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Abstract
Recent progress in the development of techniques 
to optimize large-scale classification problems has 
extended  the  use  of  multi-class  classification. 
Specifically  the  use  of  multi-class  classification 
algorithms when the dataset is to large to fit into 
limited memory available of most computers.  The 
most  prominent  algorithms used today solve the 
multi-class  classification  problem  through  an 
optimization approach based on coordinate decent. 
Two  of  the  most  recognized  algorithms,  Vowpal 
Wabbit and LIBLINEAR LibSVM  have emerged as 
the  most  consistent  options  when  solving  for  a 
multi-class  problems.   This  paper  proposes  an 
analysis of these methods and tests the efficiency 
and performance of  each algorithm.  The results 
are  recorded  and  comparisons  are  made.   After 
analyzing the results, the conclusion made is that 
the  Vowpal  Wabbit  algorithm  is  best  suited  for 
solving  large-scale  multi-class  classification 
problems when computer memory is constrained.  

Introduction
Big Data has affected the way statistical analysis is being 
conducted.  Many real-world datasets contain hundreds or 
thousands  of  variables  of  interest  which  can  contain 
hundreds of thousand or millions of records.  Time spent 
on  reading/writing  between  memory  and  disk becomes 
the bottleneck, rendering most algorithms inefficient (Yu 
et  al.  2012).   Even with  the  growing memory  sizes  of 
computers, a large data set can still be problematic. As a 
consequence,  the  complexity  of  analysis  increasingly 
becomes  unmanageable  by  using  traditional  machine 
learning algorithms.   To extract  useful  knowledge from 
dense  data makes  the  task of  analysis  time consuming. 
Coupled with the fact that most algorithms use a iteration 
process that cycles through the dataset multiple times, the 
process is seemingly impossible to finish.  

In the past, classification models have been shown to 
handle  large  amounts  of  data  well,  and  several 
optimization techniques have been applied to efficiently 
train  data  intensive  models  (Aly  2005).  However  the 
performance of the algorithms begin to decline when the 
data cannot be processed into memory (Yu et al. 2012). In 
these  cases,  training  techniques  that  deal  well  with 
memory limitations become critical.

Recent progress has been made in the development of 
techniques to optimize over memory constrained systems, 
including binary classification.  It is a well studied special 
case  of  the  classification  problem  that  provides  the 
foundation  for  multi-class  problem  solvers.  Statistical 
properties of binary classifiers, such as consistency, have 
been investigated in a variety of settings.  Most machine-
learning  algorithms are  originally  developed  for  binary 
decision  problems,  and  extended  to  handle  multi-class 
problems (Argyriou, Herbster, and Pontil 2005).

The goal of this paper is to study the existing multi-
class  classification  methods  and  provide  a  noteworthy 
comparison.   In  order  to  provide  a  thorough  and 
comprehensive comparison, classification tests were run 
multiple  times  over  contrasting  datasets. The  paper  is 
organized in the following manner.   Section 2 contains 
background information.  Section 3 presents related work. 
Our approach is in section 4, followed by experiments in 
section 5.  Conclusions follow and finally work cited. 
 

Background
The principles  of  Multi-class  classification  are  founded 
upon the same principles of binary classification.  Each 
case  involves  assigning  a  class  label  for  each  instance 
present.  Given  a training data set  of  the form (xi ,  yi), 
where xi  R∈ n is the ith example and yi  {1, . . . , K} is∈  
the ith class label, we aim at finding a learning model H 



such  that  H(xi)  =  yi  for  new unseen  examples  (Menon 
2009).  The problem is simply formulated in the two class 
case, where the labels yi are just 0 or 1 for the two classes 
involved. 

Several  algorithms  have  been  proposed  to  solve  the 
binary problem. Some of these can be easily extended to 
the multi-class case, and some that involve high levels of 
computation.  In contrast to traditional data classification 
where  each  instance  is  assigned  to  only  one  label, 
instances  used  in  multi-class  classification  may  be 
simultaneously relevant to several labels. For example: in 
text categorization, one document can belong to multiple 
topics.

Existing approaches to handle Large Scale multi-class 
classification can be categorized into two types.  The first 
approach solves problems through a block minimization 
scheme.  The second approach considers online learning 
algorithms  (Dekel  2008).  Both  algorithms  attempt  to 
solve the classification problem of assigning labels from 
Y to instances X (Tewari and Bartlett 2007).   

Block Minimization For Support Vector 
Machines 
Optimization through block minimization has been used 
in the past to efficiently deal with data to large too fit into 
memory.  One of the most prominent learning algorithms 
associated  with  block  minimization  is  Support  Vector 
Machine  (SVM)  algorithm.   Proposed  by  Cortes  and 
Vapnik in 1995, the algorithm has since grown into one of 
the  most  widely  used  learning  algorithm  in  the  world 
(Bottou and Lin 2007).   The implementation and broad 
uses of SVMs have been well documented in the years 
since past.  

The framework for an SVM is modified to solve for 
classification  problems  in  the  event  limited  memory  is 
available.   The  process  entails  using  an  optimization 
technique based on block minimization.  Where the  term 
“block” refers to partitions of the dataset that can be read 
through the memory available.   The size and content of 
each  block  varies  from  approach  to  approach.   Pérez-
Cruz,  Figueiras,  and  Artes  (2004)  propose  the  use  of 
“double chunking.”  Where data is partitioned into both 
“large  chunks”  and  “small  chunks.”   Another  approach 
described  by  Chang  and  Roth  (2011)  uses  selective 
sampling  for  block  minimization.    By  selecting  only 
significant instances, the goal is to minimize the size of 
data blocks and speed up the iteration process.  Yu et al. 
(2012) suggest a framework for block minimization that is 
also used for testing in this paper.  In this approach the 
amount of memory available for processing correlates to 

the size of blocks.  The framework consists of 3 steps that 
split the data and read the blocks into memory, set initial 
values  before  solving  for  classification  through  an 
iterative process.  The algorithm can be summarized as 
following:

Algorithm 1 A block minimization framework for Dual 
SVM

    1. Split {1, . . . , l} to B1 , . . . , Bm and store data into m
partitions accordingly.
2. Set initial w
3. For j = 1, . . . , m (inner iterations)
    For K = 1, 2, . . . (outer iterations)
  3.1. Read xr , r  ∀ ∈ Bj from disk
  3.2 Approximately solve the sub-problem (1)

     3.3 Update w by (2)

Here, {B1 , . . . , Bm  } are sequential partitions of all 
data  indices  {1,  .  .  .  ,  l}.   The size  of  the  blocks  are 
determined  by the  known memory constraints.     Each 
instance  is  read  and  randomly  assigned  a  block. 
Algorithm  2  explains  the  process  for  data  splitting. 
Optimization over a single block is identified as the inner 
iteration, whereas the m steps of going over all blocks is 
deemed an outer iteration (Yu et al. 2012).  

Algorithm 2  Framework for block splitting

1.  Decide m and create m empty files
2.  For i = 1, ….
  2.1  Convert xi to a binary format xi .
  2.2  Randomly choose number j {1,...,m}.
  2.3  append  xi  into the end of the jth file. 

In order to optimize through block minimization only 
the dual form of SVM must be used.   By examining the 
dual  form of  the  optimization  problem we  are  able  to 
write the entire algorithm in terms of only inner products 
between  input  feature  vectors.   Updates  to  the weight 
vector w, which corresponds to the entire data set treating 
instances uniformly prevent the primal for of SVM to be 
used (Shalev-Shwartz et al. 2007). Algorithm 1 is able to 
efficiently learn in very high dimensional spaces.

 The sub-problem is solved in the inner iteration step, 
and the solution is then used to update w.  The solution 
uses only instances that belong to block Bj.  The solution 
to the sub-problem is presented below in (1).    

                         l
                     w = ∑ αiyixi                                                      (1)
                                          i=1



The iteration round is then complete after w is updated. 
To update  w,  if  dBj is  an  optimal  solution  for  the  sub-
problem:

                     w←w + ∑  dr yrxr                                             (2)

                                 
 r Bj∈

The  iteration  process  continues  until  optimization  is 
reached, converging when one of  two conditions are met 
(Yu  et  al.  2012).   The  first  condition  states  that 
optimization is complete when the sub-problem for each 
block is solved and the solutions converge. The second 
condition is a stopping criteria.  Usually a finite number 
of   iterations  is  chosen,  or  an  accuracy  threshold  is 
obtained. 

   LIBLINEAR addresses both conditions while solving 
for the sub-problem.  The software contains a library with 
tools  used  for  SVM classification when data  cannot  fit 
into memory (Yu et al. 2012). LIBLINEAR sequentially 
selects one variable for update and fixes others inside the 
block.  The  framework  not  shown  in  this  paper  is 
explained by Yu et al. (2012).  LIBLINEAR uses a SVM 
coordinate descent method and solver to update instances 
in  block Bj before solving for (1).

Online Learning with Stochastic Gradient 
Descent

Online  learning  algorithms  are  designed  to  effectively 
classify  data  by building a  weight  model  derived  from 
sequentially  received  training  examples.  Compared  to 
block minimization which solves for the sub-problem of 
each block, online learning updates instances through the 
use  of  a  cache  file.   Each  iteration  round  updates  the 
cache  file  where  the  weight  model  is  stored.  The 
algorithm  classifies  each  instance,  and  uses  the  new 
“instance-label  pair”  to  update  and  improve  the  stored 
model  (Tewari  and  Bartlett  2007).   This  method  is 
expected to accurately predict the labels of instances that 
are not part of the training set.  

Several  strategies  were  proposed  to  optimize  online 
learning  algorithms.  Most  of  which  aim  to  extend  the 
original  purpose  of  binary  classification  to  multi-class 
learning.  In the study conducted by Argyriou et al (2005), 
an extension to a graph-based approach to online learning 
was discussed.  Shalev-Shwartz et al (2007) exploited the 
dual formation of optimization to create a more efficient 
online learning algorithm.  

John Langford and his colleagues at Yahoo! Research 
developed  Vowpal  Wabbit,  a  fast  online-learning 

algorithm that  uses  stochastic  gradient  descent.  Vowpal 
Wabbit  can  handle  very  large  datasets  without  ever 
needing  to  load  the  entire  dataset  into  memory.  The 
algorithm also requires less computational power and far 
fewer  resources  by  learning  through  online  gradient 
descent  (Langford,  Li,  and Zhang,  2009).   Algorithm 3 
below presents the framework.

Algorithm 3 Online-learning framework for Vowpal Wabbit

  Inputs:
   • threshold θ ≥ 0
   • gravity sequence gi ≥ 0
   • learning rate η  (0, 1)∈

  initialize weights w
j
 ← 0 ( j = 1, . . . , d)

   1. Acquire an unlabeled example x = [x
1
 , x

2
 , . . . , x

d
 ]

   2. Compute prediction: y = ∑ j w
j 
x

j

   3. Acquire the label y from dataset
         for all weights w

j
 ( j = 1, . . . , d)

          (a) if w
j 
> 0 and w

j
 ≤ θ then w

j 
← max{w

j
 − gi η, 0}

         (b) else if w
j 
< 0 and w

j
 ≥ −θ then w

j 
← min{w

j 
+ gi η, 0}

    4. Update weights for all features j: w
j
 ← w

j
 + 2η(y − y)x

j

Here,  the  superscripted  symbol  w
j
 denotes  the  jth 

component of vector w in order to differentiate from 
wi, which references the ith weight vector (Langford 
and Zhang 2009).

Updates to the assigned weights are stored in a cache 
file  that  is  small  enough  to  be  read  into  the  limited 
memory available. Vowpal Wabbit stores only the cache 
file,  allowing  for  faster  implementation,  and  increased 
performance through the optimization process.

Related Work

In  this  section  we  discuss  related  work  pertaining  to 
comparisons of Large-scale Classification problems.  The 
topic has compiled a comprehensive library primarily for 
binary classification.  As such there seems to be a gap in 
knowledge  pertaining  to  multi-class  classification.  We 
derive  the  techniques  used  for  our  comparison  from 
strategies implemented in related work.  

Yu et al. first introduced a comparison for large linear 
classification  in  his  paper  published  in  2012.  His 
comparison  of  SVM  solvers  and  online-learning 
algorithms  only  extended  to  binary  classification.  The 
study defined  one  assumption that  is  significant  in  our 
comparison. 



 Figure 1 SensIT Vehicle Class Training Frequency

 Assuming  that  the  amount  of  available  memory  is 
limited, entire datasets cannot be stored in memory, but 
can be stored in the disk of one computer.  The size of the 
datasets used in this paper are large enough to satisfying 
this constraint,  and must be accessed  through the hard 
drive where they are stored.

Multi-class classification was addressed in the paper by 
Chang and Roth in 2011.  In the paper comparisons were 
drawn from both batch learning as well as online-learning 
algorithms.   Unfortunately  Vowpal  Wabbit  at  that  time 
was limited to binary classification and no comparisons 
were drawn.   Instead the focus was primarily on block 
minimizing algorithms.  Of which LibSVM was deemed 
superior to several  other algorithms.  It  is our intent to 
extend this comparison of LibSVM to Vowpal Wabbit.

Approach
The aim of this paper is to test the performance of Vowpal 
Wabbit  (Langford,  Li,  and  Zhang,  2009)  against  the 
LIBLINEAR block learning extension of LibSVM (Yu et 
al  2012 ).   Due  to  the  recent  advances  in  the  Vowpal 
Wabbit library this is one of the first tests using the multi-
class solver.  

Testing was performed using one-against-all multi-class 
solver options implemented in both algorithms.  For a K-
class  problem  the  one-against-all  method  constructs  K 
models, where each model separates a class from the rest. 
The ith model is trained with all of the binary instances 
pertaining to the ith class.  The final  output of  the one-
against-all  method  is  the  class  that  corresponds  to  the 
SVM with the highest output value (Liu, Wang, and Zeng 
2007).

 

Figure 2 RCV1 Class Training Frequency

Data
Comparisons were drawn from test conducted over multi-
class  datasets.  The SensIT Vehicle dataset  was used,  in 
addition to a larger 53 class (RCV1) dataset.  Using the 
smaller  dataset  to  establish  a  baseline  reading  and 
evaluation.  The classification problem was then extended 
the simple classification problem to one  more complex in 
that of the RCV1 dataset.  The tests conducted here would 
reinforce the results gathered from the SensIT dataset.
 The SensIT Vehicle dataset features 3-class labels.  The 
instances  were  extracted  from  sensor  data  collected 
during a real world experiment carried out at Twenty nine 
Palms, CA in November of 2001 (Duarte and Hen 2004). 
The sensors were used to obtain both acoustic and seismic 
activity from vehicles in the vicinity.  In total 50 features 
were extracted.  Each vehicle was driven around a road 
while  sensors  collected  information  as  they  passed. 
Classes included in the training set included: AAV3 (class 
1), DW3 (class 2), and a third class for noise (class 3).   In 
total there are 78,823 training samples and 19,705 testing 
samples.  In Figure 1 the frequency of each class used for 
training is presented.  The distribution of samples shows 
an  unbalanced  dataset  where  more  instances  of  noise 
classification are recorded than vehicle.  The total sample 
size of the 2 vehicles combines is close to the total sample 
size of  the  noise.   The  data being skewed as  such can 
increase the error rate and degrade performance in certain 
cases.  Later in the paper we discuss the impact of this on 
classification accuracy. 

The RCV1 dataset was used in part due to its 53-class 
problem. The Reuters Corpus Volume I (Reuters RCV1) 
is  one  of  the  most  widely  used  test  collection  for  text 
categorization  research  (Lewis  et  al.  2004).  It  contains 
534,135 newswire documents, which are split into 15,564 
training documents and 518,571 test documents.  The  
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Figure 3 Iteration time over SensIT Data

Figure 4 Percent Accuracy Per Iteration over SensIT Data 

dataset contains 47,236 features.  The class frequency of 
all 53 labels is presented in figure 2.  Again the frequency 
of the samples collected in the training dataset represent 
an  unbalanced  sample  size  where  the  first  25  class 
frequencies are significantly larger than the last 28.  

Experiment

In order to successfully draw comparisons testing criteria 
was  first  established.   The  criteria  is  based  of  overall 
performance of  the  ability  of  the  algorithms to learn  a 
classification  model  and  successfully  label  the  instance 
into  the  the  right  class.   Stopping  criteria  was  also 
established  before  tests  were  conducted.   The  iteration 
threshold was set to 78 rounds. Figures 3 – 6 present the 
individual performance measures of the algorithms from 
iteration  round  1  to  the  stopping  threshold  reached  in 
round 78.  The algorithms were compiled in C++ and run 
on the Linux operating system.  All experiments were run 
on a laptop with 6GB of memory.  To ensure accurate 
results each test was repeated 3 times and the averages 
were used to rate performance.

 Figure 5  Iteration time over RCV1 Data

Figure 6 Percent Accuracy Per Iteration over RCV1 Data

Before  the  experiment  can  be  run  using  the 
LIBLINEAR  extension  LibSVM,  the  training  dataset 
must  be  partitioned  into  smaller  blocks.   The  optimal 
number of partitions was discovered to be 8 for this case.  
Vowpal Wabbit on the other hand uses a cache file which 
fulfills the memory constraint.  The dataset does not need 
to be split or compressed, Vowpal Wabbit can access each 
instance  without  reading  the  entire  datasets.   The 
algorithms were first trained and tested using the SensIT 
dataset.   The dataset represents a simple scenario where 
binary classification is extended into a 3-class problem. 
The results from both algorithms are shown in figures 3 
and 4.  

On  average   the  runtime  per  iteration  for  Vowpal 
Wabbit was 0.36 seconds, while the average for libSVM 
was 1.48 seconds.  Vowpal Wabbit performed at a pace 4 
times as fast as LibSVM.  Both algorithms scored over 
80% accuracy classifying testing instances.  By the end of 
the 78 iteration the algorithms were close to converging 
around  the  80.3  percentile.   The  biggest  differences 
recorded can be seen between the first 5 iteration rounds. 
This is were the optimization approaches can be 
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Figure 7 SensIT Data Table of Statistics 

distinguished.   As the  Vowpal  Wabbit  algorithm passes 
through the dataset and the weights are updated from the 
initial label, the accuracy of classification begins to rise. 
While the consistent  accuracy  rate  for  LibSVM can be 
attributed  to  the  block  minimization  framework.   By 
solving  the  subproblem within  each  equally  distributed 
block  first,  the  updated  weights  do  not  yield  higher 
accuracy.   Instead  the  rate  is  consistent  throughout  the 
optimization process.

The second experiment was conducting over the RCV1 
dataset.  Classification using the one-against-all option is 
increasingly complicated with each additional class.  The 
increased  sample,  class,  and  feature  size  in  the  RCV1 
dataset  taxes  the  memory  load  in  such  a  constrained 
environment.  Performance from both algorithms stayed 
consistent with the baseline ratings established with the 
tests run over the SensIT dataset.  Average runtime per 
iteration  for  Vowpal  Wabbit  increases  slightly  to  0.43 
seconds,  while  LibSVM  decreased  slightly  to  1.43 
seconds.   The runtime results  of  RCV1 is  presented in 
figure 5 are similar to those of SensIT testing in figure 3. 
As with the sensIT data set, Vowpal Wabbit is consistently 
quicker than libSVM.   

Classification accuracy rose 8 percent when comparing 
the results of figure 6 to figure 4.   The larger dataset has 
had  a  positive  impact  on  the  accuracy  rate  of 
classification  for  the  two  algorithms.   Again  LibSVM 
scores  a  higher  classification  accuracy  while  achieving 
more consistent results.   The accuracy of Vowpal Wabbit 
begins to rise until  the 20th iterations.   From there the 
accuracy begins to drop until the 78th iteration.  Unlike 
the SensIT tests, the algorithms never appear to converge. 

Overall  the  LIBLINEAR  extension  LibSVM 
classification algorithm achieved the highest classification 
rates.  At no point in the iteration process did the Vowpal 
Wabbit  algorithm correctly  classify more test  instances. 
The highest  classification accuracy rate occurred during 
the first iteration step.  LibSVM correctly classified   

Figure 8 RCV1 Data Table of Statistics

80.47% of  the  SensIT testing  dataset,  whereas  Vowpal 
Wabbit managed to obtain a lower rate of 80.32% after 
the  final  iteration.  Figure  7  presents  a  table  with  the 
results gathered testing over the SensIT test dataset. Once 
more LibSVM attained the highest classification rate over 
the  RCV1  testing  dataset.   The  results  from  both 
algorithms are presented in figure 8. the highest accuracy 
mark was obtained during the first iteration round when 
LibSVM correctly classifies 88.64% of testing instances. 
This rate was maintained throughout the iteration process. 
Vowpal  Wabbit  reached  the  highest  mark  with  an 
accuracy of 86.99% after the 6th

t
iteration round.  

The higher accuracy ratings from LibSVM do come at 
a  cost  however.   The  runtime  for  each  iteration  was 
significantly slower than that of Vowpal Wabbit.  The total 
time needed to reach the 78th iteration round presented in 
figure 7 was only 27.81 seconds.  Compared to 116.56 
seconds for LibSVM.  Figure 8 presented similar results. 
Vowpal  Wabbit  was  recorded  at  33.85  seconds  where 
LibSVM  reached  the  stopping  threshold  in  111.93 
seconds.  In  both cases  Vowpal  Wabbit  was 4 times as 
fast.  

Surprisingly both algorithms achieved higher levels of 
performance solving  for  the  larger  RCV1 classification 
problem. Iteration runtime of both algorithms experienced 
a small increase in time when compared in figures 3 and 
5.  The classification accuracy improved in figure 6 when 
compared to the accuracy ratings in figure 3.  The lower 
rates of classification accuracy can can be contributed to 
the skewed training dataset.  The frequency distribution in 
presented in figures 1 and 2 are unbalanced.  As such the 
classification accuracy over the smaller SensIT data set 
was lower than the larger RCV1 dataset. The increase in 
instances  correlated  with  the  accuracy  of  overall 
classification.  The more instances the algorithm had to 
train over, the more classification accuracy improved.

  

RCV1 Dataset
Vowpal Wabbit libSVM

Iteration Time Acc Iteration Time Acc
1 1.06 83.40% 1 8.20 88.64%
2 1.53 85.81% 2 9.46 88.64%
3 1.94 86.57% 3 10.80 88.64%
4 2.36 86.85% 4 12.25 88.64%
5 2.85 86.96% 5 13.61 88.64%
6 3.37 86.99% 6 14.87 88.64%
7 3.84 86.96% 7 16.20 88.64%
8 4.02 86.90% 8 17.63 88.64%
9 4.48 86.83% 9 19.01 88.64%
10 5.26 86.75% 10 20.33 88.64%
20 9.46 86.12% 20 33.99 80.45%
30 13.91 85.76% 30 47.30 80.43%
50 22.06 85.45% 50 74.17 80.44%
78 33.85 85.28% 78 111.93 80.43%

SensIT Dataset
Vowpal Wabbit libSVM

Iteration Time Acc Iteration Time Acc
1 1.28 79.86% 1 5.52 80.47%
2 1.64 80.06% 2 8.00 80.47%
3 2.05 80.12% 3 9.53 80.43%
4 2.46 80.15% 4 11.25 80.46%
5 2.87 80.16% 5 13.03 80.42%
6 3.29 80.20% 6 15.43 80.43%
7 3.56 80.19% 7 16.09 80.46%
8 3.95 80.19% 8 17.27 80.43%
9 4.40 80.19% 9 18.76 80.43%
10 4.81 80.19% 10 20.14 80.47%
20 7.13 80.24% 20 34.28 80.45%
30 10.83 80.22% 30 48.93 80.43%
50 17.52 80.27% 50 76.93 80.44%
78 27.81 80.32% 78 116.56 80.43%



Conclusion

Using the results recorded from figures 3 -8 the following 
question  about  Fast  Learning  large-scale  multi-class 
classification can be answered:

Question: Which algorithm is most efficient when their  
are constraints to the memory?  When compared, Vowpal 
Wabbit  is  the  most  efficient  multi-class  classification 
algorithm.    The  results  from  the  SensIT  test  case 
suggested that Vowpal Wabbit was the quicker algorithm 
while  maintaining  a  slightly  lower  accuracy  percentile 
than LIBSVM.  Moving from the SensIT dataset to the 
larger RCV1, the results remained consistent.  We have 
concluded that Vowpal Wabbit had a slight advantage in 
overall  efficiency  when  there  is  a  constraint  placed  of 
computer memory size.  

The  performance  of  both  algorithms  was  relatively 
close however.   Due to the small size of the experiment, 
further  testing  is  needed  for  a  thorough  comparison. 
Testing  over  datasets  that  are  more  expansive,  both  in 
sample  and  feature  size  could  be  used  for  a  more 
significant experiment.  However, we feel that the size of 
the datasets  used  in  this  paper  are adequate to  provide 
conclusive results for the comparisons made.
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