
A Combined Method for E-Learning Ontology
Population based on NLP and User Activity

Analysis

Dmitry Mouromtsev, Fedor Kozlov, Liubov Kovriguina and Olga Parkhimovich

ITMO University, St. Petersburg, Russia
d.muromtsev@gmail.com, kozlovfedor@gmail.com, lkovriguina@gmail.com,

olya.parkhimovich@gmail.com

Abstract. The paper describes a combined approach to maintaining an
E-Learning ontology in dynamic and changing educational environment.
The developed NLP algorithm based on morpho-syntactic patterns is ap-
plied for terminology extraction from course tasks that allows to interlink
extracted terms with the instances of the system’s ontology whenever
some educational materials are changed. These links are used to gather
statistics, evaluate quality of lectures’ and tasks’ materials, analyse stu-
dents’ answers to the tasks and detect difficult terminology of the course
in general (for the teachers) and its understandability in particular (for
every student).

Keywords: Semantic Web, Linked Learning, terminology extraction,
education, educational ontology population

1 Introduction

Nowadays reusing online educational resources becomes one of the most promis-
ing approaches for e-learning systems development. A good example of using
semantics to make education materials reusable and flexible is the SlideWiki
system[1]. The key feature of an ontology-based e-learning system is the possi-
bility for tutors and students to treat elements of educational content as named
objects and named relations between them. These names are understandable
both for humans as titles and for the system as types of data. Thus educational
materials in the e-learning system thoroughly reflect the structure of education
process via relations between courses, modules, lectures, tests and terms.

In this paper the authors describe development of two modules of the ontology-
based e-learning system built on top of the Information Workbench platform1

(the latter provides functions to interact with Linked Open Data[2]): a system
user module aggregating information about students’ activity and an NLP mod-
ule responsible for terminology extraction and terms’ linking to the instances of
the system knowledge base.

1 http://www.fluidops.com/information-workbench/

2 Related Work

Some e-learning and educational systems use ontologies and semantic web. For
example, educational ontology which supports the creation of transparent cur-
riculum content and adaptive knowledge testing system were developed by Réka
Vas [6]. Another example is the ontology-driven e-learning system for Thai learn-
ing environment (O-DEST) [9]. O-DEST contains an ontology for e-learning pro-
cess which describes teaching methods, learning styles and activities and it is
used by teachers and administrative personnel to configure and maintain course
materials. Metacademy2 system is an example of the e-learning system using ter-
minology to link learning resources. Metacademy is a community-driven, open-
source platform for experts to construct collaboratively a web of knowledge.
Metacademy is the e-learning system, where the content of education (lectures,
videos, books) linked through the subject terms.

3 Motivation

A major task in developing and maintaining an educational system is choosing
and interlinking relevant materials, e.g. associating terms in lectures and tests.
The main aspect described in the current paper deals with extracting relevant
terminology from tests and linking these terms properly with explanatory mate-
rials of the system: video lectures, slides, domain terms. The latter are instances
of the education ontology linked via properties to tasks of the tests/lectures/-
modules they occur in. When the links are created, any sophisticated statistics
can be gathered, e.g. statistics about students’ correct/incorrect answers allow-
ing to filter out troublesome terms and topics. The last provides teachers with
a mean to improve their lectures. Modules gathering statistics about students’
activity in the system are implemented on the front-end applications. Statistics
is stored in the knowledge base of students’ activity. To develop an architecture
adequate to the set problems 1) the ontology of tests has been developed, 2)
the tests were converted from XML to the Semantic Web format, 3) the terms
were extracted from tasks using morpho-syntactic patterns, 4) the tasks were
linked to the lecture terms via extracted candidate terms, 5) candidate terms
that do not match any instance in the system knowledge base were validated via
DBpedia[4], 6) the ontology of the e-learning system user has been developed,
7) statistics gathering module has been developed, 8) pages to show statistics of
students’ answers to the tests have been created.

The described system functionality was designed on the material of three
courses: 1) analytic geometry and linear algebra, 2) graph theory and 3) physics.
Each course has modules. Each module has a number of lectures. Material of
the lecture is described by a number of terms (annotations objects or a set
of keyphrases from the user’s point of view) and media resources. Also, each
module has tests including from 30 to 100 tasks in a test. Most part of lecture’s
terms should be represented in tasks to ensure that a student understood the
2 http://www.metacademy.org/

lecture correctly. An NLP algorithm extracts candidate terms from the text of
the task and creates relations between a suitable lecture term and task entities.
The relation between these entities is an object property of the ontology class
"hasTerm".

4 Ontology development

4.1 Description of the ontology of education resources

An original ontology is built on top of top-level ontologies such as AIISO3,
BIBO4 and MA-ONT5. The ontology describes relations between courses, mod-
ules, lectures and terms and helps to represent its properties and media content.
The most outstanding feature of this ontology is its ability to create direct and
indirect interdisciplinary relations between courses[3]. E.g., physics test "Inter-
ference and Coherence" includes math terms as well ("vector", "vector prod-
uct"). Thus, if a student can’t pass this test, the system advices to repeat not
only the lecture "Occurrence of Interference" in the "Physics" course, but also
corresponding lectures from the "Vector algebra" course. This is an example of
indirect links between physics and vector algebra via the subject terms "vector"
and "vector product".

4.2 Ontology of Test

To describe the content of tests a top-level ontology representing test structure
has been developed. Top-down approach was used to develop ontologies for the
educational system. It was used because developed ontology extended top-level
ontology. The ontology6 has the following classes: Test, Testing Knowledge Item,
Group of Tasks, Task, Answer, Question, Fill-in the Blank, Matching, Multiple
Choice, Single Answer, Text Answer, True/False. The classes of the developed
ontology are shown in the figure 1. The main purpose of the developed ontology
is to represent structural units of a test and provide automatic task matching by
defining semantic relations between tasks and terms[5]. The ontology has class
"Test" to store common test characteristics, e.g. its title and description, and
class "Testing Knowledge Item" to describe test elements. The class "Testing
Knowledge Item" has subclass "Task". The class "Group Of Tasks" [6] was
added to group questions by parameters, e.g. by difficulty. The class "Task" has
subclasses "Answer". The class "Question" has subclasses describing question
types: "Fill-in the Blank", "Matching", "Multiple Choice", "Single Answer",
"Text Answer", and "True/False". The class "Answer" has object properties
"is wrong answer of" and "is right answer of". Using this two object properties
except one data property "has answer" allow to use one set of answers for many
questions.
3 http://purl.org/vocab/aiiso/schema#.
4 http://purl.org/ontology/bibo/.
5 http://www.w3.org/ns/ma-ont#.
6 http://purl.org/ailab/testontology

4.3 Ontology of student activity in the e-learning system

The ontology of student activity7 is designed to store information about the
student’s learning process and results. Two top-level ontologies have been used
for its development: ontology of test, as described above, and FOAF ontology8

that describes people and relationships between them.
The classes of the developed ontology are shown in the figure 2. The class

"Learning process" was added to store information about actions performed by
a student in the system. Students can watch video (subclass "Video"), try to
pass the test (subclass "AttemptToPassTest"), learn terms (subclass "Term")
and pass a course (subclass "Course"). The ontology also has class "Student"
to store information about users and their activity in system. This class is a
subclass of class "Person" determined in FOAF ontology. The object properties
"enrolled course", "finished course", and "subscribed course" describe relation-
ships between the class "Student" and the class "Course". The class "Learning
results" was added to store information about students educational activities and
answers. Class "TestElement" contains information about "Task" (class of test
ontology) and about student’s "Answer" (subclass of class "LearningResults"),
which can be correct or incorrect. Set of test elements constitutes attempt to
pass test. The properties "timestamp of attempt" and "percent complete of test"
allow e-learning system to store information about the time in which an attempt
was made and to determine the result of the test. The e-learning system uses
the ontology of tests and answers given by the user to build a list of terms that
the user knows.

5 NLP algorithm

Considering the small sample size and pre-set list of lecture terms POS-tag pat-
terns combined with syntax patterns seem to be the most appropriate method to
extract terms from the tests [7][8][10]. The same algorithm was used for tests in
the Russian language and for the tests translated into English for the demo ver-
sion. About ten most typical compound term patterns were used to extract can-
didate terms (nominal compounds and adjectival compounds). Below are some
of them for Russian: "опыт Юнга" <noun in nominative case + anthroponym
in genitive case>, "ширина интерференционной полосы" <noun in nominative
case + adjective in genitive case + noun in genitive case> and English: "Fres-
nel biprism", "Poisson light" <anthroponym + noun>, "convexo-plane lens"
<adjective + hyphen + adjective + noun>.

Due to the rich inflectional system of the Russian language case and number
characteristics are specified in POS-tag patterns to extract Russian terms. Some
syntactic patterns were also used, because components of a compound term are
distant as phrases with coordination ellipsis (a) or belong to different task parts
(b):
7 http://purl.org/ailab/learningresults
8 http://www.foaf-project.org

(a) <adjective + coordinative conjunction (and | or) + adjective + noun>

l e f t −handed and r ight−handed t r i p l e o f v e c t o r s ;
coherence l ength and time ;

(b) <noun + verb in passive form + adjective>

<task>
<quest ion> A matrix with a l l e n t r i e s ou t s i d e the main
d iagona l equal to zero i s c a l l e d
</quest ion>
<answers>
<answer r i g h t="no">sca l a r </answer>
<answer r i g h t="yes">t r i angu l a r </answer>
<answer r i g h t="yes">symmetric</answer>
<answer r i g h t="no">anti−symmetric</answer>
</answers>
</task>

Russian compound candidate terms are transformed to the canonical form (that
coincides with a headword in dictionaries) after extraction. E.g. the pattern <ad-
jective + noun> extracts an actual term <feminine adjective in instrumental
case + feminine noun in instrumental case>, but lemmatization removes agree-
ment and will produce 2 lemmas: <masculine adjective in nominative case>
and <feminine noun in nominative case> whereas the appropriate form of the
term is <feminine adjective in nominative case + feminine noun in nominative
case>. This doesn’t influence the procedure of linking candidate terms to the
knowledge base instances, but it is significant for the procedure of validation of
missing terms.

NooJ linguistic engine[11] was used to extract terms. NooJ has powerful
regular expression corpus search allowing to join various POS-patterns in a single
grammar to query the text. Dictionaries of lexical entries (for tests and ontology
terms) and inflectional grammars were written for the Russian language by the
authors of the paper. Lexical resources developed for the Russian language cover
tasks’ vocabulary totally. To analyze English text for the demo version standard
NooJ resources were augmented and reused. NooJ dictionaries allow to combine
various linguistic information for the lexical entry, e.g. we tagged anthroponyms
(Newton, Fresnel, Poisson, etc.) with a feature "+Anthr" and used it to write
a POS-pattern <N+nom+sg><N+gen+sg+Anthr> to extract Russian terms
like "бипризма Френеля" ("Fresnel biprism"). Several derivational paradigms
for the Russiam morphology were described with NooJ transducers and ascribed
to the lexical entries[12]. Assigning derivational paradigms allows to produce
a common lemma for the lexical entry and its derivatives, e.g. "coplanar" and
"coplanarity" will have common lemma "coplanar". It should be noticed that
NooJ descriptions allow to choose any word of the pair as a derivational basis and
e.g. derive "coplanar" from "coplanarity" with a common lemma "coplanarity".
NooJ also has a very useful concept of a super-lemma. It allows to link all lexical
variants via a canonical form and store them in one equivalence class[13], e.g.

in our dictionary a lexical entry "rectangular Cartesian coordinate system" is
attached to its acronym "RCCS" (the last is a considered a canonical form) and
a query either on acronym or on a compound term matches all the variants. The
overall algorithm of term extraction inside the NLP module is the following:

– a plain text is loaded to NooJ that performs its linguistic analysis using
provided dictionaries, the output is the plain text with annotations contain-
ing morphological and semantic information for every analyzed word (Text
Annotation Structure),

– applying queries (that is POS-tag patterns combined with syntactic pat-
terns) stored in a single NooJ grammar file to the Text Annotation Structure,
the output is the list of candidate terms,

– candidate terms with annotations are exported to a text file.

To apply the NLP-algorithm to other domains and languages one needs to
compile NooJ lexical resources (dictionaries), write grammars and work out the
templates to extract terms.

6 Methods

6.1 Test parsers

To convert test data from XML format to semantic format a mapping was de-
scribed. To provide conversion in the system an XMLProvider instance was cre-
ated. The mapping for the test data conversion was described in the XML format.
The mapping allows to convert XML files of the tests to the semantic data in
accordance of the test ontology automatically. The XMLProvider uses XPath
functions to extract data about objects and properties from the input XML
file. The extracted data is converted into the RDF/XML format based on the
mapping description.

The example of the input XML code, the mapping and the output result for
the test entity conversion is in table 1.

6.2 The NLP module

To map a candidate term to the system term via lemma, system terms were also
lemmatized. Each system term has been assigned a text property "lemma" with
a label containing the lemma of a term.

To handle links between system terms and test tasks the new data provider
was implemented. The provider supports periodic updating of links. The input
of the provider is the URI of the course entity. The provider handles all links
between subject terms and test tasks of the input course. The provider is im-
plemented in Java and uses the standard libraries and the Provider SDK of the
Information Workbench platform.

The provider is based on the following algorithm:

– the provider collects tasks of the course using SPARQL queries;

Table 1. Example of test entity conversion

The input XML code

<t e s t module="m_InterferenceAndCoherence"
module_ns="Ph i s i c s "
u r i="Tes tOf In t e r f e r enceAndDi f f r a c t i onFrene l "
name="Test Of I n t e r f e r e n c e And D i f f r a c t i o n Frene l">

</te s t>
The mapping code

<ru l e id="t e s t " nodeBase="// t e s t "
owlType="learningRu : Test "
instanceNamespace="openeduTests "
ob j e c t Id ="{./@uri }"
ob j ec tLabe l ="{./@name}">
<objectPropertyMapping nodeBase="."

instanceNamespace="openeduTests "
value ="{./@name}"
owlProperty="i fmot e s t : hasGroupOfTasks"
r e f e r r edRu l e="task_group" />

</ru le>
The output RDF/XML code

<rd f : Desc r ip t i on
rd f : about="http :// openedu . ifmo . ru/ t e s t s /
Tes tOf In t e r f e r enceAndDi f f r a c t i onFrene l">

<rd f : type
rd f : r e s ou r c e="http ://www. semanticweb . org /
k0shk/ on t o l o g i e s /2013/5/ l e a rn i ng#Test"/>

<l a b e l xmlns="http ://www.w3 . org /2000/01/ rdf−schema#">
Test Of I n t e r f e r e n c e And D i f f r a c t i o n Frene l

</labe l >
<hasGroupOfTasks

xmlns="http ://www. semanticweb . org /
f e d u l i t y / on t o l o g i e s /2014/4/ unt i t l ed−ontology−13#"
rd f : r e s ou r c e="http :// openedu . ifmo . ru/ t e s t s /
Test_Of_Interference_And_Diffraction_Frenel"/>

</rd f : Descr ipt ion>

– the provider forms the plain text content for each task using the information
about questions and answers of the task;

– the provider launches NLP procedures in NooJ for the plain text content of
the task;

– the provider extracts candidate terms from the NooJ output file, the data
contain a canonical form and lemma(s) for the candidate term;

– the provider searches terms in the system to linked them with candidate
terms by using SPARQL queries, system terms and candidate terms are
linked if they have the same lemma(s);

– the provider creates a link between selected system terms and the task by
using the "hasTerm" property.

If a word sequence extracted with a morpho-syntactic pattern doesn’t match
any of the system terms, it becomes a candidate instance to be included to
the system as a new system term. Apparently, it is necessary to validate it,
e.g., via external sources. We chose DBpedia to validate candidate instances.
A candidate instance is considered a new system term if its canonical form
(a headword) completely matches to DBpedia instance’s property rdfs:label or
dbpedia-owl:wikiPageRedirects, otherwise it is considered a false candidate. To
avoid false matches results are filtered by the property "dcterms:subject". Val-
idation is considered successful in case one or more DBpedia instances were
matched. The validated candidate instance is added to the system as a new can-
didate term and is linked to the task. It becomes authentic system term after
teachers’ approval.

An example of querying DBpedia via SPARQL-endpoint is below:

SELECT DISTINCT ?term {
?term dcterms : sub j e c t ? sub j e c t .
VALUES ? sub j e c t {

category : Concepts_in_physics
category : Phys i ca l_opt i c s
category : Optics }

{?name_uri dbpedia−owl : wik iPageRedi rect s ? term ;
r d f s : l a b e l ? l a b e l .

}
UNION
{ ?term rd f s : l a b e l ? l a b e l }
FILTER(STR(? l a b e l) = " D i f f r a c t i o n ")

}

7 Evaluation and Results

Procedures of candidate terms extraction and validation that were described in 5
and 6.2 above have produced the following results in the table 2. Term validation
via DBpedia as it is proposed in the paper is merely an idea rather than a
technique. Using it in the described straightforward manner, we pursued the aim
to remove the bulk of false candidates, not to validate the largest possible number
of the candidate terms. Overall, 30 different terms were extracted manually from
20 tasks and 5 times more candidate terms were extracted using POS-patterns.
The system contains 24 terms on interference and diffraction in the physics
course at the moment.

The obtained results seem rather ambivalent: on the one side, 95% of tasks
were linked to at least one term. The leading system term is "Light", that has
been linked to 12 tasks. On the other side, 50% of system terms remained un-
linked to tasks and about 60% of them demand addition of proper tasks. The

Table 2. Evaluation of the NLP-module (for the English language)

Percent of linked tasks, % 95
Percent of non-linked tasks, % 5
Number of different candidate terms 155
Number of manually extracted terms 30
Percent of system terms, matched by candidate terms, % 50
Percent of candidate terms, matched by system terms, % 8
Percent of candidate terms to be included to the system terms
after the validation procedure, %

6

Percent of false candidates, % 86

validation procedure using DBpedia as an external source provided 9 terms to
be added as candidate system instances ("wavelength", "coherence", "coher-
ent light", "diffraction", "amplitude", "aperture", "diffraction pattern", "opti-
cal path", "optical path length"). We treated all the rest terms (that do not
match any system term and failed DBpedia validation procedure) as false can-
didates. However, actually a few of false candidates are true terms that do
not present in chosen categories of DBpedia (Concepts_in_Physics, Optics and
Physical_optics), but present in other DBpedia categories (e.g. "Fresnel diffrac-
tion", "Fresnel zone" and "Fresnel number" are in the category: "Diffraction",
"Michelson interferometer" is in the category "Interferometers"). Some terms
have different canonical form in Russian and English, e.g. "Young’s interference
experiment" (is in DBpedia) reduces to "Young’s experiment" in Russian (no
term in DBpedia). Thus, developers depend completely upon the data segmen-
tation of the external source. Besides, there is a far more challenging problem: a
task may not contain explicitly the term it is intended to checks. Consider the
following example:

A ladder i s 5m long . How f a r from the base o f a wa l l
should i t be placed i f i t i s to reach 4m up the wal l ?
Give your answer in metres c o r r e c t to 1 decimal p lace .

This task checks understanding of the Pythagorean Theorem, but it contains no
explicit information allowing to assign proper keywords to the task. Meanwhile,
such tasks are quite numerous. Right now the algorithm fails to process such
tasks remaining them unlinked. Elaborating the algorithm to handle cases like
this is the work to be done.

8 The module of the user statistics collection

The front-end of the ontology-base e-learning system is a lightweight Learning
Management System. The front-end is designed to represent educational content
conveniently. It also manages user data, user settings and the results of the user’s
educational process. The front-end handles content administration, restricts ac-
cess to educational content and supports widgets for video lectures, tests and
practices.

The user interface of the front-end test page is shown in fig. 3.
The front-end is implemented in Python9 and uses the Django Web Frame-

work10. Data from the educational content are extracted with SPARQL queries
to the Information Workbench SPARQL-endpoint[14]. The SPARQLWrapper
Library11 is used to compile SPARQL queries. When the system user has fin-
ished the test, the module gathering user’s statistics sends the SPARQL Update
Query[15] with user answers to the Information Workbench SPARQL-endpoint.
When user statistics is gathered, objects having type "AttemptToPassTest" and
user’s answers to the test’s tasks are created in the system. The object with type
"AttemptToPassTest" is bound to hash data of user’s e-mail.

8.1 Analysis of user responses to the tests

The data about number of correct/incorrect user’s answers allow to compute the
knowledge rating for any of the system terms. Using this rating, teachers can
determine which terms of the course students know worst of all. The knowledge
rating is count by subtracting the number of incorrect answers from the number
of correct answers for all tasks which contains this term. This rating is quite
simple and is to be replaced by a ranking formula after elaborating a set of
features.

Data about user’s answers are collected with the following SPARQL-query.

SELECT ?term
(count (? correct_answer) AS ? correct_answer_count)
(count (? answer) AS ?answer_count)
((2∗? correct_answer_count − ?answer_count)

AS ? rank)
WHERE{

?module learningRu : hasTest ? t e s t .
? t e s t i fmo t e s t : hasGroupOfTasks

? group_of_tasks .
? group_of_tasks i fmo t e s t : hasTask ? task .
? test_element l r e s : hasTask ? task .
? test_element l r e s : hasAnswer ? answer .
? task learningRu : hasTerm ?term .
OPTIONAL {

? task i fmo t e s t : hasCorrectAnswer
? correct_answer

f i l t e r (? correct_answer = ?answer)
}

}
GROUP BY ?term
ORDER BY ASC(? rank)

9 https://www.python.org/
10 https://www.djangoproject.com/
11 http://rdflib.github.io/sparqlwrapper/

The analysis of troublesome terms in tests is performed inside the module.
Each module has a separate analytics page that contains widgets, tables and
carts. The analytics page is the wiki page. The wiki page is based on the Semantic
MediaWiki syntax[16] and stored inside the Information Workbench system. The
data of all UI elements on the page are obtained by using SPARQL queries. The
system analytics page of the module includes a bar char of the five most difficult
terms for students and a table of all terms in the module with the knowledge
rating.

The user interface of the troublesome terms statistics is shown in fig. 4.

9 Conclusion

The developed modules for the e-learning system provide teachers with a tool to
maintain relevance and high quality of existing knowledge assessment modules.
The system provides rating of the terms, which caused difficulties for students.
Based on this rating, teachers can change theoretical material of the course by
improving description of certain terms and add proper tasks.

The front-end of the e-learning system can be found at http://openedu.
ifmo.ru.

Example of subject terms analytics for module "Interference and Coher-
ence" can be found at http://openedu.ifmo.ru:8888/resource/Phisics:m_
InterferenceAndCoherence?analytic=1.

The source code can be found at https://github.com/ailabitmo/linked-learning-
solution.

Future work for the NLP-module implies describing a set of term periphrases.
The algorithm should also filter out candidate terms that are non-thematic to
the course, e.g. if a term "vector" occurs in a task on physics, it should not
be marked as a term highly relevant to the course on interference because it is
introduced in another course. The idea is that a link is created between a system
term and any term that occurred in the task, but terms that do not belong to the
topic of the course should not be marked as terms missing in the course. Term
extraction procedure can be also improved for adding parallel texts of tasks. The
provider needs to be refined to create test entities in several languages. The term
knowledge rating can be also refined after its replacement by the proper ranking
formula.

This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.

References

1. Khalili, A., Auer, S., Tarasowa, D., Ermilov, I. SlideWiki: elicitation and sharing of
corporate knowledge using presentations. In Knowledge Engineering and Knowledge
Management. Springer Berlin Heidelberg. 302-316 (2012)

2. Haase, P., Schmidt, M., Schwarte, A. The Information Workbench as a Self-Service
Platform for Linked Data Applications. COLD, (2011)

http://openedu.ifmo.ru
http://openedu.ifmo.ru
http://openedu.ifmo.ru:8888/resource/Phisics:m_InterferenceAndCoherence?analytic=1
http://openedu.ifmo.ru:8888/resource/Phisics:m_InterferenceAndCoherence?analytic=1

3. Mouromtsev, D., Kozlov, F., Parkhimovich, O., Zelenina, M. Development of an
Ontology-Based E-Learning System. Knowledge Engineering and the Semantic Web.
Springer Berlin Heidelberg, 273-280 (2013)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z. Dbpedia: A
nucleus for a web of open data (pp. 722-735). Springer Berlin Heidelberg. (2007)

5. Soldatova, L., Mizoguchi, R. Ontology of test. Proc. Computers and Advanced Tech-
nology in Education 173-180 (2003)

6. Vas, R. Educational ontology and knowledge testing. The Electronic Journal of
Knowledge Management of 5.1, 123-130 (2007)

7. Hulth A. Improved Automatic Keyword Extraction Given More Linguistic Knowl-
edge. Proceedings of the 2003 conference on Empirical methods in natural language
processing (EMNLP’03). P.216-223 (2003)

8. Khokhlova M.V. Lexico-syntactic patterns as a tool for extracting lexis of a spe-
cialized knowledge domain. (in Russian). Proceedings of the Annual International
Conference “Dialogue” (2012)

9. Chakkrit Snae and Michael Brueckner Ontology-Driven E-Learning System Based
on Roles and Activities for Thai Learning Environment. Interdisciplinary Journal
of Knowledge and Learning Objects (2007)

10. Bolshakova E., Vasilieva N. Formalizacija leksiko-sintaksicheskoj informacii dlja
raspoznavanija reguljarnyh konstrukcij estestvennogo jazyka [Formalizing lexico-
syntactic information to extract natural language patterns]. Programmnye produkty
i sistemy [Software and Systems]. No.4. P.103-106. (2008)

11. Silberztein M. NooJ for NLP: a linguistic development environment. URL:
http://www.NooJ4nlp.net/pages/NooJ.html (2002 - :)

12. Silberztein M. NooJManual [Electronic resource]. P.99. URL:
http://www.NooJ4nlp.net/NooJManual.pdf, (2003)

13. Ibid. P.82
14. Holovaty, A., Kaplan-Moss, J. The Definitive Guide to Django. Estados Unidos:

Editorial Apress, 72-73 (2009)
15. Gearon, P., Passant, A. Polleres, A. SPARQL 1.1 Update. World Wide Web Con-

sortium, (2013)
16. Krötzsch, M., Vrandečić, D., Völkel, M. Semantic mediawiki. The Semantic Web-

ISWC 2006. Springer Berlin Heidelberg, 935-942 (2006)

Fig. 1. Main classes of the test ontology

Fig. 2. Main classes of the student activity in the e-learning system ontology

Fig. 3. The user interface of the front-end test page

Fig. 4. The user interface of the troublesome terms statistics

	A Combined Method for E-Learning Ontology Population based on NLP and User Activity Analysis
	Introduction
	Related Work
	Motivation
	Ontology development
	Description of the ontology of education resources
	Ontology of Test
	Ontology of student activity in the e-learning system

	NLP algorithm
	Methods
	Test parsers
	The NLP module

	Evaluation and Results
	The module of the user statistics collection
	Analysis of user responses to the tests

	Conclusion

