
TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 39

TOTAL ECLIPSE—An Eficient Architectural Realization of the Parallel
Random Access Machine

Martti Forsell

x

TOTAL ECLIPSE—An Efficient
Architectural Realization of the

Parallel Random Access Machine

Martti Forsell
Platform Architectures

VTT
Finland

1. Introduction

In the beginning of this millennium power density and related heating problems practically
stopped the exponential frequency increase of single core processors and limited availability
of instruction-level parallelism (ILP) in general purpose applications started to limit the
speedup achievable by increasing the number of simultaneously executed instructions in
superscalar processors that along with architectural improvements in exploitation of
memory hierarchies used to roughly duplicate the performance of processors in every
second year for decades. In order to be able to continue the increasing trend of
computational performance, all major processor manufacturers have switched to chip
multiprocessors (CMP) integrating multiple processor cores on a single chip and switching
the focus of parallelism from ILP to thread-level parallelism (TLP), because the number of
transistors per chip still tends to increase exponentially with every new generation of silicon
technology (ITRS, 2007) and high amounts of TLP is easier to extract than ILP.
Manufacturers have ambitious plans to continue this development by roughly duplicating
the number of cores per chip every second year, resulting to constellations with over 100
cores in ten years (Intel, 2006). This will, however, not happen without problems, because
current CMP architectures and related programming models do not support simple
migration to parallel computing, so called automatic parallelization of existing sequential
code has been turned out to be extremely difficult for general purpose programs, writing
explicitly parallel versions of programs has turned out to be tedious, error-prone and
expensive, and achieving linear speed-ups with respect to the number of cores appears to be
limited to only small classes of well-behaving algorithms. These problems are caused by
inability of current architectures to hide the latency of shared memory accesses (or
intercommunication), lack of synchronicity in execution of computational threads as well as
too weak models and low-level primitives of parallel computing forcing a programmer to
explicitly take care of data partitioning to maximize locality, functionality mapping
supporting data partitioning, synchronization of subtasks, and communication. Without
solving these problems, it is hard to imagine that parallel computing would be able to

3

www.intechopen.com

Parallel and Distributed Computing40

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 41

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

www.intechopen.com

Parallel and Distributed Computing42

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead

multi-
threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 43

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead

multi-
threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

www.intechopen.com

Parallel and Distributed Computing44

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 45

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Registers
R1 ... Rr-1

Sequencer
 S

Global Memo ry units
M0 ... Mm-1

Opcode
 O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memo ry
Request

Send

Memo ry
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Out

Instruction-In

Data
Out0

Add ress
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0 ... Aq-1

Post-memo ry ALUs
Aq ... Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Status
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

www.intechopen.com

Parallel and Distributed Computing46

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Shared memo ry access

Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T threads per
processor
p

F execution slots in a chain

Memo ry reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 47

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

www.intechopen.com

Parallel and Distributed Computing48

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <log W>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 49

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <log W>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

www.intechopen.com

Parallel and Distributed Computing50

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead

multi-
threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 51

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead

multi-
threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

www.intechopen.com

Parallel and Distributed Computing52

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 53

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Memo ry
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column
from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memo ry
output
decoder

Memo ry
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject

2. Route N/S

3. Goto WE

4. Route W/E

5. Eject

PHASES OF
ROUTING:

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

www.intechopen.com

Parallel and Distributed Computing54

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 55

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

www.intechopen.com

Parallel and Distributed Computing56

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 57

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

www.intechopen.com

Parallel and Distributed Computing58

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 59

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

www.intechopen.com

Parallel and Distributed Computing60

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 61

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

www.intechopen.com

Parallel and Distributed Computing62

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

www.intechopen.com

TOTAL ECLIPSE—An Eficient Architectural
Realization of the Parallel Random Access Machine 63

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

www.intechopen.com

Parallel and Distributed Computing64

www.intechopen.com

Parallel and Distributed Computing
Edited by Alberto Ros

ISBN 978-953-307-057-5
Hard cover, 290 pages
Publisher InTech
Published online 01, January, 2010
Published in print edition January, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware
design to application development. Particularly, the topics that are addressed are programmable and
reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies,
cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale
network simulation, and parallel routines and algorithms. In this way, the articles included in this book
constitute an excellent reference for engineers and researchers who have particular interests in each of these
topics in parallel and distributed computing.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Martti Forsell (2010). Total Eclipse - an Efficient Architectural Realization of the Parallel Random Access
Machine, Parallel and Distributed Computing, Alberto Ros (Ed.), ISBN: 978-953-307-057-5, InTech, Available
from: http://www.intechopen.com/books/parallel-and-distributed-computing/total-eclipse-an-efficient-
architectural-realization-of-the-parallel-random-access-machine

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

