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Abstract— Money laundering evolves using multiple layers of 
trade, multi trading methods and uses multiple components in 
order to evade detection and prevention techniques. 
Consequently, detecting money laundering requires an analytical 
framework that can handle large amounts of unstructured, semi-
structured and transactional data that stream at transactional 
speeds to detect business-complexities, and discover deliberately 
concealed relationships. Based on our prior work and a static risk 
model proposed in the Bank Security Act, we propose a dynamic 
risk model that assigns a risk score for every transaction being a 
potential component of a larger money-laundering scheme. We 
use social networks to connect missing links in such potential 
transaction sequences. Taken together we can provide a financial 
sector independent risk assessment to submitted transactions. 
The proposed risk model is validated using data from realistic 
scenarios and our already developed money laundering evolution 
detection framework (MLEDF) that we developed earlier using 
sequence matching, case-based analysis, social networks, and 
complex event processing to link fraudulent transaction trails. 
MLEDF has components to collect data, run them against 
business rules and evolution models, run detection algorithms 
and use social network analysis to connect potential participants.  

Keyword: Data Analytics; Social network analysis; Anti Money 
Laundering;  Dynamic Risk Model ; Money laundering Risk . 

I.  INTRODUCTION 
Money laundering (ML) is a major issue for the 

Department of Homeland Security (DHS) and US Treasury. 
Powered by modern tools, money launderers use complex 
schemes to avoid being detected by anti-money laundering 
(AML) systems. They dynamically evolve, expand and contract 
over fraudster networks in different countries.  Social Network 
Analysis (SNA) techniques [1] are used by government 
agencies to track terrorist activities and networks. Because 
terrorist financing heavily depends on ML [2], any AML 
system must incorporate SNA to obtain reliable results. 
Schwartz [3] proposes a model to find criminal networks using 
social network analysis, building upon Borgatti’s SNA-based 
key player approach [3]. One drawback of Borgatti's model is 
the failure to assign weights to actors and actor-actor 
relationships. In the recent past, we have developed algorithms 
incorporates Borgatti’s SNA techniques with different weights’ 
to social and business relationships to help complete missing 
links in potential money laundering chains.  

The Financial Action Task Force (FATF) provides a static 
risk assessment of ML [4] strategies to examine ML related 
predicate crimes and known weaknesses of anti-money 
laundering (AML) systems.  The Wolfsberg Group, made up of 
eleven leading international banks established standards, 
guidelines and a discretionary risk model [5] to counter money 
laundering. Both FATF and Wolfsberg Group say that 
monitoring customers is an essential part of countering money 

laundering and suggest that risks can be measured using 
metrics such as “Country risk”, “Customer risk”, and “Services 
risk”, and leave weights assigned to each of these categories at 
the discretion of the evaluating organization. Based on these 
guidelines, banks use a quantitative model to evaluate 
transactional risk using attributes such as “Customer profile”, 
“Product/service profile”, and “Geographic profile”.  

The static risk model developed by Scor [6] accepts ML to 
be determined by “Agility” of adopting new rules per 
customer, “Complexity” of transactions and the “Secrecy” of 
transactional information and customer account” [6], but fails 
to assess other factors such as relationship networks, and 
dynamically changing factors. Kount [7] developed a dynamic 
scoring service to continuously monitor indicators of fraudulent 
credit card activity, and alert merchants of approved 
transactions that are linked to suspicious purchasing activities, 
that usually occur after identity theft. These suspicious 
purchases refer are transactions patterns that have never been 
witnessed before, such as the purchase of video games by 
senior citizen.  

The rest of the paper is organized as follows. Section 2 
describes the Money Laundering Evolution Detection 
Framework (MLEDF). Section 3 describes the SNA algorithm. 
Section 4 describes the dynamic risk model. Section 5 
evaluates the performance of the MLEDF and dynamic risk 
model using real-life cases. Section 6 concludes the paper. 

II. ML EVOLUTION DETECTION FRAMEWORK (MLEDF) 

 
Fig. 1. Money Laundering Evolution Detection Framework 

First we briefly describe how MLEDF works [8]. Obtaining 
data streams from multiple sources listed in the left hand 
column of Fig.1, using a complex event processing system. 
MLEDF uses four phases where output from one phase is used 
by the following phase and shown in the columns of Figure1. 

(1) Collecting Transactional Data: Transaction processors 
or data collectors from Automated Clearing House such as 
EPN, FEDWIRE, and CHIPS send their data belonging to trade 
sectors such as Banking, Stock market, Derivative market, Web 
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based Services, Trading, Electronic Money, and Money 
Brokering. Relevant information is extracted form this data and 
used with transaction-independent data such as the economic 
status of the country, stock sales trends and the stock values 
during the day.   

(2) Data Processing: Well-known MLS are identified and 
relevant attributes are collected from input data streams and 
submitted to our detection algorithms. The extracted data 
associated with each MLS pattern assigned to a specific MLS 
type using the following: (I) Business Rules: MLS business 
rules and red flags associated with each pattern, the rules 
associated with specific sector are used by the MLS detection 
algorithms to identify the MLS patterns. (II) MLS Template: 
Well-known MLS templates will be used during this phase. 
Currently, the templates have seven major pattern types with 
their different subtype combinations. This acts as a repository 
of known MLS. If a new form of MLS is discovered, then it 
will be added to this Database.  (III) ML Evolution Model: 
Determines if the evolution of MLS is within the accepted 
trend of our model [8].   

(3) Detecting MLS Networks: We use six algorithm (one for 
each) to detect Smurfing, Trade, Stock, Derivative, E-Money, 
and Dirty Electronic Funds Transfer (Dirty-EFT) schemes. 
Each algorithm uses a different method to capture the network 
associated with the specific type of MLS and in real-time 
output the discovered networks associated with the specific 
MLS pattern into a different database. Then, the discovered 
networks are reformatted and saved in a single database 
referred to as the “Network” Database to facilitate efficient 
analysis of the links among MLS networks.   

(4) ML Trail Analysis and Evolution Detection: Four 
separate algorithms are run to find the “Full-Trails” [8], 
“Missing-Trails”, and “Suspicious-Trails” of MLS networks. 
“Full-Trail” is a concatenated sequence of related schemes 
(MLS) act by itself to transfer money from one MLS to another 
until it reaches the final MLS, of which the orchestrator (i.e. the 
money launderer) is referred to as the “EndBoss”. Similarly the 
orchestrator of the first scheme is referred to as the 
“StartBoss”. “Associates” are other people involved in the 
sequence of fraud. “Missing-Trail” is a short Full-Trail that 
does not exceed have more than three related MLSs. A sample 
output from the Full Train Algorithm is given in Table 1, 
where a network ID (assigned by our detection algorithm), the 
duration of the laundering activity, if the money was withdrawn 
after the third transaction, the amount of money and the 
detected Start Boss and the detected End Boss are provided. 
We assume that the Missing-Trail is a premature Full-Trail 
with broken parts and missing links or evidence. A 
“Suspicious-Trail” is a combination of discovered Full-Trails 
and/or Missing-Trails constructed using algorithms that 
incorporate SNA and numerical analysis techniques. The 
algorithm “Detection Analysis” determines the evolution of the 
“Full-Trail”s such as the change to the number of involved 
associates, the changes to the cost of laundering, and changes 
to the laundering locations. 

III. SOCIAL NETWORK ANALYSIS IN MLEDF 
In many cases money launderers intentionally obfuscate the 

money trail either by hiding it (for example by increasing the 

number of transactions and reducing the transacted amount), or 
using an unreported method such as a Hawala  [15] (an honor 
based exchange system without records). As a solution, we use 
a social network among money launderers to link MLS trails 
when evidence of linkage is missing among transactions.  
A. Using Complex Event Processing  in the SNA Module 

The critical question of ML experts is “How fast and how 
well can we relate the different events in this universe of 
detected MLS?” Using the Complex Event Processing (CEP) 
system StreamBase, we developed an algorithm to create 
chains of related MLSs where social or professional relations 
are used to transfer a fund to the next MLS until it reaches the 
final destination where the End Boss withdraws the money. If 
we modeled all of the chains as a separately and link them we 
run into a scalability issue in associating the multitude of 
different events of various MLSs. As a solution, we model each 
detected MLS as an event, and have various patterns of events 
categorized under six different types of MLS. For example, 
Full-Trail algorithm outputs a trail by using the functionality of 
CEP of perceiving the MLSs as a set of events. Without the 
CEP the MLS should dissolve into the constituent transactions 
to be analyzed and linked with other transactions from another 
MLS, consumes processing time and resources. The CEP can 
link MLSs, perceived as events, using various criterions 
without the need to add more complex sub-algorithms for each 
criterion. That is, the Full-Trail connects the dots that exist, but 
it is harder and slower to connect them without CEP 
capabilities. Full-Trail captures the trail in cases where all 
evidence are available, whereas the Suspicious-Trail attempts 
to construct the path where some edges along the path is 
missing. 
B. Integrating the “SNA” Module into MLEDF 

The “Suspicious-Trail” module is used to detect 
components of an actual “Full-Trail” even if there is a missing 
piece of evidence. This module investigates all available trails 
(Full-Trail and Missing-Trail) by using our SNA DB that 
contains the weights of relationships among MLS participants 
in order to determine if two trails are related by considering 
some attributes such as the amount of funds involved, location, 
affinity of participants, time, and methods used for laundering. 
Hence, the “Suspicious-Trail” module uses the “SNA” module 
to produce a new trail containing two or more trails that are 
related based on SNA even when we have not captured a 
transaction joining them or any other evidence. The new trail is 
created after making a calculation based on (SNA) results of a 
possible relationship between two or more Full-Trails and 
Missing-Trails. The generated evolution patterns and strategies 
are collected into the “Suspicious-Trail” Database.  

TABLE I.  SAMPLE OUTPUT OF THE FULL-TRAIL (MIN 4 MLS) 

Networks TrailID Duration Withdraw Amount StartBoss EndBoss 

4, 91, 98 ,.. 1232 76 Days No 723,234 Boss956 Boss 153 
24, 315, .. 1208 89 Days No 890,165 Boss 103 Boss 827 
405,783, .. 9724 19 Days No 200,230 Boss 284 Boss 725 

C. The Components and Output of the “SNA” Module 
The architecture of the social network algorithm is shown 

in Figure 2. The SNA module generates and continuously 
updates two databases as outputs. The “SuspectWeight” 
database contains the weight of all relations detected in the 
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MLEDF and the “Relations” database containing the time and 
the record of all detected relations among pairs in MLEDF as 
shown in the bottom of Figure 2. The relations we capture are: 
(1) UniqueFullTrailBosses creating “StartBoss”–“EndBoss” 
pairs of “Full-Trail”s. (2) UniqueFullTrailAssociates creating 
“Asscoiate”-“Asscoiate” pairs of “Full-Trail”s. (3) 
UniqueMissingTrailAssociates createing “Asscoiate”- 
“Asscoiate” pairs of “Missing-Trail”s. (4) SchemaBosses 
creating Hashes for  “StartBoss”-“EndBoss” relations. (5) 
SchemaAssociateBoss creating Hashes for all detected “Boss-
Associate” relations. (6) SchemaAssociate creates Hashes for 
all detected “Associate-Associate” relationships. This hash 
represents the combinations of relationships among the 
associates of the same MLS, even if they do not 
interact/transact with each other directly.  (7) Family creating 
“Family” relation between lineage-wise related pairs. (8) 
Business creating business-wise related pairs. Each such 
relationship is shown in Figure 2. We compute these 
relationships and assign weights to them as shown in 
Algorithm 1 describe in Table II. 

 
Figure 2: The Social Network Analysis Module 

The relationship weights as assigned so that higher weight 
indicates more possible hidden interactions. Weights are 
calculated by adding parameters for each of the corresponding 
events as follows: 
1. Each detected “MLS” weights of 10 will be added to 

start/end boss couple, 5 for each boss/associate 
combination, and 1 for each non-repeating 
associate/associate combination.  

2. Each detected “Missing-Trail”, 15 will be added to each 
associate non-repeating combination. 

3. Each detected “Full-Trail” add 20 to each associate 
combination and 25 to the start and end boss. 

Other strong relationships are also counted where “Family” 
ties will add 250 to the couple, and each “Business” 
relationship will add 250 to the couple. We chose the weights 
and, verified them in a limited engagement with a trusted third 
party (see Section V), but can be changed in Algorithm 1.  

In the SNA Algorithm given in Table II, steps 1 and 2 
define the hash function, and input and DBs constants 
associated with the different weights and the hash functions. 
Steps 3 and 4 create hashes for “Boss-Boss”, “Boss-Associate”, 
and “Associate-Associate” of MLSs. Steps 5 and 6 create the 
same hashes for Full-Trails. Steps 7 and 8 create hashes for 
Missing-Trails and special relations (of family and business). 

Step 9 computes the WeightOutput of a hash HRel. Sample 
Suspect Weights obtained from Algorithm 1 is shown in Table 
IV. This corresponds to Relationships given in Table III. 

TABLE II.  SOCIAL NETWORK ANALYSIS ALGORITHM  
1 
2 
 
 

3 
 
 
 

4 
 
 

5 
 

6 
 

7 
 
 

8 
 
 

9 
 

FUNCTION HASH (String1,String2){return concatenate(sort(En1,En2))};  
INPUT MLS DetectedMLS; Relnship; MT MissingTrail; FT FullTrail; DB 
HRel ( Hash, #"Time", Type, Person1, Person2) KEY (Hash, #"Time", 
Type); DB SuspectWeightOutput ( hash, weight) KEY (hash); 
UPDATE  HRel   SET MLSBoss++,  MLSAssocBoss++,  
MLSAssocBoss++    WHERE HRel.hash == HASH(MLS.sBoss, 
MLS.eBoss) , HASH(MLS.Assoc, MLS.eBoss) ,  HASH(MLS.Assoc, 
MLS.sBoss) and TypeMatch  
FOR EACH (MLS.Assoc as Assoc1, MLS.Assoc as Assoc2) UPDATE 
HRel  SET MLSAssoc++ WHERE HRel.hash == HASH(MLS.Assoc1, 
MLS.Assoc2); 
FOR EACH (FT.Assoc as Assoc1, FT.Assoc as Assoc2)  UPDATE HRel  
SET FTAssoc = FTAssoc++ WHERE H.hash ==HASH(Assoc1,Assoc2);  
UPDATE HRel  SET FTBoss++ WHERE HRel.hash == 
HASH(FT.sBoss, FT.eBoss); 
FOR EACH (MTrail.Assoc as Assoc1, MTrail.Assoc as Assoc2)  
UPDATE HRel  SET  MTAssoc++ WHERE HRel.hash == 
HASH(Assoc1, Assoc2) and TM; 
UPDATE HRel  SET Business++, Family++ WHERE HRel.hash == 
HASH   (Relnship.person1, Relnship.person2) AND Relnship.type == 
"BUSINESS","FAMILY";   
SELECT HRel.hash, (25*HRel.FTBoss +20*HRel.FTAssoc 
 +15*HRel.MTAssoc + 1*HRel.MLSAssoc + 5*HRel.MLSAssocBoss 
 +10*HRel.MLSBoss + 250*H.Business +250*H. Family)  as 
SuspectWeightOutput ; 

TABLE III.  SAMPLE SELECTION FROM OUTPUT OF “RELATIONS” 

DetectTime Hash Type Entity1 Entity2 

2012121915 Comp10Comp8 FullTrailAssociates Comp10 Comp8 
2012121923 Comp10Comp5 SchemaBossAssociate Comp10 Comp5 
2012122005 Comp10Assoc7 MissingTrailAssociates Comp10 Assoc7 
2012122112 Assoc7Assoc5 SchemaAssociates Assoc7 Assoc5 
2012122214 Comp10EndBoss SchemaBosses Comp10 EndBoss 
2012122220 StartBossEndBoss FullTrailBosses StartBoss EndBoss 

TABLE IV.  SAMPLE SELECTION FROM OUTPUT OF “SUSPECTWEIGHT” 

Weight Hash Weight Hash Weight Hash 

30 Comp10Comp8 10 Comp11Comp2 10 Assoc1Comp1 
30 Comp10Comp7 10 Comp11EndBoss 30 Assoc1Comp4 
15 Comp10Comp5 10 Comp1Comp2 35 Comp4Comp6 
30 Comp10EndBoss 20 Comp6EndBoss 20 Assoc1Assoc5 
10 StartBossEndBoss 20 Comp7Comp8 0 Assoc1Assoc9 

IV. THE DYNAMIC RISK MODEL  
Existing AML systems do not relate different products 

types, entities, and business lines involved in different 
combinations of complicated ML schemes. Industry specific 
AML systems use industry specific static risk models and 
therefore do not capture known dynamics of MLS evolutions.  
Countering ML and other forms of fraud requires industry-
wide risk analysis method to where the risk score is updated 
dynamically and include transactional behavior related to the 
ML, such as the social relations and past associations with 
money laundering. Therefore, we create a dynamic risk model 
that incorporates the static attributes used by others, such as the 
senders and recipient’s static profiles and dynamic social 
connection attributes of the transactions that we capture in our 
MLEDF system.  
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A. The Static Risk Model of Bnak Secrecy Act 

 
Figure 3. The enhanced BSA Static Risk Modeling [9] 

The Currency and Financial Transactions Reporting Act 
(CFTRA) of 1970 later amended to counter money laundering 
and financial crimes [11, 12, 13] and again amended by Title 
III of the PATRIOT Act of 2001 and other legislations, and is 
now commonly referred to as the "Bank Security Act" (BSA) 
mandates banks to monitor transactions and maintain records 
of initial and periodic risk scores for customers. Their risk 
model identify and analyze specific “products and services”, 
“customers and entities”, and “geographical locations” and 
categorize them as “high", "medium", and "low", and add the 
risk rating of all categories to obtain the overall accumulative 
risk score. We enhanced the BSA inspired static risk with 
aggregated static risk to reflect changing dynamics of ML and 
its consequences on the static risk calculation shown in Figure 
3. The risk rates assigned in Figure 3 are obtained from [9], 
with suggested enhancements in the upper right hand box. 
Definition 1 captures these attributes and scores. 
Definition 1 [Local Static Risk Score (LSRS) and Risk 
Categories]: The Local Static Risk Score is the sum of the 
following attributes and their assignable integer values; 
Account Risk Range:[-5,+10], Location Risk Range: [-1,+10] 
Business Risk Range: [-15,+20], Product Risk Range: [0,+5] 

Here Account Risk is the sum of Customer Risk [-5, +10] 
and Tax ID Risk [+5]. The Location Risk is the Sum of Primary 
Location Risk [+2]. The sum of the Risks of Non Primary 
Locations, where each Non Primary Risk is a value in the 
Range [-1,+10]. The Business Risk is defined as the sum of 
Business Primary Risk [-3, +20] and Business Nature Risk [-15, 
+20]. The Product Risk is the sum of Debit Activity Risk [0, +5] 
and Credit Activity Risk: [0, +5]. 

The BSA risk score is the sum of the component risk scores 
of Account Risk, Location Risk, Business Risk and Product 
Risk. Each of these components risks are also sums of further 
sub components as specified in Definition 1. Possible 
computed value for a customer is an integer value for between -
23 and +20.  The details of risks used in Definition1 are as 
follows. The Account Risk is the Risk due to customer’s 
reputation and a risk assigned due to providing / not providing 
a TAX ID. The Locations Risk is the sum of having multiple 
business Locations, and the risk associated with the Primary 
business Location. The Business risk is the sum of the risk due 
to the Principal Owner and the risk associated with the Nature 
of the Business. The financial product risk is associated with 

the debit and credit activities. We amended the factors of 
“product risk” in the BSA model to include a risk factor of the 
derivative market activity. We also reduced the risk weight of 
three factors in the “business risk” of BSA model from the 
original value of “+30” to the new value of “+20”, as the total 
risk score of “30” is the cut-off for an alert to the management 
of the financial institution. The reduction of the weight of the 
three factors to “+20” is necessary to lower the aggressiveness 
of the risk model. Definition 2 categorize these risks as Low, 
Medium, High and Extreme and are again an extension of the 
values in [9].  
Definition 2 [Categorizing Local Static Risk Scores]: Local 
Static Risk Scores (LSRS) are categorized as low, medium, 
high and extremely high based on range of the totally 
calculated score: Low [-23, 4], Moderate [+5, +14], High [+15, 
+30], Extreme Risk [+31, +153].  

B. Accumative Static Risk Score 
To compute the risk of transacting customers, in addition to 

Static Local Risk Score (LSRS), risk of recent transactions 
need to be taken into account. We propose a simplified 
mechanism of exchanging aggregate risk scores assigned to 
customer transactions, because a running average may not 
expose all the data of all transactions and therefore may not 
violate privacy. Formally, let TRN(O,R), be a transaction with 
originator O and recipient R, and let TRNA ≡ <TRNA1(x1,y1), 
TRNA2(x2,y2),, …… , TRNAn(xn,yn)>, listed in newest to oldest 
transaction order represent the last n transactions of A. Let 
Partneri(A,TRNAi(xi,yi)) represent the entity other than A and 
<LSRS(Partner1(A,TRNAi(xi,yi)))>be the LSRS values of 
partners of A in the last n transactions. Then recursively define 
the Exponential Moving Average (EMA) risk as: EMA(i) = 
LSRS(Partneri(A,TRNAi(xi,yi)))* k + EMA(i-1) * (1 – k) where 
k = 2/(n+1) .  
Definition 3 [Receiver’s/Originator’s Average Risk and 
Variance]: These averages are calculated by the bank that 
holds the account of entity A, it is done by calculating the 
exponential moving average of the LSRS of the last n 
transacting partners of A,  
Let EMAi be LSRS(Partner1(A,TRNA1(xi,yi)))* k + EMA(i-1) * 
(1 – k) where k = 2/(n+1), and where A=xi  for all i<n. 
Let VarA be LSRSA– Average(LSRS(Partner1(A,TRNA1(x1,y1)))), 
…, LSRS(Partnern(A,TRNAin(xn,yn))).  
As with the Average, VARAi computes the receiver’s and 
originators risk based on the value of 
Partneri(A,TRANAi(xi,yi)). When Partneri(A,TRANAi(xi,yi)) = 
A= Receiver for all i<n. Then EMAi computes the receiver’s 
risk and When Partneri(A,TRANAi(xi,yi)) = A= Originator for 
all i<n. Then EMAi computes the originator’s risk. The RA/OA 
parameters assess the risks associated with the 
participation/involvement of an entity in the ML, by analyzing 
the affinity/role in the money-flow of a laundering process. The 
RA and OA used to calculate/keep a record of the historical 
activity and the divergence in pattern of receiving or sending 
funds. The pattern are used as an indicator for assessing a risk 
penalty, comparing the current RA/OA value with the value of 
90 days and 180 days ago (RA/OA) indicate the transactional 
tendency of the entity. 
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We assign a penalty and reward system for entities so that 
an entity that continuously transacts in high and increasingly 
risky pattern is subject to penalties for having an increased 
LSRS, and vice versa. Thus our penalty and rewards system 
self-adjusts and the leverage provided by this self-adjustment 
avoid maintaining the risk value of an entity at a static level. 
The penalty can be set upon the needs of the financial 
institution and the regulations of the country, although optimal 
levels are shown in the formula below. The optimum 
penalty/reward are produced to allow entities to retain their old 
static risk levels in between one and n transactions. The criteria 
defined below indicate that if the aggregate risk sores is higher 
than 90 days ago which is higher than the same value 180 days 
ago this entity’s transacting risk is on the increase. 
 
Definition 4 [Penalties and Rewards]: We define RA0M, 
RA3M, RA6M, OA0M, OA3M, and OA6M to be respectively the 
current, three months, and six months old values of RA and OA 
value, for any entity. Let RA-Inc, RA-Dec, OA-Inc and OA-Dec 
be defined as (RA6M<RA3M<RA0M), (RA6M>RA3M>RA0M), 
(OA6M<OA3M<OA0M), and  (OA6M>OA3M>OA0M) and Static 
Risk Penalty and Reward (SRPR) as: 
(RA-Inc)/\(OA-Inc)/\(RA>LSRS)/\(LSRS>35)/\(RV>5)/\(OV>5)=> SRPR=+5 
(RA-Inc)/\(OA-Dec)/\(RA>LSRS)/\(LSRS>35)/\(RV>5)/\(OV>5)=> SRPR=+3 
(RA-Dec)/\(OA-Inc)/\(RA>LSRS)/\(LSRS>35)/\(RV>5)/\(OV>5)=> SRPR=+3 
(RA-Dec)/\(OA-Dec)/\(RA>LSRS)/\(LSRS>35)/\(RV>5)/\(OV>5)=> SRPR=+2 
(RA-Dec)/\(OA-Dec)/\(RA>LSRS)/\(LSRS>35)/\(RV<5)/\(OV<5)=> SRPR=-2 
(RA-Dec)/\(OA-Dec)/\(RA<LSRS)/\(LSRS>35)/\(RV>5)/\(OV>5)=> SRPR=-3 

((RA-Any)/\/(OA-Any))/\ (RA<LSRS) =>SRPR=0 

A detailed rationale for this definition is described in 
[14]. The LSRS will be calculated every time the transaction 
occurs. For example, the first line of Definition 4 says that if 
conditions (1) “RA6<RA3<RA”, (2) OA6<OA3<OA, (3) 
RA≥LSRS and (4) RV>OV>0 are met, the SRP of “+5” will be 
imposed. The RA is the primary factor that LSRS depends 
upon on to determine the penalty value due to the fact that 
receiving the funds is where the money laundering fraud starts. 
The penalty and reward point system will have the upper and 
lower bounds, in order to maintain the LSRS within its 
boundaries so that their accumulation will have a fix point (risk 
saturation point) in its decreasing or increasing trend. There is 
no need to apply the penalty on an entity that is in maximum 
risk levels of LSRS, as the purpose is to provide the transacting 
entity with the ability to reduce the risk.   
Definition 5 [Accumulative Static Risk Score (ASRS)]: of an 
entity is the sum of the local static risk score and static risk 
penalty and reward. Thus, ASRS =LSRS + SRPR.  

C. Accumulative Dynamic Risk Score 
The dynamics of none-static risk scoring was designed 

considering the following criteria: (1) Continuous scoring: The 
score is calculated per every transaction. (2) Automatic scoring: 
Risk computation does not require the involvement of an 
expert. (3) Correlation of past transactions: Risk score 
correlate transactions with current one. 

We have developed an algorithm to assigning weights to 
relations, the so-called Dynamic Relation Extract Algorithm 
(DREA) [14] that searches the SNA DB “SuspectWeight” for 
the detected past n ML activities of the entity A. The algorithm 

is similar to the algorithm used in the “SNA” module of 
MLEDF as explained in Section 2. Using this algorithm, we 
assign a risk weight for entity A, for each detected ML activity 
in the SNA DB “SuspectWeight” by adding parameters for 
each of the corresponding events resulting in the accumulative 
risk weight as follows: (1) For each detected MLS, add 5 to 
start/end boss couple, 2 for each boss/associate combination, 
and 1 for each associate/associate non-repeating combination. 
For each Missing-Trail add 3 to each associate non-repeating 
combination. The Full-Trails adds 3 to each associate 
combination and 10 to the start/end boss. Again these are our 
sample values that can be changed by any institutions. We omit 
an algorithmic presentation due to lack of space. 

 
Figure 4. The Two Componenets of ML Dynamic Risk Model 

We also compute a risk score named the Self Adjusting 
Dynamic Risk Score (SDRS) that assigns a risk weight to the 
transactional history of transacting entity (say) A in the 
database “Suspect-Weight” in the DREA algorithm that we 
refer to as DREA(Entity A)].  
Definition 6 [Receivers’ / Originators’ Dynamic Risk Score 
(RDRS/ODRS)]: Calculates the aggregate risk weight, based 
on the relations history of the last n entities (R1,...,Rn) funds  
receiving from, and  the last n entities (O1,...,On) funds 
originating to  the entity A. The average weight of receiving 
/originating entities is obtained by calculating the average of 
DREA(R1), .. ,DREA(Rn ) and DREA(O1), .. ,DREA(On ). We 
produce ODRS and RDRS. 
Definition 7 [Accumulative Dynamic Risk Score (ADRS)]: 
Of an entity is the sum of SDRS, RDRS and ODRS. That is 
ADRS = SDR+ RDR+ODR.  

D. Accumlative Transaction Scoring Based on Dyanmic Risk 
Static and dynamic risks are correlated to the analytics of 

transaction scoring, in order to identify transactions with high-
risk score pertaining to ML, and to prevent transaction 
sequences from being executed.   The correlations used in the 
dynamic risk scoring can be used to detect and track 
transactions belong of ML schemes. 
Definition 8 [Accumulative Transaction Score (ATS)]:  
The ATS is calculated as the average risk of (ADRS, ASRS, 
LSRS) of the two transacting entities. 
Receiver-ATS=∑Receiver(ADRS,ASRS),  
Originator-ATS = ∑ Originator (ADRS, ASRS). 
ATS = AVG (Receiver-ATS , Originator-ATS). 
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Definition 9: Comprehensive Transaction Data (CTD): The 
triple (LSRS, ASRS, ADRS) is said to be the comprehensive 
transaction data (CTD).  
Thus, our comprehensive dynamic risk model consists of two 
parts, computing the static risk, as by amending the BSA risk 
model [9] and computing the dynamic risk per every 
transaction. Figure 4 summarizes the two aspects of our risk 
model and the data used compute the individual components. 
As the figure shows, the static risk score is summarized in the 
accumulative static risk score (an enhancement of the BSA 
model) and the Dynamic risk score that takes the originators 
and recipients running averages of static risk scores and other 
properties of the transactions and SNA information to compute 
a dynamic risk value per each transaction. As stated, this value 
is fed back to the running averages and variances of this static 
risk scores. This latter step requires the financial institutions to 
share such risk estimates along with transactions.  

V. VALIDATION 
We used sanitized real-life cases to test and validate the 

dynamic risk model with MLEDF and transaction scoring. Our 
case studies are based on data provided from an organization 
we refer as Trusted Third Party (TTP), which is authorized to 
collect information and track records of financial exchanges.  

A. Experimental Evaluation and Valiation of MLEDF 
We introduced a three phase testing prototype to examine 

MLEDF and detection algorithms. All three phases focused on 
testing and validating the components of MLS, Full-Trails, and 
Suspicious-Trails.   The first phase focused on testing all 
components and the other tests focus on Full-Trail and 
Suspicious-Trail components.  

Test without noise: This test is designed to test every 
module of MLEDF, including detection algorithms and trail 
analysis modules. These tests evaluate the false positive rates 
(FPR) and false negative rates (FNR) by comparing the results 
of the test with the data feed that contains the patterns of 
single MLS, pair of MLSs, and Full-Trails. The desired result 
was to have a list of the validation result identical to the list in 
the data feed.  We tested the efficiency to keep up with the 
speed of the data feed by using the time window feature in the 
StreamBase [10]. By setting the time window to glide over 
only one event at a time tick in the StreamBase system, we 
made the detection algorithms to run at the normal speed of 
one event at one time tick. By design, an algorithm that cannot 
attain the speed of event production will not be able to capture 
MLS events or the Full-Trail, thereby generating false 
negatives.  

Each of the six detection algorithms were tested with their 
own data feeds in order to verify that we were able to detect a 
single event MLS without false positives and false negatives. 
The algorithm-specific dataset feed was generated using the 
built in feed generator working with our pattern specific event 
generator. Afterwards, we tested the “Missing-Trail” by 
feeding linked pairs of MLSs into the MLEDF. The 
linked/related pairs are randomly selected from the set of six 
types of MLS. As mentioned, any pair of linked MLS will 
make it to “Missing-Trail” and not into “Full-Trail”, due to the 

required depth. Finally, we tested the detection and evolution 
of “Full-Trail”s by feeding trails generated from various 
laundering strategies used in our sample real-life cases.  

The process of creating the “Full-Trail” started with 
creating an MLS type out of the six MLS types of Smurfing, 
Trading, DirtyEFT, Stock, Derivative, E-Money. Once the 
selection of first MLS is made, we create ta series of linked 
MLS based on conditions such as geography, amount of 
money, time, complexity of the schema and difficulty of 
tracking. The trails were created using different criteria and 
randomizing them using a normal distribution. We created the 
Full-Trail feeds using the generator to not exceed 10 levels of 
depth of linked MLSs. These trails were either a variant or a 
subsection of one of the real-life cases that were similar in 
terms of complexity and participants.  

At the normal speed of one event at one time tick of the 
CEP system, the test result in zero false positive rates and false 
negative rates. It is highly improbable to get a false positive 
trail due to the business rules that define them, and due to the 
accuracy and granular level of linking transactions. We did not 
get any false positive rate (FPR) or false negative rate (FNR) in 
the MLS tests due to the synthetic nature of the data. When we 
increased the speed of the data generated to 10 times and 100 
times the normal speed, we observed a FPR and FNR in the 
objects detected in the Full-Trail algorithms. Increasing the 
speed of processing did not produce FPR and NFR for a single 
MLS, but it produced FPR and FNR for MLS pairs at speeds 
that were multiples of 100s. The term “object” in this graph 
refers to the three different patterns of single MLS, pair MLS, 
and Full-Trail in the proprietary test of the specific object 
(Object in the first pattern tests to the first pattern single MLS, 
in the second to MLS pair, in the third to Full-Trail). The 
values of FRP and FNR reflect the number of falsely detected 
objects. 

Test with subtle noise: This is the most relevant accuracy 
test of our detection algorithms. The goal of this test was to 
mislead the detection algorithms by generating false positives 
and false negatives synthetic data. The test had three separate 
phases: injecting the scheme participants, injecting subtle 
transactions, and inserting similar MLSs. A subtle transaction 
is a transaction with ±5% of an actual transaction amount in a 
MLS. A similar MLS is identical to a real-life MLS with the 
same set of participants but with the MLS value is ±10% of the 
laundered amount of the actual MLS. The injection speed was 
set to normal processing speed, 10 times faster, and 100 times 
faster.  The test of injecting transactions and MLSs is setup 
considering each MLS type. For example, in the test of 
smurfing, we created only smurfing MLS and smurfing 
transactions that can extend vertically up to 20 levels of depth 
and horizontally to 30 levels of depth. When we were 
generating the MLSs our measures did vary based upon the 
MLS. We did not use artificially created none-real life cases. 
For example, we did not use a smurfing MLS with 100 levels 
deep, as that is uncommon and impractical to launder money. 
We also did not inject other types of MLSs into the injection 
test of a specific MLS. However, in the Full-Trail test, we 
injected all types of MLS because by design, a Full-Trail is 
required to have different types of MLS under the same Full-
Trail.  
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The test produced low FNR and low FPR for transaction 
and MLS injection when the phases were executed at normal 
processing speed.  Those rates increased in the phases when 
tests were executed at faster processing speed. One way to 
imitate the data rate of real production environment is to run 
the CEP tests at a faster rate, thereby overloading the system 
with processing and analytics while attempting to keep pace 
with the data stream. The goal was to evaluate the effectiveness 
of “Full-Trail” detection when the system absorbs data at a 
higher rate while performing the analysis. Due to the design 
methodology of detection algorithms and the complexity of the 
business rules of MLS detection, their false detection rates 
stayed at low levels (less than 5%) even with injection similar 
transactions and MLSs, at a higher data-feed speed (1000% and 
10000% speed).   

Meeting the design principles, the “Full-Trail” and 
“Suspicious-Trail” results remained at low rates for both false 
positive and false negative. Therefore, all the subtle single 
MLS created with injected data ended in the “Missing-Trail”, 
where they did not exceed the depth of 3 consecutive MLSs. 
Some reasons for this success in trail analysis and avoiding any 
negative impact are (1) MLEDF is designed in a strict and 
granular method, especially for matching MLSs within trails, 
(2) SNA is used in the trail analysis algorithms, (3) Adopted 
the criterion to follow the direction of the flow of the 
laundered-money. MLS is not expected to terminate with funds 
remaining in the account. The money must flow in some 
direction in order to be laundered, or must be withdrawn by the 
launderer. The Figures 5, 6 and 7 show the results of the 
number (quantity) of the transactions resulted in false positive 
and false negative, as explained in the previous paragraph. The 
figures show the number of FP and FN patterns of each phase 
from the three injection phases of the Test II, along with the 
results from running the test at different speed (1000% and 
10000% speed).  

Test with longer synthetic full-trails: This was the hardest 
level of performance testing of the system and accuracy-testing 
of the detection algorithms we carried out. In this test, the 
dataset was permutated over a repository of different real-life 
cases. Afterwards, the dataset was combined with randomized 
MLS to generate deep vertical levels of “Full-Trail”s and 
“Suspicious-Trail”s. The randomization followed the same 
principles used in Test II’s injection testing. The test was 
designed to assess the performance of MLEDF in capturing 
real-life data and analyzing them on the fly. The desired test 
result was to generate low FPR and FNR. The test module 
generated all synthetic data from real-life cases and tests were 
similar to real-life scenarios, considering that there are limited 
ways to manipulate a MLS. The test program functions as 
follows: (1) Set a trail depth. The program enters a loop and 
builds a trail by choosing a first scheme from of each MLS 
type at random, as it was described in Test I in building the 
Full-Trails. (2) The loop continues by creating an MLS that can 
be linked by funds, time, location and complexity to the current 
MLS. We repeated the step above with the exception of not 
creating any Smurfing MLS for the rest of the levels. (3) The 
permutation continues until the system reached the last level, 
where we always choose an MLS of type DirtyEFT with a 
withdrawal in order to generate the trail termination point, as 
by definition a trail will end with the withdrawal of money. (4) 

The test were repeated the process of trail generation forever at 
the maximum possible speed. (5) The testing module saved the 
arrival time of the last DirtyEFT and subtracted that from the 
build times of the trail, thereby obtaining Milliseconds 
difference in trail processing times. 

Our data was generated for worst-case scenarios to ensure 
that they are more complex and the performance was evaluated 
only in most resource consuming cases. Displayed results 
represent the performance of data generated without any 
repetitive bosses or associates. Hence, the dataset consumes a 
significant number of resources.   

 
Figure 5. False Positive and False Negative Percentages of Test III 

 

Figure 6. Number of Detected Trails in Test III for Faster Data Rates 

 

Figure 7. Pattern Generation Speed for Test III 

B. Experimental Evaluation and Validation of  Money 
Laundering Dynamic Risk Model  
Test Methodology: We introduced a four phase risk model 

testing prototype to examine the three different versions of 
static risk model, and the dynamic risk model: (1) T1:  Using 
standard average instead of the exponential average in 
calculating static risk. (2) T2: Using exponential average, but 
applying only penalty and no reward in calculating static risk. 
(3) T3: Using exponential average, apply both penalty and 
reward in calculating static risk.  (4) T4: Using detected 
schemes, from the output of MLEDF, to produce dynamic risk 
scores. 

Injected Data Phases: Four different types of transactions 
were injected in each of test phases with LSRS value of (10, 
20, 30, 40) in the transactions of each test.  

Test Goals: (1) Produce risk levels above certain threshold 
for continuously riskily transacting entities. (2) Effectiveness 
when certain patterns (all high risk or all low risk) were 
injected, (A) Does the ADRS/ASRS saturates at some fixed-
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point level? (B) False Positive (FP): ADRS/ASRS continue to 
grow towards the high risk level of the continuously injected 
data  (C) False Negative (FN): ADRS/ASRS deviates towards 
the low risk level of the continuously injected data  (D) 
Maintain a desired risk level for bad entities even if they 
deliberately transact with good entities, in order to lower their 
risk profile.  

Results: The dynamic risk model (T4) produces FP for 
transactions of none-MLEDF entities. The rate was less than 
5% and that was satisfactory considering the large amount of 
transactions. This is advantageous compared with risk models 
that do not assess the risk of being involved in MLS, 
considering the factors of increasing risk scores of MLEDF 
entities.   

Validation Statement: We used the StreamBase Studio [10] 
platform in each test of (T1, T2, T3, T4) and with each of the 
four data injection phases (by only injecting entities did not 
exist in MLEDF). The false negative rate was below 1% in 
phase 1 of all tests, and 0% in remaining three phases of data 
injection for all tests. The false positive rate was below 5% for 
T4, and lesser for other the three static tests (T1, T2, T3).  In 
test T4 and with each of the four data injection phases by 
injecting entities did exist in MLEDF. The false negative rate 
for T4 (When only injecting entities that are already detected 
by MLEDF) is the highest at 11% when entities with high static 
risk (of LSRS 30) are injected in phase 4, then at 9% in phase 1 
when high static risk score (of LSRS 25) are injected, then at 
8% in phase 3, and finally at 3% in phase2 when low risk score 
(of LSRS 10) is injected. The false negative rate is 0% in all 
phases of test T4. Table V summarizes our findings. Figure 9 
shows the false positive and false negative rates for injecting 
MLS’s with 10, 20, 25 and 30 LSRS values. 

TABLE V.  NUMBER OF TRANSACTIONS WITH FN AND FP RISK 

Transaction Injection/Test Type  T1 T2 T3 T4 
Total Generated Transactions 240387 240387 240387 240387 
Originators not from MLEDF  227 227 227 227 
Originators from MLEDF 59 59 59 59 
Unique Receivers 936 936 936 936 
Injected MLEDF Transactions  9851 9851 9851 9851 
FP- Phase1- Growing Risk  9 17 14 26 
FN- Phase1- Declining Risk  0 0 2 0 
FP- Phase2- Growing Risk 2 8 3 12 
FN- Phase2- Declining Risk 6 1 2 0 
FP- Phase3- Growing Risk 7 14 10 21 
FN- Phase3- Declining Risk 0 0 0 0 
FP- Phase4- Growing Risk  14 28 20 44 
FN -Phase4- Declining Risk  0 0 0 0 

 

 

Figure 8. False Positive Rate for each risk models after data injection 
(none-MLEDF Entities) 

VI. CONCLUSIONS  
We implemented a multiphase, multilevel, and multi-

component methodology to detect evolving money-laundering 
schemes using known methods, influenced by economic 
factors. We have created a framework to detect the evolution of 
MLS and implemented a system to include SNA for detecting 
and linking related ML networks. This linkage will function 
properly even when all evidence is unavailable. We defined the 
choreographies that could be used to detect the evolution of the 
sophisticated MLS. We have shown how to detect and capture 
the evolving and complex trails of MLS using SB. 

We enhanced the BSA inspired static risk with aggregated 
static risk, to reflect the changing dynamics of the ML and its 
consequences on the risk calculation. Our risk model factors in 
the initial account-opening risk as well as subsequent 
transactional risks, and it presents a risk score that is valid 
within and outside the boundaries of a single financial 
institution. We extended the static risk model to develop a 
MLEDF-dependent risk modeling, in order to produce a 
comprehensive ML risk modeling in combination with the 
aggregated static risk model. The aggregated static risk will be 
completed with integration of the MLEDF-dependent risk 
modeling, which captures the hidden, and dynamic, relations 
among none-transacted entities.  Such a risk model is used to 
create a valid and accurate transaction scoring system to be 
used in a ML prevention system.  
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