Along the development path the abstraction level of the system is changing. This reflects also in the

used terminology. This is illustrated in Figure 5`s middle part – concept evolution. In the beginning of

the development work the modelling is based on the real-world concepts (conceptual model); this

terminology is also used in communication between the Systems Analyst and different interest

groups. As a part of requirements specification these concepts are transferred to fill the needs of

system requirement specification. The terminology (concepts used) represents the requirements level

concepts, which do not have (necessarily) 1-1 relation. In architecture design the concepts related to

architecture decisions become dominant – i.e. the role of design patterns and architecture style become

important. This may also mean that, instead of single concept elements, the communication is based

on compound concepts. In practice this may mean that, instead of single elementary concepts (class

diagram elements), it becomes more relevant to communicate in the terms of design patterns

(observer-triangle, proxy triangle, mediator pair, factory pair, etc.) or in the terms of architecture style

(MVC solution, layers, client-server solution, data repository solution). The implementation phase

 Why Information System Modelling is Difficult • 4:35

brings the need for programing level concepts (idioms, reusable assets, etc.). To summarize the

discussion, the communication is based on different concepts in different parts of the development life

cycle – we call it the evolution of concepts.

7. PROACTIVIVE MODELLING - STRUCTURAL AND CONCEPTUAL REFACTORING

Programs model real-life systems and are designed for real, currently existing computer hardware.

But our real-life – our customs, habits, business practices and hardware are changing rapidly and our

computerized systems should reflect these changes in order to perform their tasks better. Thus,

software development is never finished – software should be modified and improved constantly and,

therefore, should be designed in order to allow changes in the future. Because of that the design

should take into account the need for future changes in a proactive manner; otherwise the changes

become expensive and difficult to implement and cause quality problems. Proactive modelling is based

on the use of interfaces instead of fixed structures, modifiable patterns in design, generalized concepts

and inheritance instead of fixed concepts, the use of loose dependencies instead of strong ones, extra

complexity in concept to concept relations, etc.

The most common are changes in program structure - structural refactoring, applying a series of

(generally small) transformations, which all preserve a program's functionality, but improve the

program`s design structure and make it easier to read and understand. Programers` folklore has

many names and indices for program sub-structures (design smells), which should be reorganized or

removed: Object abusers (incomplete or incorrect application of object-oriented programing principles),

bloaters (overspecification of code with features which nobody uses, e.g. Microsoft code has often been

called 'bloatware' or 'crapware'), code knots (code which depends on many other places of code

elsewhere, so that if something should be changed in one place in your code you have to make many

changes in other places too, so that program maintenance becomes much more complicated and

expensive). Structural refactoring generally does not change programs` conceptual meaning, thus, in

principle, it may be done (half)-automatically and many methods and tools have been developed for

structural refactoring [Fowler 1999; Kerievsky 2004; Martin 2008].

Cases of conceptual refactoring are much more complicated. Our habits and behavior patterns

change constantly: we are using new technology that was not used commonly at the time of program

design, i.e. when the conceptual model was created; increased competition is forcing new business

practices; etc. All these changes should also be reflected in already introduced programs and,

generally, they also require re-conceptualization of the programs or some parts of them. We will

clarify this in the following examples below.

Microsoft, who have often been accused of coupling useful programs (e.g. the Windows OS) with

bloatware and crapware, introduced in 2012 a special new service "Signature Upgrade" for "cleaning"

up a new PC – you bring your Windows PC to a Microsoft retail store and for $99 Microsoft

technicians remove the junk – a new twist in the Microsoft business model.

An even bigger change in the conceptual model of Microsoft's business practices occurred when

Microsoft introduced Windows 10. With all the previous versions of the Windows OS Microsoft has

been very keen on trying to maximize the income from sales of the program, thus the OS included the

subsystem "Genuine Windows" which has to check that the OS is not a pirated copy but a genuine

Microsoft product (but quite often also raised the alert "This is not a Genuine Windows! " in absolutely

genuine installations). With Windows 10 Microsoft changed by 1800 the conceptual model of

monetizing – it became possible to download and install Windows 10 free of charge! Even more,

Microsoft started to foist Windows 10 intensely onto all users of Windows PC and, for this, even

changed the commonly accepted functionality of some screen elements: in all applications clicking the

small X in windows upper right corner closes the window and its application but, contrary to decades

of practice in windowed User Interfaces (UIs) and normal user expectations, Microsoft equated closing

the window with approving the scheduled upgrade – this click started the (irreversible) installation of

Windows 10. This forced change in the conceptual meaning of a common screen element proved to be

wrong and disastrous to Microsoft. A forced Windows 10 upgrade rendered the computer of a

4:36 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

Californian PC user unusable. When the user could not get help from Microsoft's Customer Support,

she took the company to court, won the case and received a $10,000 settlement from Microsoft;

Microsoft even dropped its appeal [Betanews 2016]. The change in the company's conceptual business

policies has created a lot of criticism for Microsoft [Infoword 2016].

Many changes in conceptual models of software are caused by changes in the habits and common

practices of clients which, in turn, are caused by the improved technology they use. Once functioning

of many public services was based on a living queue – the customer/client arrived, established their

place in the queue and waited for his/her turn to be served. In [Robinson 2010] a case of conceptual

modelling is described for designing a new hospital; a key question was: "How many consultation

rooms are required"? The designer`s approach was based on data from current practice: "Patient

arrivals were based on the busiest period of the week – a Monday morning. All patients scheduled to

arrive for each clinic, on a typical Monday, arrived into the model at the start of the simulation run,

that is, 9.00am. For this model (Fig. 6a) we were not concerned with waiting time, so it was not

necessary to model when exactly a patient arrived, only the number that arrived".

This approach of conceptual modelling of a hospital's practice ignores totally the communication

possibilities of patients. In most European countries, computers and mobile phones are widespread

and used in communication between service providers and service customers, and this communication

environment should also be included in the conceptual model of servicing. Nowadays, hospitals and

other offices servicing many customers mostly all have on-line reservation systems, which allow

customers to reserve a time for visit and not to rush with the requirement to reserve a time for the

visit on Monday morning or staying in the living queue. A new attribute, Reservation, has been added

to the customer object. The current reservation system is illustrated in Fig. 6b.

Cultural/age differences can cause different variations of the conceptual model of reservation

systems. For instance, in Tallinn with its large part of older technically not proficient population

(sometimes also non-Estonian, i.e. have language problems) for some other public services (e.g.

obtaining/prolonging passports, obtaining of all kind of permissions/licenses) the practice of reserving

time has not yet become common. In the Tallinn Passport Office (https://www.politsei.ee/en/) everyone

can make a reservation for a suitable time [Reservation System (2016)], but many older persons still

appear without one. In the office customers with reservations are served without delay, but those who

do not have a reservation are served in order of appearance, which sometimes means hours of waiting.

Seeing how quickly customers with reservations are served is a strong lesson for them – here the

conceptually (new for them) system of reservations does not only change the practice of office, but also

(a) In 2010 (b) Nowadays

Fig. 6. The conceptual model of mass service (Robinson 2010): (a) In 2010 (Robinson 2010), (b) Nowadays.

 Why Information System Modelling is Difficult • 4:37

teaches them new practices, i.e. here, innovation in technology (the Reservation System) also changes

the conceptual practices of customers.

Practical use of a reservations system sometimes also forces changes to the system itself. For

instance, most of the doctors in Estonia, Finland and Slovenia work with reserved times. However,

sometimes it happens that a customer who has a reserved time is not able to come. Medical offices

require cancellation (some even practice a small fine if cancellation is not done in-time). In order to

find a replacement, the office should be able to contact potential customers (who have a reservation

for some future time). Thus, two more fields were introduced to the object model of the customer:

Mobile phone number, Minimal time required to appear at the service. A new functionality was also

added to the reservation system: if somebody cancels, the reservation system compiles a list of

potential 'replacement' customers, i.e. customers, who have a future reservation and are able to

appear at the service provider in time and the office starts calling them in order to agree a new

reservation.

8. CONCLUSION

There is a lot of evidence that the most serious mistakes are made in the early phases of

software projects. Savolainen [Savolainen 2011] reports in her Thesis and studies (based on
the analyze of tens of failed software project data) that, in almost all the studied cases, it was possible

to indicate the failure already before the first steps of the software project (pre-phases, in which the

base for the project was built in collaboration between the software company and customer

organization). The errors made in early phasesare tend to accumulate in later phases and cause a lot

of rework. Because of that, the early phase IS models have high importance to guarantee the success

of IS projects. The Standish Group Chaos Reports cover a wide (annual) analyze of problems related to

software projects. The article of Hastie & Wojewoda [Hastie & Wojewoda 2015] analyzes the figures of

the Chaos Report from the year 2015 (Figure 7). The Chaos Report classifies the success of software

projects in three categories: Successful, challenged and failed. The share of failed projects (new

definition of success factors covers the elements on time, on budget with a satisfactory result) has

been stable on the level a bit below 20% (Figure 7, left side). The suitability of the Agile process

approach seems also to be one indication for success in all project categories – even in small size

projects. The Report has also analyzed the reasons on the background of the success (100 points

divided): Executive sponsorship (15), emotional maturity (25), user involvement (15), optimization

(15), skilled resources (10), standard architecture (8), agile process (7), modest execution (6), project

management expertise (5) and clear business objectives (4).

Fig. 7. The success of software projects in 2011-2015 [based on Hastie & Wojewoda 2015]).

The Agile vs. Waterfall results are opposite to the ICSE Conference presentation of Barry Boehm

(2006; 2006a) related to the software engineering paradigms. According to him, the Agile approach is

best suited to small projects that are non-critical and include high dynamics in requirement changes,

implemented by skilled people in organizations used to chaos.

Size Method Successful Challenged Failed

All Agile 39 % 52 % 9 %

% 2011 2012 2013 2014 2015 projects Waterfall 11 % 60 % 29 %

Successful 29 % 27 % 31 % 28 % 29 % Large size Agile 18 % 59 % 23 %

Challenged 49 % 56 % 50 % 55 % 52 % projects Waterfall 3 % 55 % 42 %

Failed 22 % 17 % 19 % 17 % 19 % Medium size Agile 27 % 62 % 11 %

projects Waterfall 7 % 68 % 25 %

Small size Agile 58 % 38 % 4 %

Projects Waterfall 44 % 45 % 11 %

All projects (modern resolution)

Agile vs. Waterfall

4:38 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

The purpose of our paper has been to point out important aspects related to IS modelling. The

following aspects are discussed:

 The variety of roles and their responsibilities in IS development;

 Understanding the big picture of the modelling is difficult;

 Understanding the abstractions is difficult;

 Understanding the role of the development path phases and their interrelations is difficult;

 Concepts are varying along the development life cycles;

 Understanding the views and the development flow is difficult.

In teaching IS modelling all this must be taken into account. The experience based realizations of

these main problem categories cover at least the following aspects:

 Inadequate skills in using modelling languages – used in an incorrect way (e.g. including

dynamic features in static diagrams – functionality in class diagrams; problems to understand

what is a class and what is the connection between classes);

 Low motivation to make modelling – preference given to implementation and coding without

modelling;

 In a teaching context, we never have the opportunity to solve real modelling problems; small

sub-problems instead;

 Difficulties in understanding what is a dynamic and what is a static concept;

 Models are not complete descriptions of the system – what to leave out and what to include;

what are essential concepts and what are not; how to fill the gaps;

 Business rules are difficult to understand, because students do not know the real application

environment;

 Missing motivation to learn new approaches – “I already know” – syndrome;

 Expectations of the existing skills – in reality reset and relearn is needed because of the

“antipattern” type of behavior;

 Models are overlapping and it is difficult to get the different views to conform;

 Models belonging to different abstraction levels are using different concepts – mismatch of

conceptual thinking.

Our results are in favor with the analyze and studies discussed above. It is important to

benchmark the existing studies and to transfer the “lessons learned” into study modules. The problem

also is the fact that the IS modelling is a by-product as a part of other teaching topics and, finally,

practicing it remains on the artificial level instead of focusing on the modelling of real (large)

information systems. Our original aim was also to handle the topic “How to teach IS modelling?”, but

this will be left for further studies that apply the findings of this paper in curriculum and course

implementation design in different educational environments. Nevertheless, the authors, as well as

other readers, have an opportunity that, on the basis of the research done introduces some innovative

steps and solutions out of the box in their own teaching process what will be, together with the

reached experiences, an added value to the present paper for the further studies. We also expect a

valuable contribution from the discussion at the conference, while changing of the curricula and its

implementation is always a demanding step.

REFERENCES

Betanews (June 26th, 2016), 2016. Microsoft pays out $10,000 for forcing Windows 10 on California woman.

http://betanews.com/2016/06/27/microsoft-windows-10-payout/. Retrieved in July 12th, 2016.

Barry Boehm, 2006. A View of 20th and 21st Century Software Engineering. Key note presentation in ICSE 2016 Conference.

Presentation slides. ICSE and ACM. http://www.inf.fu-berlin.de/inst/ag-se/teaching/S-BSE/054_20th-and-21st-century-

sweng.pdf. Retrieved on July 12th, 2016.

Barry Boehm, 2006a. A View of 20th and 21st Century Software Engineering. Key note paper in ICSE 2016 Conference. ICSE

and ACM.

https://www.ida.liu.se/~729A40/exam/Barry%20Boehm%20A%20View%20of%2020th%20and%2021st%20Century%20Softw

 Why Information System Modelling is Difficult • 4:39

are%20Engineering.pdf. Retrieved on July 12th, 2016.

M. Fowler, 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional. p 464, ISBN-13: 978-

0201485677.

S. Hastie, S. Wojewoda, 2015. Standish Group 2015 Chaos Report – Q&A with Jennifer Lynch. https://www.infoq.com/ articles/

standish-chaos-2015. Retreived in July 12th, 2016.

Infoword (March 14th, 2016), 2016. Microsoft upgraded users to Windows 10 without their OK. http://www.infoworld.com/

article/3043526/Microsoft- windows/microsoft-upgraded-users-to-windows-10-without-their-ok.html. Retrieved on July 12th,

2016.

H. Jaakkola, J. Henno, B. Thalheim, B. and J. Mäkelä, (2015. Collaboration, Distribution and Culture – Challenges for

Communication In Biljanovic, P. (Ed.), Proceedings of the of the MIPRO 2015 Conference. Opatija, Mipro and IEEE, 758-

765.

J. Kerievsky, 2004. Refactoring to Patterns. Addison-Wesley Professional, p. 400. ISBN-13: 978-0321213358.

K. Koskimies, 2000, Oliokirja. Talentum, Helsinki. ISBN-13: 9789517627207, ISBN-10: 9517627203.

Philippe Kruchten, 1995. Architectural Blueprints — The “4+1” View Model of Software Architecture. IEEE Software 12, 6.

(September 1995), 42-50.

R.C. Martin, 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Prencice Hall 2008, p 464, ISBN-13: 978-

0132350884

Stewart Robinson, 2010. Conceptual Modelling: Who Needs It? SCS M&S Magazine 1,2 (April 2010).

http://www.scs.org/magazines/2010-04/index_file/Articles.htm.Retreived on July 12th, 2016.

Paul Rook, 1986. Controlling software projects. Software Engineering Journal 1,1 (January 1986), 7-16.

Paula Savolainen, 2011), Why do software development projects fail? - Emphasising the supplier's perspective and the project

start-up. PhD Thesis, Univcersity of Jyväskylä. Jyväskylä studies in computing (136).

Ian Sommerville, 2016. Software Engineering. Pearson Education Limited. ISBN-13: 978-0133943030; ISBN-10: 0133943038.

Standish Group, 2016. CHAOS Report 2016: The Winning Hand. https://www.standishgroup.com/store/. Retrieved on July 12th

, 2016.

Wikipedia 2016. 4+1 View Architectural model. https://en.wikipedia.org/wiki/4%2B1_architectural_view_model. Retrieved on

July 12th, 2016.

Alan Wingrove, 1986. The problems of managing software projects. Software Engineering Journal 1,1 (January 1986), 3-6.

http://www.scs.org/magazines/2010-04/index_file/Articles.htm.Retreived
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model

4:40 H. Jaakkola, J. Henno, T. Welzer Družovec, J. Mäkelä, B.Thalheim

