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Abstract
More and more outlets are utilizing collaborative filtering 
techniques to make sense of the sea of data generated by our 
hyper-connected world. How a collaborative filtering model 
is  generated  can  be  the  difference  between  accurate  or 
flawed predictions. This study is to determine the impact of 
a cyclical training regimen on the algorithms presented in 
the Collaborative Filtering Toolkit for GraphChi.

Introduction to Collaborative Filtering

With the growth of on-line services and e-commerce 
the amount of data that users need to make sense of has 
increased  exponentially.  The  difficult  task  facing  these 
service providers is to sift through a sea of options and find 
what a user wants before their competitors. One of the tools 
they have at their disposal is collaborative filtering. 

One  of  the  central  assumptions  about  collaborative 
filtering  is  that  people  with  similar  tastes,  or  shopping 
histories,  are better predictors  of a user's  future behavior 
than  a  random person.  Collaborative  filtering  techniques 
sift  through  large  datasets  to  identify  patterns  and 
similarities  between  these  users,  and  then  make 
recommendations.  These processes  are not limited to the 
retail sphere, collaborative filtering has also been applied to 
financial, geological, and other endeavors. An examination 
of  a  small  example of  collaborative filtering,  to produce 
song recommendations  for  customers,  will  help illustrate 
some of these ideas.

Table 1: Example User Song History and Ratings

User song1 song2 song3 song4 song5 song6 song7

A 3 X X 4 1 5 2

B 1 2 X 2 4 X 4

C 5 X 4 X 1 4 X

D 2 X 1 X 5 X 5

The  example  data  covers  four  different  customers 
(A-D) and their listening history over a catalog of seven 

songs. In addition to the fact that a user has listened to a 
particular song, there is an explicit rating (1-5, 5 being the 
highest).  If  a  user  has  not listened to a song this fact  is 
highlighted  with  an  'X'.  A  predicted  rating  needs  to  be 
generated  for  these  unknown songs,  so that  they  can  be 
suggested to the appropriate users.

The first step in the process is to identify which users 
have similar tastes. User A and User C have three points of 
similarity.  They both responded very positively to song6 
(ratings of A:5 and C:4) and very negatively to song5 (both 
had ratings of 1).  The third point of similarity, song1, is 
less  significant.  User  C responded  very  favorably  to  the 
song,  while  User  A  had  a  neutral  reaction.  A  similar 
process  can  generate  a  taste  profile  for  Users  B  and  D 
(song1 B:1/D:2, song5 B:4/D:5, and song7 B:4/D:5). Using 
these pairings we can begin to identify likely reactions to 
some of the users' unknown songs.

Table 2: Suggestions Based on Similarities

User song1 song2 song3 song4 song5 song6 song7

A 3 X + 4 1 5 2

B 1 2 - 2 4 X 4

C 5 X 4 + 1 4 -

D 2 - 1 - 5 X 5

Six of the unknown songs have been replaced with a 
suggested reaction (+ for positive or – for negative).  An 
exact score would require further analysis, and most likely 
a  great  deal  more  information,  but  a  more  simplistic 
measure of attitude can be inferred. 

This still  leaves four unknown songs in the table.  A 
quick look over the table shows that the two pairs of users 
have  completely  opposite  tastes  in  music.  It  would  be 
reasonable to assume that what one pair likes the other will 
dislike, and vice versa. In this way we can utilize not only 
the similarity between users to determine attitudes, but also 
the reactions of diametrically opposed Users.

Now all that remains is to scale the entire process to 
handle millions of users and products,  while maintaining 



accuracy  and  minimizing  costs  (both  financial  and 
temporal).

Related Work

Collaborative  Filtering  has  traditionally  included 
methods  such  as  Bayesian  Networks  and  clustering.  A 
Bayesian Network uses probability and causal relationships 
to  classify  new  observations  (Pearl  1994).  Clustering 
algorithms attempt to represent observations as “points” in 
a  multi-dimensional  space.  The  closer  together  that  two 
points  are,  the  more  similar  the  underlying  observations 
(Witten, Frank and Hall 2011). These and other traditional 
methods are, and will continue to be, powerful and valid 
collaborative filtering methods. 

However, in the wake of events like the Netflix Prize a 
new series  of  algorithms were  developed to deal  with  a 
new  phenomenon  “Big  Data”.  These  new  algorithms 
sought  to  incorporate  the  concepts  of  the  traditional 
methods into new frameworks capable of dealing with data 
that was increasingly large, complex, and often extremely 
sparse. 

This  study will  concern  itself  with  thirteen  of  these 
modern Collaborative Filtering algorithms:

• Alternating Least Squares (ALS), (Zhou et al. 2008)
• Stochastic Gradient Descent (SGD), (Koren 2009)
• Bias  Stochastic  Gradient  Descent  (BSGD),  (Koren 

2008)
• Koren’s  Singular  Value  Decomposition  (SVD++), 

(Koren 2008)
• Weighted  ALS  (WALS),  (Hu,  Koren,  and  Volinsky 

2008)
• Non-Negative  Matrix  Factorization  (NMF),  (Lee  and 

Seung 2001)
• Singular  Value  Decomposition  (SVD),  (Hernandez, 

Roman, and Tomas 2007)
• One-Sided  SVD,  (Hernandez,  Roman,  and  Tomas 

2007)
• Tensor  ALS  (TALS),  (Comon,  Luciani,  and  de 

Almeida 2009)
• Restricted Bolzman Machines (RBM), (Hinton 2010)
• Time-SVD++(TSVD++), (Koren 2009)
• libFM, (Rendle 2010)
• Probabilistic  Matrix  Factorization  (PMF), 

(Salakhutdinov and Mnih 2008)
Each of the modern Collaborative Filtering algorithms 

seeks to either reduce or capitalize on the complexity of 
large  datasets.  Algorithms  utilizing  decomposition, 
factorization, and SGD seek to reduce the dimensionality 
of data in order to expose underlying relationships. Least 
squares  methods  treat  recommendations  as  linear 
equations,  and attempt to find the best  estimation of the 
parameters necessary to calculate an accurate rating. TALS 
and TSVD++ try to leverage additional information, in this 
case time, in order to more accurately model behaviors.  

This study will focus on graph-based implementations 
of these algorithms given their recent popularity and the 
ability  to  be  executed  on  smaller  machines.  Recently 

graph-based algorithms have been adopted by many large, 
commercial  websites  including  Amazon  and  YouTube 
(Walia 2008). While it is important to note the adoption of 
techniques  like  this  by  powerful  and  influential 
corporations, it is admittedly the latter that was the driving 
force in adopting a graph-based approach.

The  GraphLab  Project  was  developed  in  order  to 
facilitate distributed, parallel, graph-based algorithms in an 
efficient and reliable manner (Low et al. 2010). GraphChi 
is  an  offshoot  of  the  GraphLab  Project  that  seeks  to 
leverage  the  power  graph-based  algorithms  on  a  single 
machine,  while  maintaining  high  performance  standards 
(Kyrola, Blelloch, and Guestrin 2012). Bickson, one of the 
original developers of GraphLab, has ported a number of 
collaborative  filtering  algorithms  from  GraphLab  to 
GraphChi in the form of the Collaborative Filtering Toolkit 
(CFT). Thirteen algorithms were supported at the time this 
study  was  run,  December  2012,  but  two  additional 
algorithms had already been added as this paper was being 
written, January 2013.

In  addition  to  developing  the  toolkit,  Bickson  has 
written a blog entry which serves as an introduction to the 
CFT and its underlying algorithms (Bickson 2012). In the 
tutorial, Bickson identifies a number of algorithms which 
have an element of fault tolerance. These algorithms allow 
the user to save the model to disk and then resume training 
from that exact state.

Experimentation  with  the  fault-tolerant  algorithms 
seemed to yield an additional benefit, in that the accuracy 
of the model would often jump between executions of the 
training epochs (this paper will use the terms “epoch” and 
“cycle”  interchangeably  to  refer  to  a  group  of  training 
iterations).  This  would  seem to  suggest  that  there  is  an 
advantage  to  using  multiple  cycles  beyond  simple  fault 
tolerance. The cumulative value of this inter-cycle bump in 
accuracy could be quite significant.

As  these  algorithms  train  a  model,  they  attempt  to 
reduce the sample space in an attempt to converge on an 
optimal answer. Given that these algorithms become more 
restrictive  and  focused  the  longer  that  they  run,  it  is 
reasonable  to  assume that  restarting  an  algorithm would 
have a significant positive impact on the final model.  By 
loosening the bounds placed on the algorithm it is possible 
to identify the possibility that the current parameters have 
focused on a local rather than global minimum.

Proposal

The  observed  increase  in  inter-epoch  accuracy  of 
models  being  trained  with  fault  tolerant  algorithms 
suggests that there is significant value to be gained from 
such  a  training  regimen.  This  study  will  first  seek  to 
establish whether there is in fact a boost in model accuracy 
between  training  cycles.  If  this  is  successful,  we  will 
attempt to identify a cycle size that results in the best final 
model.  

It is our belief that a fault-tolerant algorithm, utilizing 
a epoch size of no more than 20, should result in a model 



that is significantly more accurate than those trained using 
a single-epoch algorithm.

Methodology

Since this study is seeking to understand the impact of 
epoch size on the accuracy  of the resulting model,  there 
will  be  no  attempt  to  tune  any  of  the  algorithms.  The 
default settings were used in order to limit the impact of 
user proficiency on the resulting models (Bickson 2012).

The CFT reports the accuracy of the model generated 
using  root  mean squared  error  (RMSE).  This  statistic  is 
generated for every complete pass over the training set, and 
is  reported  in  terms of both training and validation. The 
training RMSE will not be used in this study as it is only a  
reflection of how well the model performs on the training 
data. Instead the validation RMSE will be the only measure 
reported since it demonstrates how well the model handled 
the  test  data.  Additionally,  the  validation  RMSE  will 
identify problems with the model such as overfitting which 
are ignored in the training algorithm.

Fault  Tolerance  Algorithms  (ALS,  WALS,  TALS, 
NMF, SGD, BSGD and SVD++)

The  initial  epoch  size  will  be  set  to  the  maximum 
iterations  specified  in  the  tutorial,  usually  6  iterations. 
After  the  first  training  cycle,  the  argument 
--load_factors_from_file=1 will be added to the algorithm 
to resume training with the current  state.  Training cycles 
will continue until one of the following three conditions are 
met:

1. The  validation  RMSE  no  longer  improves  with 
subsequent training cycles (a minima is reached).

2. The  validation  RMSE  increases  with  additional 
training cycles (overfitting).

3. Multiple training cycles result in an improvement 
of the validation RMSE of less than .00005 / 10 
iterations (diminishing returns).

Upon reaching one of the above criteria,  the current 
state of the model will be saved and the validation RMSE 
and total number of training cycles recorded.

Next the epoch size will  be increased and the entire 
process will repeat for the new model. The training epoch 
will be increased on the following schedule: 6, 20, 40, 80, 
100, 120, 140, 180, 200. After 200 iterations the size of the 
epoch  will  be  incremented  by  50  for  every  subsequent 
increase. The training of new models on this schedule will 
continue until the resulting model has a higher validation 
RMSE than the previously generated model.

After  the  complete  training  of  an  algorithm  is 
completed,  an  average  starting  RMSE  is  selected  and 
recorded  as  well.  The  starting  RMSE  is  defined  as  the 
validation RMSE after a single iteration of the algorithm. 
Since there is a degree of variation inherent in all of these 
algorithms it is necessary to choose a representative initial 
state. The starting RMSE will allow for a model’s training 
regimen to be judged both by its  final  accuracy  and the 

degree  of  accuracy  that  is  a  result  of  training.

Remaining  Algorithms  (SVD,  One-Sided  SVD,  RBM, 
TSVD++, libFM, and PMF)

Even  though  these  algorithms  do  not  support  a 
multi-cyclic training regimen, they will be trained on the 
same epoch schedule to provide additional context.

Additional  Note  on  Alternating  Least  Squares  (ALS) 
Algorithms

Overfitting  was  a  significant  problem with the  ALS 
algorithms, and as such some modifications to the methods 
were  made for  those algorithms.  Instead  of  stopping the 
training schedule with the first model resulting in a higher 
RMSE, all schedules were run to at least a training epoch 
of  80  iterations  in  size.  This  was  an  attempt  to  see  if 
overfitting  could  be  overcome  with  additional  training. 
Overfitting also led to the inclusion of two smaller epoch 
sizes  on  the  training  schedule,  two and  ten,  in  order  to 
identify if the optimal size was located at this smaller scale.

Control Groups
One  final  piece  of  information  is  necessary  to 

determine  the  effectiveness  of  a  multi-cyclic  training 
regimen, a control group.  The control group was trained 
using  a  single-epoch  consisting  of  a  large  number  of 
iterations.  The  control  groups  were  generated  after  the 
experimental  group in an attempt to limit  the number of 
unnecessary training cycles, since large epochs require 8+ 
hours to run.  

Waiting until after the experiment had the additional 
benefit of identifying a number of algorithms which did not 
need to included in the control group. All of the algorithms 
utilizing  ALS already  had  runs  which  demonstrated  that 
even moderately sized single iterations were outperformed 
by  multi-cyclic  regimens.  This  meant  that  it  was  only 
necessary to run control groups on SGD, BSGD, NMF, and 
SVD++.

Each of the control groups is trained using the same 
parameters  utilized  in  the  experimental  phase,  only  the 
progression of epoch size is altered.  A starting size of 200 
iterations was selected since it is within the bounds of each 
of  the selected  algorithms total  number  of  iterations  run 
from  the  experiment.   Each  succeeding  epoch  will  be 
doubled in size up to 1,600 iterations.  The next epoch will 
be increased to 2,000 and then incremented by 1,000 every 
epoch after that.  Training will continue until the RMSE no 
longer  decreases  between  runs,  and  actually  begins  to 
increase.  

Table 2:  Netflix Control Group Results

Algorithm # of Iterations RMSE

SGD 200 1.123820

BSGD 400 1.117690

SVD++ 400  0.982024

NMF 2000 2.370640



The Data

This study uses the same dataset featured in Bickson’s 
blog, which is a synthetic Netflix dataset created using an 
anonymized sample of the original.  Although the dataset 
from  the  Netflix  challenge  is  unavailable  because  of 
copyright, the general  characteristics of the data are well 
established  by  the  competition’s  creators  (Bennett  and 
Lanning 2007). The GraphLab Netflix sample was done to 
preserve these characteristics (i.e. sparsity of data, user to 
movie  ratio,  user  to  rating  ratio,  etc)  while  ensuring the 
anonymity of the users.

The  Netflix  subset  has  the  following  general 
characteristics:  95,526  unique  users,  3,561  movies,  and 
3,298,163  ratings  (non-zeroes).  This  is  a  very  sparse 
dataset with less than 0.97% of the resulting matrix having 
ratings.

Historic Benchmarks

In order to provide some context in which to view the 
results of this study the following results from the Netflix 
Prize (Netflix 2009) were retrieved:

• Cinematch (2006) : RMSE 0.9525
• 2007 Progress Prize : "KorBell" : RMSE 0.8723
• 2008 Progress Prize : "BellKor in BigChaos" : RMSE 

0.8627
• Winners : "BellKor's Pragmatic Chaos" (2009) : RMSE 

0.8567
Additionally, KorBell reported that the best result they 

could get from a single method was an increase of 6.57% 
over Cinematch, RMSE ~0.8882 (Bell and Koren 2007).

Results

The initial impressions of the CFT suggested that the 
apparent boost in accuracy between training epochs would 
favor a training regimen consisting of a large number of 
very small cycles (no more than 20 iterations per epoch). 
This type of training would lead to results superior, to those 
generated without it. 

The first thing of note about Table 3 is that only eleven 
algorithms are included.  Both SVD and One-Sided SVD 
have  been  left  off  of  the  table  intentionally.  No 
modification  to  the  number  of  training iterations  yielded 
any  variation  in  how these  algorithms performed.  Every 
run of these methods resulted in both an identical process 
and  model.  Additionally,  these  algorithms  utilize  a 
different error metric than the rest of the CFT by reporting 
an error  estimate for  each  of  the features  generated.  For 
these reasons these algorithms were left out of the rest of 
the discussion of this study’s results, but an example of the 
output of each has been included at the end of this paper as 
Appendix 1.

Table 3: Algorithms Ordered by Final RMSE (Multi-Cyclic  
Algorithms Bolded)

Algorithm Initial RMSE Final RMSE

PMF 2.498400 0.914566

RBM 0.979169 0.926279

SVD++ 1.124420 0.931921

BSGD 1.363540 0.952970

SGD 1.240700 0.959890

TSVD++ 1.041220 0.995435

LibFM 1.090030 1.025770

TALS 1.244250 1.147030

ALS 1.251550 1.159920

NMF 1.580120 2.375430

WALS 5.522080 5.325280

Looking  at  the  results  purely  in  terms  of  accuracy 
suggest that the fault-tolerant algorithms are generally of 
inferior  quality.  However,  this  view  of  the  results  is 
misleading.  There  was  no  effort  made  to  tune  these 
algorithms, or to even check if there current settings were 
conducive to producing good models, before these results 
were generated. So while it is interesting which algorithms 
handled the data best, it doesn’t really show how well these 
models developed over the course of training.

By  ordering  the  results  by  how  much  a  model’s 
RMFigure 1: Trendlines of Algorithm PerformanceSE was 
improved over the course of training reveals a far different 
picture of the fault-tolerant algorithms. The improvement 
in  final  RMSE  would  suggest  that  these  algorithms  are 
more effective at training, but it is unclear whether this is a 
product of the algorithm itself or the training regimen. A 
closer look at all of the results, as well as the effect of the 
restart boost, should provide a clearer picture of the factors 
at work.

Table 4: Results Ordered by Percent Improved Over  
Initial RMSE

Algorithm % Improvement

PMF 63.39%

BSGD 30.11%

SGD 22.63%

SVD++ 17.12%

TALS 7.81%

ALS 7.32%

LibFM 5.90%

RBM 5.40%

TSVD++ 4.40%

WALS 3.56%

NMF -50.33%



 Figure 1:  Algorithmic Spark Lines

Figure 1  shows the percentage difference between all 
of  the  training  regimens  for  a  given  algorithm  and  its 
starting  RMSE.  The  spark  lines  illustrate  that  while  the 
effectiveness  of  the  algorithms  may  vary,  their  general 
training  behaviors  are  very  similar.  From  this  limited 
sample  it  would seem that  there  is  no evidence that  the 
restart boost creates a more effective training regimen. But 
this is not evidence that it has no effect. 

While the cyclical training regimen fails to outperform 
the single  epoch algorithms,  it  is  clearly  not  without  its 
benefits.   Most  of  the  cyclically  generated  models  have 
significantly higher accuracy than models learned over the 
course of a lone epoch with the same algorithm.  All of the 
algorithms in the CFT suffer from the same design flaw, 
they fail to take into account validation RMSE. This results 
in either overfitting or the algorithm becoming trapped in a 
local minima, as the parameters of the algorithms become 
more and more restrictive. Restarting the algorithm loosens 
the bounds  on the  program allowing it  to  move beyond 
erroneous  assumptions  about  the  data.  So  while  the 
hypothesized  accuracy  failed  to  materialize,  there  are 
definitely  significant  advantages  to  this  style  of  training 
with SGD, BSGD, and SVD++.

Table 9: Final RMSE of Control and Experimental Models 

Algorithm Control 
RMSE

Test RMSE Improvemen
t

SGD 1.123820 0.959890 14.59%

BSGD 1.117690 0.952970 14.74%

SVD++  0.982024 0.931921 5.10%

NMF 2.370640 2.375430 -0.20%

Table  5:  Epoch Size  and Number of  Cycles  Trained for  
Each Algorithm (Multi-Cyclic Algorithms Bolded)

Algorithm
Epoch Size 
(Iterations)

Training 
Cycles

Total Running 
Time (sec)

PMF 180 -  2,501.9900

RBM 80 - 692.3140

SVD++ 40 7 691.6511

BSGD 40 92 6,860.8908

SGD 40 59 3127.5310

TSVD++ 80 - 251.9750

LibFM 200 - 908.0320

TALS 10 1 74.6055

ALS 2 4 47.4264

NMF 40 56 9,045.0080

WALS 10 1 66.1071

The idea that a cyclical training regimen is superior to 
a single epoch system has been thoroughly disproved, but 
what about the ideal size for these epochs? Table 5 shows, 
rather conclusively,  that the ideal number of iterations is 
larger  than  the  20  iteration  ceiling  that  had  been 
hypothesized. Each cycle needs to be large enough to take 
advantage of as many positive iterations (those that reduce 
the  validation  RMSE),  while  minimizing  the  number  of 
overfitted iterations (a common occurrence in later training 
cycles).

Conclusion and Further Study

This study is only meant to serve as an initial foray 
into the algorithms represented  by the  CFT,  and  a great 



deal  remains  to  be  researched.  However,  there  are 
questions  that  relate  directly  to  the  results  of  this  study 
which would be logical next steps. The first is to determine 
if the results here are a product of the algorithms or the 
data. This study needs to be repeated on a number of other 
datasets  to  see  if  similar  results  are  generated.  Similar 
training  patterns  would  suggest  that  the  findings  of  this 
study  are  a  result  of  the  algorithms  used  and  not  some 
feature of the dataset. Secondly, a study should determine 
if tuning the algorithms have an effect on training patterns. 

The  CFT  represents  a  powerful  tool  for  bringing 
compact,  easily  executed  data  analysis  to  a  variety  of 
ventures.  Further  experimentation  with  the  package  will 
illuminate how it, and the algorithms it represents, can be 
put to the best use.

Appendix 1: SVD and One-Sided SVD Output

./toolkits/collaborative_filtering/svd 
--training=smallnetflix_mm --nsv=3 --nv=10 --max_iter=5 
--quiet=1 --tol=1e-1
WARNING:  common.hpp(print_copyright:104): 
GraphChi Collaborative filtering library is written by 
Danny Bickson (c). Send any  comments or bug reports to 
danny.bickson@gmail.com 
[training] => [smallnetflix_mm]
[nsv] => [3]
[nv] => [10]
[max_iter] => [5]
[quiet] => [1]
[tol] => [1e-1]
Load matrix smallnetflix_mm
Starting iteration: 1 at time: 2.71863
Starting step: 1 at time: 3.42417
Starting step: 2 at time: 4.6307
Starting step: 3 at time: 5.88049
Starting step: 4 at time: 7.11613
Starting step: 5 at time: 8.36737
Starting step: 6 at time: 9.63118
Starting step: 7 at time: 10.9138
Starting step: 8 at time: 12.2115
Starting step: 9 at time: 13.5747
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
Number of computed signular values 5
Singular value 0      3276.69 Error estimate:   0.000305186
Singular value 1      1064.07 Error estimate:   1.18507e-13
Singular value 2      956.541 Error estimate:    0.00162432
Singular value 3      889.028 Error estimate:    0.00841469
Singular value 4       710.42 Error estimate:     0.0551811
Going to save output vectors U and V
Lanczos finished 22.5142

./toolkits/collaborative_filtering/svd_onesided 
--training=smallnetflix_mm --nsv=3 --nv=10 --max_iter=5 
--quiet=1 --tol=1e-1
WARNING:  common.hpp(print_copyright:104): 
GraphChi Collaborative filtering library is written by 
Danny Bickson (c). Send any  comments or bug reports to 
danny.bickson@gmail.com 
[training] => [smallnetflix_mm]
[nsv] => [3]
[nv] => [10]
[max_iter] => [5]
[quiet] => [1]
[tol] => [1e-1]
Load matrix smallnetflix_mm
Starting iteration: 1 at time: 0.560262
Starting step: 1 at time: 1.22546
Starting step: 2 at time: 4.76345
Starting step: 3 at time: 8.32286
Starting step: 4 at time: 11.8127
Starting step: 5 at time: 15.4576
Starting step: 6 at time: 19.1342
Starting step: 7 at time: 22.8375
Starting step: 8 at time: 26.5084
Starting step: 9 at time: 30.1965
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
set status to tol
Number of computed signular values 5
Singular value 0      3276.69 Error estimate:    3.8991e-14
Singular value 1      1064.07 Error estimate:    0.00146017
Singular value 2      956.541 Error estimate:    0.00782078
Singular value 3      889.028 Error estimate:     0.0440951
Singular value 4       710.42 Error estimate:     0.0864268
Lanczos finished in 47.1228
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