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Abstract
Graph Convolutional Networks (GCNs) are a class of general models that can learn

from graph structured data. Despite being general, GCNs are admittedly inferior to con-
volutional neural networks (CNNs) when applied to vision tasks, mainly due to the lack
of domain knowledge that is hardcoded into CNNs, such as spatially oriented translation
invariant filters. However, a great advantage of GCNs is the ability to work on irregular
inputs, such as superpixels of images. This could significantly reduce the computational
cost of image reasoning tasks. Another key advantage inherent to GCNs is the natural
ability to model multirelational data. Building upon these two promising properties, in
this work, we show best practices for designing GCNs for image classification; in some
cases even outperforming CNNs on the MNIST, CIFAR-10 and PASCAL image datasets.

1 Introduction
In image recognition, input data fed to models tend to be high dimensional. Even for tiny
MNIST [23] images, the input is 28×28px = 784 dimensional and for larger PASCAL [10]
images it explodes to 333×500px≈ 165,000 dimensions (Figure 1). Learning from such a
high-dimensional input is challenging and requires a lot of labelled data and regularization.
Convolutional Neural Networks (CNNs) successfully address these challenges by exploiting
the properties of shift-invariance, locality and compositionality of images [5]. We consider
an alternative approach and instead reduce the input dimensionality. One simple way to
achieve that is downsampling. But in this case, we may lose vital structural information, so to
better preserve it, we extract superpixels [1, 24]. Representing a set of superpixels such that
CNNs could digest and learn from them is non-trivial. To that end, we adopt a strategy from
chemistry, physics and social networks, where structured data are expressed by graphs [3,
5, 14]. By defining operations on graphs analogous to spectral [6] or spatial [19] convolu-
tion, Graph Convolutional Networks (GCNs) extend CNNs to graph-based data, and show
successful applications in graph/node classification [11, 26, 31, 35] and link prediction [29].
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(a) 28×28 px (b) 32×32 px (c) 333×500 px

(d) N = 75 (e) N = 150 (f) N = 1000

Figure 1: Examples of the original images (a-c), defined on a regular grid, and their superpixel repre-
sentations (d-f) for MNIST (a,d), CIFAR-10 (b,e) and PASCAL (c,f); N is the number of superpixels
(nodes in our graphs). GCNs can learn both from images and superpixels due to their flexibility,
whereas standard CNNs can learn only from images defined on a regular grid (a-c).

The challenge of generalizing convolution to graphs is to have anisotropic filters (such
as edge detectors). Anisotropic models, such as MoNet [26] and SplineCNN [11], rely on
coordinate structure, work well for various vision tasks, but are often too computationally
expensive and suboptimal for graph problems, in which the coordinates are not well de-
fined [20]. While these and other general models exist [3, 13], we rely on widely used
graph convolutional networks (GCNs) [19] and their multiscale extension, Chebyshev GCNs
(ChebyNets) [8] that enjoy an explicit control of receptive field size.

Our focus is on multigraphs, those graphs that are permitted to have multiple edges, e.g.
two objects can be connected by edges of different types [25]: (is_part_of, action,
distance, etc.). Multigraphs enable us to model spatial and hierarchical structure inher-
ent to images. By exploiting multiple relationships, we can capture global patterns in input
graphs, which is hard to achieve with a single relation, because most GCNs aggregate in-
formation in a small local neighbourhood and simply increasing its size, as in ChebyNet,
can quickly make the representation too entangled (due to averaging over too many fea-
tures). Hence, methods such as Deep Graph Infomax [36] were proposed. Using multigraph
networks is another approach to increase the receptive field size and disentangle the repre-
sentation in a principled way, which we show to be promising.

In this work, we model images as sets of superpixels (Figure 1) and formulate image
classification as a multigraph classification problem (Section 4). We first overview graph
convolution (Section 2) and then adopt and extend relation type fusion methods from [20] to
improve the expressive power of our GCNs (Section 3). To improve classification accuracy,
we represent an image as a multigraph and propose learnable (Section 4.1.1) and hierarchical
(Section 4.1.2) relation types that we fuse to obtain a final rich representation of an image.
On a number of experiments on the MNIST, CIFAR-10, and PASCAL image datasets, we
evaluate our model and show a significant increase in accuracy, outperforming CNNs in
some tasks (Section 5).

2 Graph Convolution
We consider undirected graphs G = (V,A) with N nodes V and edges with values in the
range [0,1] represented as an adjacency matrix A ∈ RN×N . Nodes vi ∈ V usually represent
specific semantic concepts such as objects in images [28]. Nodes can also denote abstract
blocks of information with common properties, such as superpixels in our case. Edges Ai j
(i, j ∈ [1,N]) define the relationships and scope of which node effects propagate.
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Figure 2: An example of the “PC” relation type fusion based on a trainable projection (Eq. 3). We first
project features onto a common multirelational space, where we fuse them using a fusion operator, such
as summation or concatenation. In this work, relation types 1 and 2 can denote spatial and hierarchical
(or learned) edges. We also allow for three or more relation types.

Convolution is an essential computational block in graph networks, since it permits the
gradual aggregation of information from neighbouring nodes. Following [19], for some C-
dimensional features over nodes X ∈RN×C and trainable filters Θ ∈RC×F , convolution on a
graph G can be defined as:

Y = X̄Θ, (1)

where X̄ = D̃−1/2ÃD̃−1/2X are features averaged over one-hop (K = 1) neighbourhoods,
Ã = A+ I is an adjacency matrix with self-loops, D̃ii = ∑ j Ãi j is a diagonal matrix with node
degrees, and I is an identity matrix. We employ this convolution to build graph convolutional
networks (GCNs) in our experiments. This formulation is a particular case of a more general
approximate spectral graph convolution [8], in which case X̄ ∈RN×CK are multiscale features
averaged over K-hop neighbourhoods. Multiscale (multihop) graph convolution is used in
our experiments with ChebyNet.

3 Multigraph Convolution
In graph convolution (Eq. 1), the graph adjacency matrix A encodes a single (R = 1) relation
type between nodes. We extend Eq. 1 to a multigraph: a graph with multiple (R ≥ 1) edges
(relations) between the same nodes, represented as a set of adjacency matrices {A(r)}R

1 . Pre-
vious work used concatenation- or decomposition-based schemes [7, 29] to fuse multiple
relations. Instead, to capture more complex multirelational features, we adopt and extend
recently proposed fusion methods from [20].

Two of the methods from [20] have certain limitations preventing us to adopt them di-
rectly in this work. In particular, the approach based on multidimensional Chebyshev poly-
nomials is often infeasible to compute and was not shown to be superior in downstream
tasks. In our experience, we also found that the multiplicative fusion was unstable to train.
To that end, motivated by the success of multilayer projections in Graph Isomorphism Net-
works [37], we propose two simple yet powerful fusion methods (Figure 2).

Given features X̄ (r) corresponding to a relation type r, in the first approach we concate-
nate features for all relation types and then transform them using a two layer fully-connected
network f with Fhid hidden units and the ReLU activation:

Y = fCP([X̄ (0), X̄ (1), ..., X̄ (R−1)]), (2)
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where the first and second layers of fCP have CKR×Fhid and Fhid×F trainable parameters
respectively, ignoring a bias. The second approach, illustrated in Figure 2, is similar to mul-
tiplicative/additive fusion [20], but instead of multiplication/addition we use concatenation:

Y = [Z̄(0), Z̄(1), ..., Z̄(R−1)]Θ, (3)

where Z(r) = fr(X̄ (r)) and fr is a single layer fully-connected network with Fhid output units
followed by a nonlinearity, so that fr and Θ have CK×Fhid and RFhid×F trainable parame-
ters respectively, ignoring a bias. Hereafter, we denote the first approach as CP (concatena-
tion followed by projection) and the second as PC (projection followed by concatenation).

4 Multigraph Convolutional Networks
Image classification was recently formulated as a graph classification problem in [8, 11, 26],
who considered small-scale image classification problems such as MNIST [23]. In this work,
we present a model that scales to more complex and larger image datasets, such as PASCAL
VOC 2012 [10]. We follow [26] and compute SLIC [1] superpixels for each image and build
a graph, in which each node vi corresponds to a superpixel and edges Ai j (i, j ∈ [1,N]) are
computed based on the Euclidean distance between the coordinates pi ∈ R2 and p j ∈ R2 of
their centres of masses using a Gaussian with some fixed width σ :

A
(rspatial)
i j = e(−

||pi−p j ||2

2σ2 )
. (4)

A frequent assumption of current GCNs is that there is at most one edge between any pair
of nodes in a graph. This restriction is usually implied by datasets with such structure, so
that in many datasets, graphs are annotated with the single most important relation type.
Meanwhile, data is often complex and nodes tend to have multiple relationships of different
semantic, physical, or abstract meanings. Therefore, we argue that there could be other
relationships captured by relaxing this restriction and allowing for multiple kinds of edges,
beyond those hardcoded in the data (e.g. spatial in Eq. 4).

4.1 Learning Flat vs. Hierarchical Edges
Prior work, e.g. [4, 29], proposed methods to learn from multiple edges, but similarly to the
methods with a single edge type [19], they leveraged only predefined edges in the data. We
formulate a more flexible model, which, in addition to learning from an arbitrary number of
relations between nodes (see Section 3), learns abstract edges jointly with a GCN.

4.1.1 Flat Learnable Edges

We combine ideas from [3, 15, 31, 35] and propose to learn a new edge A
(rlearn,l)
i j from any

node vi to node v j with coordinates pi and p j using a trainable similarity function:

A
(rlearn,l)
i j = f (l)edge (pi, p j) , j ∈N ε

i , (5)

where l ∈ [1,L] indexes relation types; L is the number of learned relation types; andN ε
i is a

spatial neighbourhood of radius ε around node vi. Using relatively smallN ε
i limits a model’s

predictive power, but is important for regularization and to meet computational requirements
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for larger images from which we extract many superpixels, such as in the PASCAL dataset.
We also experimented with feeding node features, such as mean pixel intensities, to this
function, but it did not give positive outcomes. Instead, we further regularize the model by
constraining the input to be the absolute coordinate differences in lieu of raw coordinates
and applying the softmax on top of the predictions:

f (l)edge (pi, p j) = softmax
[

f (l) (|pi− p j|)
]
, j ∈N ε

i , (6)

where f is a small two layer fully-connected network with L output units and f (l) denotes
taking the l-th output. Using the absolute value makes the filters symmetric (Figure 5), but
still sensitive to orientation as opposed to the spatial edge defined in Eq. 4. The softmax is
used to encourage sparse (more localized) edges.

Our approach to predict edges can be viewed as a particular case of generative models
of graphs, such as [32]. However, the objectives of our model and the latter are orthogonal.
Generative models typically make probabilistic predictions to induce diversity of generated
graphs, and generation of each edge, node and their attributes should respect other (already
generated) edges and nodes in the graph, so that the entire graph becomes plausible. In our
work, we aim to scale our model to larger graphs and assume locality of relationships in
visual data, therefore we design a 1) simple deterministic function 2) that makes predictions
depending only on local information.

4.1.2 Hierarchical Edges
Depending on the number of SLIC superpixels, we can build different levels of image ab-
straction. Low levels of abstraction maintain fine-grained details, whereas higher levels
mainly preserve global structure. To leverage useful information from multiple levels, we
first compute superpixels at several different scales. Then, spatial and learnable relations
are computed using Eq. 4 and 6, treating nodes at different scales as a joint set of superpix-
els. This creates a graph of multiscale image representation (Figure 3 (a,b)). However, this
representation is still flat and, thus, limited.
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Figure 3: (top) We compute superpixels at several scales and combine all of them into a single set.
(bottom) We then build a graph, where each node corresponds to a superpixel from this set and has fea-
tures, such as mean RGB color and coordinates of the centres of masses. Using Eq. 4 and 7, we compute
spatial (a) and hierarchical (c) edges. Nodes 0 to 300 correspond to the first level of the hierarchy (first
scale of superpixels), and nodes 300 to 400 correspond to the second level, and so forth. Notice that
spatial edges (a) are created both within and between levels, while hierarchical (c) edges exist only
between hierarchical levels. (c, d) Powers of the adjacency matrices used in a multiscale ChebyNet
allow information to diffuse over the graph making it possible to learn filters with more global support.
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To alleviate this, we introduce a novel hierarchical graph model, where child-parent re-
lations are based on intersection over union (IoU) between superpixels vi and v j at different
scales:

A(rhier)
i j = IoU(vi,v j), (7)

where A(rhier) is an adjacency matrix of hierarchical edges and A(rhier)
i j = 0 for nodes at the

same scale (Figure 3 (c,d)). Using IoU means that child nodes can have multiple parents. To
guarantee a single parent, hierarchical superpixel algorithms can be considered [2].

4.2 Layer vs. Global pooling
Inspired by convolutional networks, previous works [6, 8, 11, 26, 31, 39] built an analogy of
pooling layers in graphs, for example, using the Graclus clustering algorithm [9]. In CNNs,
pooling is an effective way to reduce memory and computation, particularly for large inputs.
It also provides additional robustness to local deformations and leads to faster growth of
receptive fields. However, we can build a convolutional network without any pooling layers
with similar performance on a downstream task [33] — it just will be relatively slow, since
pooling is extremely cheap on regular grids, such as images. In graph classification tasks,
the input dimensionality, which corresponds to the number of nodes N = |V|, is often very
small (∼ 102) and the benefits of pooling are less clear. Graph pooling, such as in [9], is
also computationally intensive since we need to run the clustering algorithm for each graph
independently, which limits the scale of problems we can address. Aiming to simplify the
model while maintaining classification accuracy, we exclude pooling layers between graph
convolutional layers and perform global maximum pooling over nodes following the last
conv. layer. This fixes the size of the penultimate feature vector irrespective of N (Figure 4).

5 Experiments
We evaluate our model on three image-based graph classification datasets: MNIST [23],
CIFAR-10 [22] and PASCAL Visual Object Classes 2012 (PASCAL) [10]. For each dataset,
there is a set of graphs with different numbers of nodes (superpixels), and each graph G has
a single categorical label that is to be predicted. For baselines we use a single (R = 1) spatial
relation type defined using Eq. 4. For PASCAL we predict multiple categorical labels per
image and report mean average precision (mAP).

G=(V ,E (r )
)Input image

Graph propagation layers
Global pooling 

over nodes

Superpixels at 
different scales

Classification 
with FC layers

1×F 1×N classes

Hierarchical 
Multigraph

G1=(V1 ,E
( r )

) Gm=(Vm ,E
( r ))

Figure 4: Image classification pipeline using our model. Each mth graph convolutional layer in our
model takes the graph Gm = (Vm,E(r)) and returns a graph with the same nodes and edges. Node
features become increasingly global after each subsequent layer as the receptive field increases, while
edges are propagated without changes. As a result, after several graph convolutional layers, each node
in the graph contains information about its immediate neighbours and a large neighbourhood around it.
By pooling over nodes we summarize the information collected by each node. Fully-connected layers
follow global pooling to perform classification.
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MNIST consists of 70k greyscale 28×28px images of handwritten digits. CIFAR-10 has
60k coloured 32×32px images of 10 categories of animals and vehicles. PASCAL is a more
challenging dataset with realistic high resolution images (typically around 300× 500px) of
20 object categories (people, animals, vehicles, indoor objects). We use standard classifi-
cation splits, training our model on 5,717 images and reporting results on 5,823 validation
images. We note that CIFAR-10 and PASCAL have not been previously considered for
graph-based image classification, and in this work we scale our method to these datasets. In
fact, during experimentation we found some other graph convolutional methods unable to
scale (see Section 5.3).

5.1 Architectural and Experimental Details
GCNs. In all experiments, we train GCNs, ChebyNets and MoNet [26] with three graph
convolutional layers, having 32, 64 and 512 filters with the ReLU activation after each layer
followed by global max pooling and a fully-connected classification layer (Figure 4). For
MNIST, we use a dropout rate [34] of 0.5 before the class. layer, while for CIFAR-10 and
PASCAL instead we employ batch normalization (BN) [16] after each convolutional layer.
For edge fusion, projection fCP in Eq. 2 is modelled by a two layer network with Fhid = 64
hidden units and the ReLU activation between layers. Similarly, projections fr(X̄ (r)) in Eq. 3
are single layer neural networks with Fhid = 64 output units followed by the tanh activation.
The edge prediction function in fedge (Eq. 6) is a two layer neural network with 32 hidden
units, L output units, and neighbourhood N ε

i is set to the 0.2N spatially nearest nodes.
ConvNets (CNNs). To allow fair comparison, we train CNNs with the same number of

filters in convolutional layers as GCNs, with filters of size 3 for MNIST, 5 for CIFAR-10
and 7 for PASCAL, max pooling between layers and global average pooling after the last
convolutional layer. Deeper and larger CNNs and GCNs can be trained to further improve
results. Since images fed to CNNs are defined on a regular grid, adding coordinate features
is uninformative, because these features are exactly the same for all examples in the dataset.

Low resolution ConvNets. GCNs take a relatively low resolution input compared to
CNNs: 75 vs. 784 for MNIST, 150 vs. 1024 for CIFAR-10 and 1000 vs. 150,000 for PAS-
CAL. Factors by which it is reduced are 10.5, 6.8 and 150 respectively. Therefore, direct
comparison of GCNs to CNNs is unfair. To provide an alternative (yet not perfect) form of
comparison, we design experiments with low resolution inputs fed to CNNs. In particular,
to match the spatial dimensions of inputs to GCNs and CNNs, for MNIST we reduce the
size to 9×9 px, for CIFAR-10 to 12×12 px and for PASCAL to 32×32 px taking into ac-
count that the average number of superpixels returned by the SLIC algorithm is often smaller
than requested. Admittedly, downsampling using SLIC superpixels is more structural than
bilinear downsampling, so GCNs receive a stronger signal, but we believe it is still an inter-
esting experiment. Principal component analysis could be used as a more adequate way to
implicitly reduce the input dimensionality for CNNs, but this method is infeasible for large
images, such as in PASCAL, while superpixels can be easily computed in such cases. For
comparison, we also report results on low resolution images using GCNs.

Training. We train all models using Adam [18] with learning rate of 1e−3, weight
decay of 1e−4, and batch size of 32. For MNIST, the learning rate is decayed after 20 and
25 epochs and models are trained for 30 epochs. For CIFAR-10 and PASCAL, the learning
rate is decayed after 35 and 45 epochs and models are trained for 50 epochs. We train models
using four edge fusion methods: concatenation-based baseline, additive fusion [20] and two
methods (CP and PC) introduced in Section 3 (see Table 1 and Figure 6 (a) for a summary).
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Figure 5: Examples of predicted edges for MNIST and CIFAR-10 using the models with L= 4 learned
edges (Eq. 6). These predictions can be interpreted as filters centred at some node vi, so that values
along both axes denote distances from node vi to other nodes v j and the intensity denotes the strength of
a connection with that node. As we can see, our models learn filters with variable intensity depending
on the direction to better capture features in images. For comparison, a spatial edge (Eq. 4) is shown
on the left, which has the same value across all directions limiting model’s flexibility.

In each case, we train a model 5 times with different random seeds and report average
results and standard deviation. In Table 2, we report the best results over different fusion
methods superscripting the best fusion method.

Graph formation for images. For MNIST, we compute a hierarchy of 75, 21, and 7
SLIC [1] superpixels and use mean superpixel intensity and coordinates as node features, so
X ∈RN×3. For CIFAR-10, we add one more level of 150 superpixels and also use coordinate
features, so X ∈RN×5. For PASCAL, due to its more challenging images, we further add two
more levels of 1,000 and 300 superpixels, so X ∈ RN×5. Note, the number of superpixels
provided above are upper bounds we impose on the SLIC algorithm. For low resolution
experiments with GCNs, we build graphs from pixels and their coordinates, that is the graph
structure is the same across all examples in the dataset.

5.2 Results
The image classification results on the MNIST, CIFAR-10 and PASCAL datasets are pre-
sented in Table 2. We first observe that among GCN baselines, MoNet [26] and ChebyNet [8]
show comparable performance, significantly outperforming GCN [19], which can be ex-
plained by very local filters in the latter. Next, the hierarchical (H) and learned (L or L4,
i.e. models with L = 4 learnable edges) connections proposed in this work are shown to
be complementary, substantially improving both GCNs and ChebyNets with a single spatial
edge type. Additional qualitative and quantitative analysis is provide in Table 1, Figures 5
and 6. By combining hierarchical and learned edge types (H-L, H-L4) and adding multiscale
filters, we achieve a further gain in accuracy while keeping the number of trainable param-
eters low compared to ConvNets, MoNet and ChebyNets with large K. Importantly, our
multirelational GCNs also show better results than ConvNets with a low resolution input.

In Table 2, for ChebyNet we report results using the best K chosen from the range [2, 20]:
K = 10,3,2 for MNIST, CIFAR-10 and PASCAL respectively in case of a baseline ChebyNet
and K = 4,4,2 in case of H-L-ChebyNet. Among evaluated fusion methods, CP and additive
(S) work best for MNIST, whereas PC and CP dominate for CIFAR-10 and PASCAL.

We also evaluate a baseline GCN on low resolution images to highlight the importance
of SLIC superpixels compared to downsampled pixels (Table 2). Surprisingly, SLIC features
provide only a moderate improvement compared to pixels bringing us to two conclusions.
First, average intensity values of superpixels and their coordinates are rather weak features
that carry limited geometry and texture information. Stronger features can be boundaries
of superpixels, but efficient and effective modeling of such information remains an open
question. Second, we hypothesize that on full resolution images GCNs can potentially reach
the performance of ConvNets or even outperform them, while having appealing properties,
such as in [17]. However, to scale GCNs to such large graphs, two approaches should be
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Fusion method # params K = 1 (GCN) K = 2 K = 7

R
=

1 (Sp) Spatial edge (Eq. 1,4)
C×K×F

86.36±0.95 97.08±0.11 98.17±0.02

(SpM) Spatial multiscale (Eq. 1,4) 91.74±0.28 97.38±0.09 98.10±0.05

(H) Hier. edge (Eq. 1,7) 93.65±0.07 96.94±0.07 97.07±0.07
R
=

2

(C) Concat [20] C×K×R×F 97.07±0.06 97.95±0.07 98.28±0.11

(S) Sum [20] Fhid(C×K×R+F) 97.93±0.05 98.30±0.01 98.44±0.10

(CP) C-proj (Eq. 2) Fhid(C×K×R+F) 97.77±0.08 98.31±0.09 98.52±0.09
(PC) Proj-c (Eq. 3) RFhid(C×K +F) 97.87±0.04 98.28±0.04 98.47±0.09

Max gain 4.28 0.93 0.35

Table 1: Accuracy gain achieved on MNIST-75sp (MNIST with 75 superpixels) by using both spatial
and hierarchical edges (R = 2) versus a single edge (R = 1) depending on edge fusion methods for
different number of hops, K, of filters.
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Figure 6: (a) Number of trainable parameters, # params, in a graph convolutional layer as a func-
tion of the number of relations, R. Fusion methods based on trainable projections, including those
proposed in our work, have “# params” comparable to the baseline concatenation method while being
more powerful in terms of classification (see Tables 1 and 2). (b) Comparison of single edge types,
where learned and hierarchical edges outperform spatial edges. (c) Effect of graph sparsification on
classification accuracy. Numeric labels over markers denote sparsity of a graph (%). Notice little or no
decrease in accuracy for sparse graphs, even if they have only 2-10% non-zero edges.

considered: 1) fast and effective pooling methods [12, 39]; 2) sparsification of graphs, which
we evaluated and compared to complete graphs used in our experiments (Figure 6 (c)).

5.3 Discussion
Our method relies on Graph Convolutional Networks (GCN) [19] and its multiscale variant
ChebyNet [8]). While ChebyNet is superior to GCN in case of a single relation type due to
a larger receptive field size, adding multiple relations make both methods comparable. In
fact, we show that adding hierarchical edges is generally more advantageous than adding
multihop ones, because hierarchy is a strong inductive bias that facilitates capturing features
of spatially remote, but hierarchically close nodes (Table 1). Learned edges also improve on
spatial ones, which are defined heuristically in Eq. 6 and therefore might be suboptimal.

Closely related to our work, [26] formulated the generalized graph convolution model
(MoNet) based on a trainable transformation to pseudo-coordinates, giving rise to anisotropic
kernels and excellent results in visual tasks. However, we found our models with multiple
relations to be better (Table 2). Notably, the computational cost (both memory and speed)
of MoNet is higher than for any of our models due to the costly patch operator in [26],
so we could not perform experiments on PASCAL with 1000 superpixels due to limited
GPU memory. The argument previously made in favour of MoNet against spectral methods,
including ChebyNet, was the sensitivity of spectral convolution methods to changes in graph
size and structure. We contradict this argument and show strong performance of ChebyNet.
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Model R MNIST CIFAR-10 PASCAL # params
In

pu
t ConvNets, full res, Npixels 784 1024 150 000

ConvNets/GCNs, low res, Npixels 81 144 1024
GCNs, NSLIC_superpixels ≤75 ≤150 ≤1000

Pi
xe

ls
:

ba
se

lin
es ConvNet [23], full res − 99.42±0.01 83.77±0.21 41.42±0.51 320-360k

ConvNet [23], low res − 97.09±0.10 72.68±0.40 32.69±0.43 320-330k
GCN [19], low res 1 81.36±0.41 50.57±0.14 18.57±0.10 42k

SL
IC

:
ba

se
lin

es GCN [19] 1 86.29±0.44 51.51±0.55 19.24±0.06 42k
MoNet [26] 1 96.64±2.01 72.62±0.57 ‡ 880k
ChebyNet [8] 1 98.24±0.03 68.92±0.23 32.38±0.38 80-350k

SL
IC

:
ou

rs

L-GCN 2 97.64±0.12S (↑1.05) 70.14±0.29PC (↑1.00) 32.39±0.19PC (↑0.08) 100k
H-GCN 2 97.93±0.05S (↑0.86) 69.05±0.14PC (↑0.60) 32.18±0.29PC (↑0.53) 100k
H-L-GCN 3 98.35±0.09S (↑0.63) 71.44±0.30CP (↑1.81) 31.75±0.74PC (↑0.54) 145k
L4-GCN 5 98.42±0.12CP (↑0.10) 72.67±0.36S,C (0.00) 33.01±0.49C (↓0.38PC) 185k
H-L4-GCN 6 98.66±0.03S (↑0.22) 72.89±0.70CP (↑0.89) 32.61±0.45C (↓2.18S) 220k
H-L-ChebyNet 3 98.68±0.05CP (↑0.18) 73.18±0.52PC (↑2.40) 34.46±0.47PC (↑1.46) 200k

Table 2: Image classification results: accuracy for MNIST and CIFAR-10 and mAP for PASCAL (%).
Superscripts denote the best fusion method among the four studied methods (See Table 1 for notation).
‡ - unable to evaluate on our infrastructure due to high computational cost. # params is the total number
of trainable parameters in a model (largest across rows). An up-arrow (↑) shows the gain compared to
the baseline concatenation fusion; a down-arrow (↓) shows the loss of accuracy.

Another method, SplineCNN [11], is similar to MoNet and is also based on pseudo-
coordinates, but we leave studying this method for future work. Note that performance of
MoNet and SplineCNN on general graph classification problems where coordinates are not
well defined is inferior compared to ChebyNet [20].

Finally, a family of methods based on graph kernels [21, 30] shows strong results on
some non-visual graph classification datasets, but their application is limited to small scale
graph problems with discrete node features, whereas we have real-valued features. Scalable
extensions of kernel methods to graphs with continuous features were proposed [27, 38], but
they still tend to be less competitive than methods based on GCN and ChebyNet [20].

6 Conclusion
We address several limitations of current graph convolutional networks and show improved
graph classification results on a number of image datasets. First, we formulate the classifi-
cation problem in terms of multigraphs, and extend edge fusion methods based on trainable
projections. Second, we propose hierarchical edges and a way to learn new edges in a graph
jointly with a graph classification model. Our results show that spatial, hierarchical, learned
and multihop edges have a complimentary nature, improving accuracy when combined. We
show that our models can outperform standard convolutional networks in experiments with
low resolution images, which should pave the way for future research in that direction.
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