Collaborative Assessment

Patricia Gutierrez
IA-CSIC
Campus de la UAB
Barcelona, Spain

patricia@iiia.csic.es

ABSTRACT

In this paper we introduce an automated assessment service
for online learning support in the context of communities of
learners. The goal is to introduce automatic tools to support
the task of assessing massive number of students as needed
in Massive Open Online Courses (MOOC). The final as-
sessments are a combination of tutor’s assessment and peer
assessment. We build a trust graph over the referees and use
it to compute weights for the assesments aggregations. The
model proposed intends to be a support for intelligent online
learning applications that encourage student’s interactions
within communities of learners and benefits from their feed-
back to build trust measures and provide automatic marks.

1. INTRODUCTION

Self and peer assessment have clear pedagogical advantages.
Students increase their responsibility and autonomy, get a
deeper understanding of the subject, become more active in
the learning process, reflect on their role in group learning,
and improve their judgement skills. Also, it may have the
positive side effect of reducing the marking load of tutors.
This is specially critical when tutors face the challenge of
marking large quantities of students as needed in the in-
creasingly popular Massive Open Online Courses (MOOC).

Online learning communities encourage different types of
peer-to-peer interactions along the learning process. These
interactions permit students to get more feedback, to be
more motivated to improve, and to compare their own work
with other students accomplishments. Tutors, on the other
hand, benefit from these interactions as they get a clearer
perception of the student engagement and learning process.

Previous works have proposed different methods of peer as-
sessment as part of the learning process with the added ad-
vantage of helping tutors in the sometimes dauting task of
marking large quantities of students [7, 3].

The authors of [7] propose methods to estimate peer relia-

Nardine Osman
[IA-CSIC
Campus de la UAB
Barcelona, Spain

nardine@iiia.csic.es

Carles Sierra
IIA-CSIC
Campus de la UAB
Barcelona, Spain

sierra@iiia.csic.es

bility and correct peer biases. They present results over real
world data from 63,000 peer assessments of two Coursera
courses. The models proposed are probabilistic and they
are compared to the grade estimation algorithm used on
Coursera’s platform, which does not take into account in-
dividual biases and reliabilities. Differently from them, we
place more trust in students who grade like the tutor and
do not consider student’s biases. When a student is biased
its trust measure will be very low and his/her opinion will
have a moderate impact over the final marks.

[3] proposes the CrowdGrader framework, which defines a
crowdsourcing algorithm for peer evaluation. The accuracy
degree (i.e. reputation) of each student is measured as the
distance between his/her self assesment and the aggregated
opinion of the peers weighted by their accuracy degrees. The
algorithm thus implements a reputation system for students,
where higher accuracy leads to higher influence on the con-
sensus grades. Differently from this work, we give more
weight to those peers that have similar opinions to those of
the tutor.

In this paper, and differently from previous works, we want
to study the reliability of student assessments when com-
pared with tutor assessments. Although part of the learning
process is that students participate in the definition of the
evalution criteria, tutors want to be certain that the scor-
ing of the students’ works is fair and as close as possible to
his/her expert opinion.

Our inspiration comes from a use case explored in the EU-
funded project PRAISE [1]. PRAISE enables online virtual
communities of students with shared interests and goals to
come together and share their music practice with each other
so the process of learning becomes social. It provides tools
for giving and receiving feedback, as feedback is considered
an essential part of the learning process. Tutors define lesson
plans as pedagogical workflows of activities, such as upload-
ing recorded songs, automatic performance analysis, peer
feedback, or reflexive pedagogy analysis. The goal of any
lesson plan is to improve student skills, for instance, the per-
formance speed competence or the interpretation maturity
level. Assessments of students’ performances have to eval-
uate the achievement of these skills. Once a lesson plan is
defined, PRAISE’s interface tools allow students to navigate
through the activities, to upload assignments, to practice, to
assess each other, and so on. The tools allow tutors to mon-
itor what students have done and to assess them. In this

work we concentrate on the development of a service that
can be included as part of a lesson plan and helps tutors
in the overall task of assessing the students participating in
the lesson plan. This assessment is based on aggregating
students’ assessments, taking into consideration the trust
that tutors have on the students’ individual capabilities in
judging each others work.

To achieve our objective we propose in this paper an au-
tomated assessment method (Section 2) based on tutor as-
sessments, aggregations of peer assessments and on trust
measures derived from peer interactions. We experimentaly
evaluate (Section 3) the accuracy of the method over differ-
ent topologies of student interactions (i.e. different types of
student grouping). The results obtained are based on sim-
ulated data, leaving the validation with real data for future
work. We then conclude with a discussion of the results
(Section 4).

2. COLLABORATIVE ASSESSMENT

In this section we introduce the formal model of the method
and the algorithms for collaborative assessment.

2.1 Notation and preliminaries

We say an online course has a tutor 7, a set of peer students
S, and a set of assignments A that need to be marked by the
tutor and/or students with respect to a given set of criteria

C.

The automated assessment state S is then defined as the
tuple:

S = (R, AC,L)

R = {7} US defines the set of possible referees (or markers),
where a referee could either be the tutor 7 or some student
s € S. A is the set of submitted assignments that need to
be marked and C = (c1, ..., cn) is the set of criteria that as-
signments are marked upon. L is the set of marks (or assess-
ments) made by referees, such that £: R x A — [0, \]" (we
assume marks to be real numbers between 0 and some maxi-
mum value A). In other words, we define a single assessment
as: pb = M, where a € A, p € R, and M = (ma,...,mn)
describes the marks provided by the referee on the n criteria
of C, m; € [0, A].

Similarity between marks. We define a similarity function
sim : [0, A]" %[0, \]™ — [0, 1] to determine how close two ass-
esments pf, and pg are. We calculate the similarity between
assessments pf, = {mu,...,my,} and pl = {m},...,m;,} as
follows:

n
> Imi —mij
=1

n

>

=1

sim(pl, o) =1 —

This measure satisfies the basic properties of a fuzzy simi-
larity [6]. Other similarity measures could be used.

Trust relations between referees. Tutors need to decide
up to which point they can believe on the assessments made
by peers. We use two different intuitions to make up this
belief. First, if the tutor and the student have both assessed
some assigments, their similarity gives a hint of how close
the judegements of the student and the tutor are. Similarly,
we can define the judgement closeness of any two students by
looking into the assignments evaluated by both of them. In
case there are no assigments evaluated by the tutor and one
particular student we could simply not take that student’s
opinion into account because the tutor would not know how
much to trust the judgement of this student, or, as we do
in this paper, we approximate that unknown trust by lookig
into the chain of trust between the tutor and the student
through other students. To model this we define two differ-
ent types of trust relations:

e Direct trust: This is the trust between referees p,n € R
that have at least one assignement assessed in common.
The trust value is the average of similarities on the
assessments over the same peers. Let the set A, , be
the set of all assignments that have been assessed by
both referees. That is, A,, = {a | uf € £ and pg €
L}. Then,

Yaca,, Sim(pe, pa)
|4p.n]

TD(ID7 77) =

We could also define direct trust as the conjunction of
the similarities for all common assignments as:

To(p,n) =\ sim(ut,pd)
a€Ap g

However, this would not be practical, as a significant
difference in just one assessment of those assessed by
two referees would make their mutual trust very low.

o Indirect trust: This is the trust between referees p,n €
R without any assignement assessed by both of them.
We compute this trust as a transitive measure over
chains of referees for which we have pair-wise direct
trust values. We define a trust chain as a sequence of
referees q; = (pi, .-, Pis Pi+1,-- -, Pm;) wWhere p; € R,
p1 = p and pm; = n and Tp(ps, pi+1) is defined for
all pairs (p;, pi+1) with i € [1,m; — 1]. We note by
Q(p,m) the set of all trust chains between p and 7.
Thus, indirect trust is defined as a aggregation of the
direct trust values over these chains as follows:

Ti(p,n) = max Tp(pi, pi
rpm) = max II 7o pisn)

i€[l,m;—1]

Hence, indirect trust is based in the notion of transi-
tivity.!

LTy is based on a fuzzy-based similarity relation sim pre-
sented before and fulfilling the ®-Transitivity property:
sim(u,v) @ sim(v,w) < sim(u,w), Yu,v,w € V, where ® is
a t-norm [6].

Ideally, we would like to not overrate the trust of a tutor on
a student, that is, we would like that Tp(a,b) > Tr(a,b) in
all cases. Guaranteeing this in all cases is impossible, but we
can decrease the number of overtrusted students by selecting
an operator that gives low values to T7. In particular, we
prefer to use the product [[operator, because this is the t-
norm that gives the smallest possible values. Other opertors
could be used, for instance the min function.

Trust Graph. To provide automated assessments, our pro-
posed method agregates the assessments on a given assign-
ment taking into consideration how much trusted is each
marker /referee from the point of view of the tutor (i.e. tak-
ing into consideration the trust of the tutor on the referee
in marking assignments). The algorithm that computes the
student final assessment is based on a graph defined as fol-
lows:

G =(R,E,w)

where the set of nodes R is the set of referees in S, E C
R x R are edges between referees with direct or indirect
trust relations, and w : E — [0, 1] provides the trust value.
We note by D C E the set of edges that link referees with
direct trust. Thatis, D = {e € E|Tp(e) # L}. Ansimilarly,
I C E for indirect trust, I = {e € E|T1(e) # L} \ D. The w
values will be used as weights to combine peer assessments
and are defined as:

_)Tp(e) ,ifeeD
w(e) = Ti(e) ,ifeel

Figure 1 shows examples of trust graphs with e € D (in
black) and e € I (in red —light gray) for different sets of
assessments L.

2.2 Computing collaborative assessments

Algorithm 1 implements the collaborative assessment method.

We keep the notation (p,7n) to refer to the edge connecting
nodes p and 7 in the trust graph and Q(p, n) to refer the set
of trust chains between p and 7.

The first thing the algorithm does is to build a trust graph
from L£. Then, the final assessments are computed as fol-
lows. If the tutor marks an assignment, then the tutor mark
is considered the final mark. Otherwise, a weighted average
(o) of the marks of student peers is calculated for this as-
signment, where the weight of each peer is the trust value
between the tutor and that peer. Other forms of aggrega-
tion could be considered to calculate pq, for instance a peer
assessment may be discarded if it is very far from the rest
of assessments, or if the referee’s trust falls below a certain
threshold.

Figure 1 shows four trust graphs built from four assessments
histories that corresponds to a chronological sequence of as-
sessments made. The criteria C in this example are speed
and maturity and the maximum mark value is A = 10. For

Algorithm 1: collaborativeAssessments(S = (R, A,C, L))

> Initial trust between referees is zero

D=1=0;

for p,n € R,p#ndo
| w(p,n) =0;

end

> Update direct trust and edges
for p,n € R,p #ndo
Apn =1{81 uf; € £ and #g €L}
if |[Ap 5| > 0 then
‘ D = DU (p,n);
w(p,n) = Tp(p,n);
end
end
> Update indirect trust and edges between tutor & students
for p € R do
if (1,p) € D and Q(7,p) # 0 then
‘ I'=TU(p,n);
w(p,n) =Tr(1,n);
end
end

> Calculate automated assessments
assessments = {};
for o € A do
if p7, € £ then
> Tutor assessments are preserved
assessments = assessments U (a, ul)
else

R = {p|ut € L};
if |[R'| >0 then

> Generate automated assessments

D SIS
assessments = assessments U (a, o);
end
end
end

return assessments;

simplicity we only represent those referees that have made
assessments in £. In Figure 1(a) there is one node represent-
ing the tutor who has made the only assessment over the as-
signment ex; and there are no links to other nodes as no one
else has assessed anything. In (b) student Dave assesses the
same exercise as the tutor and thus a link is created between
them. The trust value w(tutor, Dave) = Tp(tutor, Dave) is
high since their marks were similar. In (c) a new assessment
by Dave is added to £ with no consequences in the graph
construction. In (d) student Patricia adds an assessment on
exs that allows to build a direct trust between Dave and
Patricia and an indirect trust between the tutor and Patri-
cia, through Dave. The automated assessments generated
in case (d) are: (5,5) for exercise 1 (which preserves the tu-
tor’s assessment) and (3.7,3.7) for exercise 2 (which uses a
weighted aggregation of the peers’ assessments).

Note that the trust graph built from £ is not necessarily con-
nected. A tutor wants to reach a point in which the graph
is totally connected because that means that the collabora-
tive assessment algorithm generates an assessment for every
assignment. Figure 2 shows an example of a trust graph of
a particular learning community involving 50 peer students
and a tutor. When S has a history of 5 tutor assessments
and 25 student assessments (|£| = 30) we observe that not
all nodes are connected. As the number of assessments in-

(a) c=fulytor=(55) (b)) L={utslo"=(5,5),ulg7°=(6,6)}

OB

(€) e=tutyyor=(.5)nlsy= (d) L={uem=(5,5) mdey =
(6,6),135°=(2,2)} (6,6) .1ty °=(2,2), WELLT I =(8,8)}

Figure 1: Trust graph example 1.

creases, the trust graph becomes denser and eventually it
gets completely connected. In (b) and (c) we see a complete
graph.

3. EXPERIMENTAL PLATFORM AND EVAL-

UATION

In this Section we describe how we generate simulated so-
cial networks, describe our experimental platform, define our
benchmarks and discuss experimental results.

3.1 Social Network Generation

Several models for social network generation have been pro-
posed reflecting different characteristics present in real social
communities. Topological and structural features of such
networks have been explored in order to understand wich
generating model resembles best the structure of real com-
munities [5].

A social network can be defined as a graph N where the set
of nodes represent the individuals of the network and the
set of edges represent connections or social ties among those
individuals. In our case, individuals are the members of the
learning community: the tutor and students. Connections
represent the social ties and they are usually the result of
interactions in the learning community. For instance a social
relation will be born between two students if they interact
with each other, say by collaboratively working on a project
together. In our experimentation, we rely on the social net-
work in order to simulate which student will assess the as-
signment of which other student. We assume students will
assess the assignments of students they know, as opposed
to picking random assignments. As such, we clarify that
social networks are different from the trust graph of Sec-
tion 2. While the nodes of both graphs are the same, edges

() |£] = 400

Figure 2: Trust graph example 2

of the social network represent social ties, whereas edges in
the trust graph represent how much does one referee trust
another in judging others work.

To model social networks where relations represent social
ties, we follow three different approaches: the Erdds-Rényi
model for random networks [4], the Barabdsi-Albert model
for power law networks[2] and a hierarchical model for clus-
ter networks.

3.1.1 Random Networks

The Erd6s-Rényi model for random networks consists of a
graph containing n nodes connected randomly. Each possi-
ble edge between two vertices may be included in the graph
with probability p and may not be included with probability
(1 —p). In addition, in our case there is always an edge be-
tween the node representing the tutor and the rest of nodes,
as the tutor knows all of its students (and may eventually
mark any of those students).

The degree distribution of random graphs follows a Poisson
distribution. Figure 3(a) shows an example of a random
graph with 51 nodes and p = 0.5 and its degree distribution.
Note that the point with degree 50 represents the tutor node
while the rest of the nodes degree fit a Poisson distribution.

3.1.2 Power Law Networks

The Barabasi-Albert model for power law networks base
their graph generation on the notions of growth and pref-
erential attachment. The generation scheme is as follows.
Nodes are added one at a time. Starting with a small num-
ber of initial nodes, at each time step we add a new node
with m edges linked to nodes already part of the network.
In our experiments, we start with m 4+ 1 initial nodes. The

edges are not placed uniformly at random but preferentially
in proportion to the degree of the network nodes. The prob-
ability p that the new node is connected to a node i already
in the network depends on the degree k; of node i, such
that: p = ki/>°7_, kj. As above, there is also always an
edge between the node representing the tutor and the rest
of nodes.

The degree distribution of this network follows a Power Law
distribution. Figure 3(b) shows an example of a power law
graph with 51 nodes and m = 16 and its degree distribution.
The point with degree 50 describes the tutor node while the
rest of the nodes closely resemble a power law distribution.
Recent empirical results on large real-world networks often
show, among other features, their degree distribution follow-
ing a power law [5].

3.1.3 Cluster Networks

As our focus is on learning communities, we also experiment
with a third type of social network: the cluster network
which is based on the notions of groups and hierarchy. Such
networks consists of a graph composed of a number of fully
connected clusters (where we believe clusters may represent
classrooms or similar pedagogical entities). Additionally,
as above, all the nodes are connected with the tutor node.
Figure 3(c) shows an example of a cluster graph with 51
nodes, 5 clusters of 10 nodes each and its degree distribution.
The point with degree 50 describes the tutor while the rest
of the nodes have degree 10, since every student is fully
connected with the rest of the classroom.

3.2 Experimental Platform

In our experimentation, given an initial automated assess-
ment state S = (R, A, C, L) with an empty set of assessments
L = {}, we want to simulate tutor and peer assessments
so that the collaborative assessment method can eventually
generate a reliable and definitive set of assessments for all
assignments.

To simulate assessments, we say each students is defined by
its profile that describes how good its assessments are. The
profile is essentially defined by the measure, or distance, d, €
[0,1] that specifies how close are the student’s assessments
to that of the tutor.

We then assume the simulator knows how the tutor and each
student would assess an assignment. This becomes necessary
in our simulation, since we generate student assessments in
terms of their distance to that of the tutor’s, even if the
tutor does not choose to actually assess the assignment in
question. This simulator’s knowledge of the values of all
possible assessments is generated accordingly:

e For every assignment o € A, we calculate the tutor’s
assessment, which is randomly generated according to
the function f, : A — [0, A\]". This assessment essen-
tially describes what mark would the tutor give a, if
it decided to assess it.

e For every assignment a € A, we also calculate the
assessment of each student p € S. This is calculated
according to the function f, : A — [0, A]", such that:

Degree Distribution

Count
bW

v ad 18 20 22 24 36 23 30 32 M 36 3| 40 42 44 46 48 S0

(a) Random Network (aprox graph density 0.5)

Degree Distribution

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

(b) Power Law Network (aprox graph density 0.5)

Degree Distribution

(c) Cluster Network (aprox graph density 0.2)

Figure 3: Social Network generation examples

sim(fo(a), f-(a)) > d, We note that we only need
to calculate p’s assessment of « if the student who
submitted the assignment « is a neighbour of p in N.

We note that the above only calculates what the assessments
would be, if referees where to assess assignments.

3.3 Benchmark

Given an initial automated assessment state S = (R, A,C, L)
with an empty set of assessments £ = {}, a set of student
profiles Pr = {ds}vses, and a social network A (whose
nodes is the set R), we simulate individual tutor and stu-
dents’ assessments. When does a referee in R assess an as-
signment in A is explained shortly. However we note here
that the value of each generated assessment is equivalent to
that calculated for the simulator’s knowledge (see Section 3.2
above).

In our benchmark, we consider the three types of social net-
works introduced earlier: random social networks (with 51
nodes, p = 0.5, and approximate density of 0.5), power law
networks (with 51 nodes, m = 16, and approximate density
of 0.5), and cluster networks (with 51 nodes, 5 clusters of 10
nodes each, and approximate density of 0.2). Examples of
these generated networks are shown in Figure 3.

10 12 14 16 18 20 22 24 26 28 30 32 34 6 3B 40 42 44 46 48 S0

We say one assignment is submitted by each student, re-
sulting in |S| = 50 and |A| = 50. The range that a referee
(tutor or student) may mark a given assignment with re-
spect to a given criteria is [0,10]. And the set of criteria is
C = (speed, maturity). The criteria essentially measure the
speed of playing a musical piece, and the maturity level of
the student’s performance.

An assessment profile is generated for each student p at the
beginning of the execution, resulting in a set of student pro-
files Pr = {ds}vses, where d € [0,0.5]. We consider here two
cases for generating the set of student profiles Pr. A first
case where d is picked randomly following a power law dis-
tribution (Figure 4(a)) and a second case where d is picked
randomly following a uniform distribution (Figure 4(b)).

With simulated individual assessments, we then run the col-
laborative assessment method in order to compute an au-
tomated assessment. We also compute the ‘error’ of the
collaborative assessment method, whose range is [0, 1], over
the set of assignments A accordingly:

> sim(f-(), 6()

acA

Al

, where ¢(a) describes the automated assessment for a given
assignment o € A

0005 01 0% 02 0% 03 0% 04 04 05

(a) Power law profile generation

G5 01 0% 07 0% 03 0% 0% 06 05 85

(b) Uniform profile generation

Figure 4: Example of the profile distributions (left)
and of d counting averaged over 50 instances (right)

With the settings presented above, we run two different ex-
periments. The results presented are an average over 50
executions. The two experiments are presented next.

In experiment 1, students provide their assessments before
the tutor. Each student p provides assessments for a ran-
domly chosen a, number of peer assigments (of course, where
assignments are those of their neighboring peers in N/). We
run the experiment for 5 different values of a, = {3,4, 5,6, 7}.
After the students provide their assessments, the tutor starts
assessing assignments incrementally. After every tutor as-
sessment, the error over the set of automated assessment is

calculated. Notice that the collaborative assessment method
takes the tutor assessment, when it exists, to be the final
assessment. As such, the number of automated assessments
calculated based on aggregating students’ assessments is re-
duced over time. Finally, when the tutor has assessed all 50
students, the resulting error is 0.

In experiment 2, the tutor provides its assessments before
the students. The tutor in this experiment will assess a
randomly chosen number of assignments, where this num-
ber is based on the percentage a, of the total number of
assignments. We run the experiment for 4 different values
of ar = {5, 10, 15,20}. After the tutor provides their assess-
ments, students’ assessments are performed. In every itera-
tion, a student p randomly selects a neighbor in A/ and as-
sesses his assignment (in case it has not been assessed before
by p, otherwise another connected peer is chosen). We note
that in the case of random and power law networks (denser
networks), a total number of 1000 student assessments are
performed. Whereas in the case of cluster networks (looser
network), a total of 400 student assessments are performed.
We note that initially, the trust graph is not fully connected,
so the service is not able to provide automated assessments
for all assignments. When the grap gets fully connected, the
service generates automated assessments for all assignments
and we start measuring the error after every new iteration.

3.4 [Evaluation

In experiment 1, we observe (Figure 5) that the error de-
creases when the number of tutor assessments increase, as
expected, until it reaches 0 when the tutor has assessed all 50
students. This decrement is quite stable and we do not ob-
serve abrupt error variations or important error increments
from one iteration to the next. More variations are observed
in the initial iterations since the service has only a few as-
sessments to deduce the weights of the trust graph and to
calculate the final outcome.

In the case of experiment 2 (Figure 6), the error diminishes
slowly as the number of student assessments increase, al-
though it never reaches 0. Since the number of tutor assess-
ments is fixed in this experiment, we have an error threshold
(a lower bound) which is linked to the students’ assessment
profile: the closest to the tutor’s the lower this threshold will
be. In fact, in both experiments we observe that when using
a power law distribution profile (Figure 4(a)) the automated
assessment error is lower than when using a uniform distri-
bution profile (Figure 4(b)). This is because when using a
power law distribution, more student profiles are generated
whose assessments are closer to the tutors’.

In general, the error trend observed in all experiments com-
paring different social network scenarios (random, cluster or
power law) show a similar behavior. Taking a closer look at
experiment 2, cluster social graphs have the lowest error and
we observe that assessments on all assignments are achieved
earlier (this is, the trust graph gets connected earlier). We
attribute this to the topology of the fully connected clus-
ters which favors the generations of indirect edges earlier
in the graph between the tutor and the nodes of each clus-
ter. Power law social graphs have lower error than random
networks in most cases. This can be attributed to the cri-
teria of preferential attachment in their network generation,

error

error

Brror

error

Random Social Graph, prob =05, 50 nodes
0.2 T T T T

0.16

0.14

0.12

0.1

0.08

0.08

0.04

0.02

w8 Uniforrn Dist Profile
D18, Puaver Law Dist Profile 7

L L I
o 5 10 15 20 25 a0 3 40 45
#tutor assessments

Cluster Social Graph, clusters =5, 50 nodes
0.18 T T T T T

0.14

0.12

0.1

0.08

0.06

0.04

0.02

o= Uniform Dist Profile
0.18 Power Law Dist Profile 4

L L .
o i 10 15 20 25 30 35 40 45
#tutor assessments

Power Law Social Graph, m=16, 50 ndoes
0.2 T T T

0.18

0.14

0.12

0.1

0.08

0.08

0.04

0.02

a =35 Uniform Dist Profile
0.18 Power Law Dist Profile]

0.12

0.1

0.08
0.08
0.04

0.02

L L .
1} 5 10 15 20 24 30) 40 45 50
#tutor assessments
Different Social Graphs with PowerLaw Distribution Profile

Random Social Graph
Cluster Social Graph
Power Law Social Graph |
0 L L L L L L L L L
i} 5 10 15 20 25 30) 40 45 50

#tutor assessments

Figure 5: Eperiment 1

errar

error

errar

error

018

Random Social Graph, prob = 0.5, 50 nodes

01

0oer

00e |

004+

niform Dist Profile

[v]
& =5 Power Law Dist Profile

0.02
200

016

L I I L L L
300 400 500 600 700 600
student assessments

Cluster Social Graph, clusters =5, 80 nodes

I
Q00

1000

0141

01r

008

006

0.041

niform Dist Profile

U
_5 Pawer Law Dist Profile

““——&E.H_H

=15

0.02
200

018

L . L . L . L .
220 240 260 280 300 3200 340 360
#student assessments

Power Law Social Graph, m=16, 50 ndoes

1
380

400

014+

01F

0osf

008

0041

Unifarm Dist Profile
=5 Power Law Dist Profile | |

0.02
200

0.08

L . . L L L
300 400 500 500 700 800
student assessments

I
500

Different Social Graphs with PowerLaw Distribution Profile

1000

00751

007

0.065

0.0s5

0o0sf

0.045 1

0041

0035 F

0.03

Random Social Graph
Cluster Social Graph
Power Law Social Graph

200

L L L L L L
300 400 500 600 700 800
student assessments

Figure 6: Experiment 2

!
200

1000

which favors the creation of some highly connected nodes.
Such nodes are likely to be assessed more frequently since
more peers are connected to them. Then, the automated
assessments of these higly connected peers are performed
with more available information which could lead to more
accurate outcomes.

4. DISCUSSION

The collaborative assessment model proposed in this paper
is thought of as a support in the creation of intelligent on-
line learning applications that encourage student interac-
tions within communities of learners. It goes beyond cur-
rent tutor-student online learning tools by making students
participate in the learning process of the whole group, pro-
viding mutual assessment and making the overall learning
process much more collaborative.

The use of Al techniques is key for the future of online learn-
ing communities. The application presented in this paper is
specially useful in the context of MOOC: with a low num-
ber of tutor assessments and encouraging students to inter-
act and provide assessments among each other, direct and
indirect trust measures can be calculated among peers and
automated assessments can be generated.

Several error indicators can be designed and displayed to the
tutor managing the course, which we leave for future work.
For example the error indicators may inform the tutor which
assignments have not received any assessments yet, or which
deduced marks are considered unreliable. For example, a
deduced mark on a given assignment may be considered un-
reliable if all the peer assessments that have been provided
for that assignment are considered not to be trusted by the
tutor as they fall below a preselected acceptable trust thresh-
old. Alternatively, a reliability measure may also be assigned
to the computed trust measure Tp. For instance, if there
is only one assignment that has been assessed by 7 and p,
then the computed Tb(7, p) will not be as reliable as hav-
ing a number of assignments assessed by 7 and p. As such,
some reliability threshold may be used that defines what is
the minimum number of assignments that both 7 and p need
to assess for Tp(T, p) to be considered reliable. Observing
such error indicators, the tutor can decide to assess more as-
signments and as a result the error may improve or the set
of deduced assessments may increase. Finally, if the error
reaches a level of acceptance, the tutor can decide to en-
dorse and publish the marks generated by the collaborative
assessment method.

Another interesting question for future work is presented
next. Missing connections might be detected in the trust
graph that would improve its connectivity or maximize the
number of direct edges. The question that follows then is,
what assignments should be suggested to which peers such
that the trust graph and the overall assessment outcome
would improve?

Additionally, future work may also study different approaches
for calculating the indirect trust value between two referees.
In this paper, we use the product operator. We suggest to
study a number of operators, and run an experiment to test
which is most suitable. To do such a test, we may calcu-
late the indirect trust values for edges that do have a direct

trust measure, and then see which approach for calculating
indirect trust gets closest to the direct trust measures.

Acknowledgements
This work is supported by the Agreement Technologies project
(CONSOLIDER CSD2007-0022, INGENIO 2010) and the
PRAISE project (EU FP7 grant number 388770).

5. REFERENCES

[1] Praise project: http://www.iila.csic.es/praise/.

[2] A. Barabési and R. Albert. Emergence of scaling in
random networks. Science, 1999.

[3] L. de Alfaro and M. Shavlovsky. Thecnical report
1308.5273, arxiv.org. Crowdgrader: Crowdsourcing the
evaluation of homework assignments, 2013.

[4] P. Erdés and A. Rényi. On random graphs.
Publicationes Mathematicae, 1959.

[5] E. Ferrara and G. Fiumara. Topological features of
online social networks. Communications in Applied and
Industrial Mathematics, 2011.

[6] L. Godo and R. Rodriguez. Logical approaches to fuzzy
similarity-based reasoning: an overview. Preferences
and Similarities, 2008.

[7] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and
D. Koller. Tuned models of peer assessment in moocs.

Proc. of the 6th International Conference on
Educational Data Mining (EDM 2018), 2013.

