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Abstract
Object detector is an indispensable component in many computer vision and artificial

intelligence systems, such as autonomous robot and image analyzer for profiling social
media users. Analyzing its vulnerabilities is essential for detecting and preventing at-
tacks and minimizing potential loss. Researchers have proposed a number of adversarial
examples to evaluate the robustness of object detectors. All these adversarial examples
change pixels inside target objects to carry out attacks but only some of them are suitable
for physical attacks. According to the best knowledge of the authors, no published work
successfully attacks object detector without changing pixels inside the target object. In
an unpublished work, the authors designed an adversarial border which tightly surrounds
target object and successfully misleads Faster R-CNN and YOLOv3 digitally and phys-
ically. Adversarial border does not change pixels inside target object but makes it look
weird. In this paper, a new adversarial example named adversarial signboard, which
looks like a signboard, is proposed. By putting it below a target object, it can mislead
the state-of-the-art object detectors. Using stop sign as a target object, adversarial sign-
board is evaluated on 48 videos with totally 5416 frames. The experimental results show
that adversarial signboard derived from Faster R-CNN with ResNet-101 as a backbone
network can mislead Faster R-CNN with a different backbone network, Mask R-CNN,
YOLOv3 and R-FCN digitally and physically.

1 Introduction
With the rapid development of deep learning and computational hardware, as well as the
availability of big image and video datasets, performance of computer vision methods has
very significant improvement in the recent years. Many of them have been deployed to com-
mercial and military applications. Nevertheless, as with other cyber-physical systems, com-
puter vision systems are also subject to attacks. Szegedy et al. [24] found that even though
deep neural networks (DNN) based image classifiers achieve great performance, comparing
with the traditional hand-crafted feature methods, they are vulnerable to adversarial exam-
ples, which are almost no difference from their original images to the naked eyes. Their
study draws great concerns from both computer science researchers and engineers, in partic-
ular those working in the privacy and security-critical industries. Papernot et al. [20] further

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2014

Citation
Citation
{Papernot, McDaniel, and Goodfellow} 2016{}



2 HUANG, KONG, LAM: ADVERSARIAL SIGNBOARD AGAINST OBJECT DETECTOR

discovered that adversarial examples are transferable, meaning that an adversarial example
derived from one network can fool other networks trained on different datasets and even with
different architectures. Their findings indicated that attackers can use adversarial examples
to perform black-box attacks, even when they do not have knowledge about target network.
To identify vulnerabilities in DNN and finally develop more secure DNN-based systems, re-
searchers investigate adversarial examples along four directions: (1) developing new attack
schemes for different application scenarios [5, 12, 14, 19, 21, 22, 24], (2) designing counter-
measures against adversarial examples [4, 8, 27], (3) studying the existence of adversarial
examples and their transferability [10, 16, 25] and (4) deriving bounds of DNNs against
zero-day attackss [3, 11, 13]. Different research directions have different emphasises. From
the application point of view, developing new attack schemes is vital because once new at-
tacks are discovered, it is easy to design corresponding countermeasures and it also reduces
the risk of zero-day attacks. After Szegedy et al. and Papernot et al.’s studies on DNN-based
image classifiers, some researchers study vulnerabilities of object detector, which is an es-
sential component in many computer vision systems, such as self-driving cars and unmanned
aerial vehicles. However, image classifier and object detector are very different. The former
only outputs one label for each image but the latter needs to locate and classify multiple tar-
get objects in each image. The state-of-the-art object detectors produce multiple bounding
boxes internally for each object and utilize non-maximum suppression or other methods to
select a final bounding box. Thus, if an adversarial example is derived to fool object detector,
it has to degrade all the internal bounding boxes significantly [18]. To fool object detector,
Xie et al. [26] changed every pixel in entire image to craft their adversarial examples but
their attack cannot be carried out in the physical world. Some researchers mislead object
detector by significantly changing a large amount of pixels inside target objects. Their ad-
versarial examples are very different from the original objects. Fig. 1 shows adversarial
examples designed by Lu et al. [17], Chen et al. [7] and Song et al. [23]. According to the
best knowledge of the authors, no published adversarial example can attack object detector
digitally and physically but without changing target objects. In an unpublished work [2], the
authors designed adversarial border and discovered that by surrounding target object with
adversarial boarder. It is possible to fool object detector digitally and physically. However,
it makes the object look weird (Fig. 2). In this paper, an algorithm is designed to craft a new
adversarial example named adversarial signboard, which looks like a signboard. By putting
it below a target object, it can mislead object detector digitally and physically. Fig. 3 shows
2 normal signboards from the Internet and Fig. 5 shows 3 adversarial signboards. In this
paper, stop sign is used as a target object because it was commonly used in the previous
adversarial example studies and is an important object for autonomous vehicles.

The rest of this paper is organized as follows. Section 2 describes existing adversarial
examples designed to fool image classifiers and object detectors. Section 3 presents the
proposed algorithm for crafting adversarial signboard. Section 4 reports the experimental
results on 48 videos with totally 5416 frames for digitally and physically attacking Faster
R-CNN with VGG-16 and ResNet-101 as backbone networks, YOLOv3, Mask R-CNN and
F-RCNN. Section 5 gives some conclusive remarks.

2 Related Work
Adversarial examples have drawn great attention from the scientific community and indus-
tries. Diverse research has been carried out to understand, analyse and protect DNN from
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adversarial examples. Adversarial signboard is designed to fool object detector and therefore
only adversarial examples designed to fool image classifier and object detector are described
in this section.

2.1 Adversarial examples against image classifier

In 2014, Szgedy et al. [24] proposed a method named L-BFGS to craft adversarial examples
and found that their adversarial examples and the original images are almost the same to the
naked eye but DNN image classifiers classify them differently. Their work pinpointed that
although DNNs offer excellent performance in many applications and outperform traditional
approaches, they are vulnerable to attacks based on adversarial examples. To speed up L-
BFGS, in 2015, Goodfellow et al. [12] proposed another method called Fast Gradient Sign
Method (FGSM) to generate adversarial examples against DNN image classifier. In 2016,
Rozsa et al. [22] replaced the sign of the gradient in FGSM with the original gradient in
order to obtain more accurate optimization direction and finally derive stronger adversarial
example. Their method was named Fast Gradient method (FGM). These methods change
every pixels in images to produce their adversarial examples. In 2016, Papernot et al. [21]
demonstrated that by changing a small amount of pixels, it is possible to mislead DNN image
classifier, but their attack has higher computation cost, comparing with the previous meth-
ods. In addition to these attacks, researchers designed other attacks, such as Deepfool [19],
Zeroth Order Optimization (ZOO) attack [6] and C&W attack [5] to study vulnerability of
DNN image classifier. All these attacks are based on the assumption that attackers can input
their adversarial examples to targeted DNN image classifier directly. They have no effect on
the systems which take input images directly from cameras. In other words, these attacks
are only suitable for digital attacks but not physical attacks. To achieve better robustness of
the adversarial examples, Kurakin et al. [15] used a finer optimizer to improve FGSM and
Athalye et al. [1] took distance between camera and object, variations and other noise in
the physical world into consideration and used a function to simulate these variations in the
training process. As with other DNN training, training adversarial examples with diverse
images can improve their robustness. Eykholt et al .[9] took this approach to strengthen their
adversarial examples for physical attacks. More clearly, they used images taken from differ-
ent viewpoints, distances and illumination environments to train their adversarial examples.
They also employed a function to synthesize the distortion in the physical world for further
enhancing the robustness of their adversarial examples.

Figure 1: Adversarial stop signs generated
by [7, 17, 23]

Figure 2: Adversarial border

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2014

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Rozsa, Rudd, and Boult} 2016

Citation
Citation
{Papernot, McDaniel, Jha, Fredrikson, Celik, and Swami} 2016{}

Citation
Citation
{Moosavi-Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Chen, Zhang, Sharma, Yi, and Hsieh} 2017

Citation
Citation
{Carlini and Wagner} 2017

Citation
Citation
{Kurakin, Goodfellow, and Bengio} 2017

Citation
Citation
{Athalye, Engstrom, Ilyas, and Kwok} 2018

Citation
Citation
{Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, and Song} 2018

Citation
Citation
{Chen, Cornelius, Martin, and Chau} 2018

Citation
Citation
{Lu, Sibai, and Fabry} 2017{}

Citation
Citation
{Song, Eykholt, Evtimov, Fernandes, Li, Rahmati, Tramer, Prakash, and Kohno} 2018



4 HUANG, KONG, LAM: ADVERSARIAL SIGNBOARD AGAINST OBJECT DETECTOR

Figure 3: Normal signboards collected from the Internet.

2.2 Adversarial examples against object detector

The risk in DNN image classifiers motivated some researchers to investigate adversarial
examples against object detector. In 2017, Xie et al. [26] proposed a method named Dense
Adversary Generation (DAG), which derives adversarial examples from Faster R-CNN. They
first replaced the original label of each object with an adversarial label and then maximized
the confidence to the adversarial label and minimized the confidence to the original label.
Experimental results showed that DAG can fool Faster R-CNN. In the same year, Lu et al.
[18] used a target vector with all elements close to one which represents a background label
and a method designed for attacking DNN image classifier to craft adversarial examples
against object detector. Lu et al.’s method is effective for attacking YOLO digitally, but not
physically. Lu et al. [17] proposed another adversarial example named adversarial stop sign
against Faster R-CNN. Because stop sign is a regular octagon, they used a shape matching
function to map an adversarial stop sign in a root coordinate system to the stop signs in the
training frames. Their objective function is to minimize the mean score of the stop signs
detected by Faster R-CNN. As with Eykholt et al.’s training approach [9], they also trained
adversarial stop sign on diverse frames from a video to increase its robustness. Experimental
results showed that their adversarial stop sign can physically fool Faster R-CNN, but looks
very different from normal stop sign (Fig.1 the first column). Because of the shape matching
function, their method is not applicable to objects without well-defined shapes, e.g., desks.
Chen et al. [7] used expectation over transformation to design another adversarial stop sign,
which can successfully mislead Faster R-CNN in physical attacks. Their method changes
every pixel inside stop sign, except for those in the word, STOP. Although the word, STOP,
is clear, the rest region, which should be pure red, is totally replaced with other patterns
(Fig. 1 the middle column). Song et al. [23] further limited the attack region and produced
adversarial sticker, which can successfully attack both YOLO and Faster R-CNN digitally
and physically (Fig. 1 the last column). According to the best knowledge of the authors, all
published adversarial examples which are effective in physical attacks change target object
significantly and create noticeable patterns inside it. The adversarial border designed by
the authors in an unpublished article [2] can successfully fool Faster R-CNN and YOLOv3
digitally and physically but without changing any pixels inside target object. It pinpointed
that it is possible to perform attacks even without changing target object. However, to carry
out such an attack, target object has to be placed at the centre of the adversarial border such
that it is surrounded by adversarial patterns. It makes the target object look weird (Fig. 2). To
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address this problem, in this paper, a new adversarial example named adversarial signboard
is proposed. It looks like a signboard and by putting it below target object, it can perform
physical and digital attacks.

3 Algorithm
The proposed adversarial signboard is constructed using Faster R-CNN (Fig. 4), which is
composed of three main sub-networks - feature extraction network, region proposal network
(RPN) and detection network. The feature extraction network is used to compute features
consumed by the RPN and the detection network. It is also called a backbone network and
VGG-16 and ResNet are commonly employed as the feature extraction network. The RPN
takes features from the feature extraction network and determines a set of region proposals
which have high probability of containing objects. The detection network takes both outputs
from the feature extraction network and the RPN as input and computes final bounding boxes
and their corresponding classes using respectively the box regression network and the box
classification network (see Fig. 4). More precisely, the box regression network computes
parameters to refine the coordinates of the input region proposals and determines the final
bounding boxes and the box classification network produces a probability matrix P, each of
whose row and column correspond respectively to one input region proposal and one specific
category. The element in the ith row and the jth column in P indicates the probability of the
ith region proposal belonging to the jth category.

Adversarial signboard is designed to mislead the box classification network into out-
putting low probabilities for target object, i.e., stop sign in this study. To enhance its robust-
ness to scale, distance and lighting variations in the physical world, n images, each of which
contains one target object T , are sampled from k videos V1,. . . ,k as a training set. Given an
input image I, let B(I) be the bounding boxes outputted by the box regression network and
PT (I) be the corresponding probabilities of the target object T . More clearly, PT (I) is the
column of P corresponding to the class of the target object. Since not all the bounding boxes
in B(I) is generated by the target object, only the bounding box bt(I) with the highest prob-
ability in PT (I) is selected for training. It is assumed that in each training frame, there is
one target object and Faster R-CNN can roughly locate it. To train adversarial signboard on

Figure 4: Illustration of Faster R-CNN.
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a large database without ground truth bounding boxes, bt(I) is used as a reference to scale
and place an adversarial signboard in I. Let the adversarial signboard be a patch Λ with a
fixed size of h×w and the size of bt(I) be ht ×wt . The adversarial signboard is scaled to
αht ×βwt . In the experiments, α and β are set to 1 and 2 respectively. If the bounding box
given by Faster R-CNN is not accurate enough and if the adversarial signboard is placed right
below bt(I), it will cover a part of the target object. To address this problem, the adversarial
signboard is placed with a distance below bt(I). In the experiments, the distance D is set to
1/10× ht . Furthermore, it also makes the position of the adversarial signboard more natu-
ral. In physical attacks, it is hard to put the adversarial signboard in an accurate position as
digital attacks. Therefore, random shifts in both vertical and horizontal directions are added
into the training process to improve its robustness against this inaccuracy. The range of the
random shifts in the horizontal direction is from −1/10×wt to 1/10×wt and the range of
the random shifts in the vertical direction is from 0 to 1/10× ht . After the random shifts,
the distance between the adversarial signboard and the target object varies from 1/10×ht to
2/10×ht . To mimic real signboard, a text mask is applied to the adversarial signboard and
only the pixels outside the text mask are involved in the training. Let m(Λ) be the process
of putting the text mask in the adversarial signboard and f (I,m(Λ),bt(I)) be the process of
scaling and placing the adversarial signboard with the text mask on I. Note that the output of
f (I,m(Λ),bt(I)) is an image with the adversarial signboard. Instead of minimizing the mean
probability, the proposed objective function minimizes the expected maximum original class
probability of all the bounding boxes in B, which can be written as:

min
I∈V1,..,k

E(max(PT ( f (I,m(Λ),bt(I))))) (1)

Though both adversarial border [2] and adversarial signboard are placed outside target
object to perform attacks, they are derived by different algorithms. Adversarial border is de-
signed to fool the box regression network, while adversarial signboard is designed to fool the
box classification network. The former minimizes the mean difference between the bounding
box parameters produced by the box regression network and predefined target values, while
the latter minimizes the expected maximum original class probability. Furthermore, adver-
sarial border has to surround target object tightly to perform attacks and makes it look weird
(Fig. 2). Adversarial signboard significantly lightens the positing requirement. By placing
adversarial signboard below target object with some distance, it is enough to perform an at-
tack. Besides, it camouflages itself as a normal signboard, which is much more natural than
adversarial border. Fig . 3 shows normal signboards and Fig. 5 shows adversarial signboards
with different text designs. Furthermore, in the previous study, adversarial border was only
evaluated on Faster R-CNN with VGG-16 as a backbone network and YOLOv3, while in this
study, adversarial signboard is evaluated on Faster R-CNN with VGG-16 and ResNet-101 as
backbone networks, Mask R-CNN, YOLOv3 and R-FCN.

4 Experiments
To evaluate adversarial signboard, stop sign is used as a target object because it was com-
monly used in the previous adversarial example studies and an important object for au-
tonomous vehicles. In the experiments, 529 images sampled from 4 videos and Faster R-
CNN with ResNet-101 as a backbone network are used to train three adversarial signboards
with a size of 90 by 180 pixels. The three adversarial signboards with different text masks
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(a) AS-W (b) AS-B (c) AS-BW
Figure 5: The first row is the three adversarial signboards for digital attacks and the second
row is their printouts for physical attacks.

shown in Fig. 5 (a)-(c) are respectively denoted as AS-W, AS-B and AS-BW. In the ex-
periments, both white-box and black-box attacks are studied. For white-box attacks, Faster
R-CNN with ResNet-101 as its backbone network is used to evaluate the adversarial sign-
boards. For black-box attacks, four object detectors YOLOv3, R-FCN, Faster R-CNN using
VGG-16 as its backbone network and Mask R-CNN, are used to evaluate the adversarial
signboards. The backbone networks of YOLOv3, R-FCN and Mask R-CNN are respectively
Darknet-53, ResNet-101 and ResNet-101. For the sake of convenience, the two Faster-CNN
detectors are denoted as Faster R-CNN(VGG-16) and Faster R-CNN(ResNet-101). In ad-
dition to white-box and black-box attacks, they are also examined in digital and physical
attacks.

4.1 Digital attacks

In digital attacks, 36 videos collected from the Internet are employed. Since adjacent frames
in the videos are highly similar, each alterative frame is selected and forms a testing set with
4,073 images. The adversarial signboards are scaled and placed in the testing images. Fig. 6
gives sample detection results with and without adversarial signboards. The successful attack
rate AR for one video is defined as the number of successful attacks divided by the number
of original detected images. Note that AR is computed from each video and the average AR
from the 36 videos is used as a final performance index for digital attacks. Table. 1 lists
the original detection rates (DR-ORG) and the average successful attack rates for white-box
and black-box attacks. For white-box attacks, the adversarial signboards achieve average
successful attack rates over 84%. For black-box attacks, they can mislead detectors with
similar architectures, i.e., Faster R-CNN(VGG-16) and Mask R-CNN at high successful
attack rates. The mean average ARs of these two detectors are 69% and 70%, respectively.
For R-FCN, the average AR varies between 70% and 59%. For YOLOv3, the average AR
varies between 58% and 50%. The experimental results also show that AS-W performs
the best among the three adversarial signboards and its mean average AR across all the
detectors is 72%. These experimental results demonstrate that the adversarial signboards
can significantly reduce the number of detected stop signs in both white-box and black-box
attacks.
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Faster R-CNN
( ResNet-101)

Faster R-CNN
(VGG-16) Mask R-CNN YOLOv3 R-FCN

DR-ORG 89 70 95 95 76
AS-B 87 58 75 50 59
AS-W 88 78 67 57 70

AS-BW 84 71 68 58 64
Mean AR 86 69 70 55 64

Table 1: The average successful attack rates in digital attacks (%)

Faster R-CNN
( ResNet-101)

Faster R-CNN
(VGG-16) Mask R-CNN YOLOv3 R-FCN

Stop sign 98 80 94 68 96
AS-B 20 47 16 18 47
AS-W 30 43 18 13 38

AS-BW 32 57 19 16 59

Table 2: The average detection rates in physical attacks (%)

4.2 Physical attacks

In this experiment, a stop sign with a size of 19.2 cm by 19.2 cm and the three adversarial
signboards with a size of 19.2 cm by 38.4 cm are printed out. Fig. 5 shows the stop sign and
the adversarial signboards. Four groups of videos are taken in an open car-park by a smart-
phone camera and each group has one video for the stop sign without adversarial signboard
and three videos for the three adversarial signboards with the stop sign above. In each group,
the videos are taken from roughly the same viewpoint, location and camera direction. Thus,
in total, 16 videos with a resolution of 1920 by 1080 (or 1080 by 1920 ) pixels are collected
and the videos in the same group are more comparable. On average, each video has 115
frames used in this experiment. In the videos, the stop sign is on the right hand side, which
is the same as in the training videos. Fig. 7 shows two sample frames from the videos.
The average successful attack rate cannot be employed as a performance index in physical
attacks, because the videos with and without adversarial signboards are not collected from
the exact same viewpoint and at the same time and have different numbers of frames. Thus,
the average detection rates given in Table. 2 are used a performance index. All the detectors
except for YOLOv3 perform well on the original stop sign with detection rates of over 80%.
The adversarial signboards significantly reduce the detection rates of Faster R-CNN (ResNet-
101), YOLOv3, and Mask R-CNN. All their detection rates are below 32%. Seven out of the
nine detection rates from these detectors are even below 21%. The adversarial signboards
also decrease the detection rates of R-FCN substantially. Its average detection rate is 48%.
Comparing with the original detection rate, the adversarial signboards reduce the detection
rates by 48%. The adversarial signboards have less impact on Faster R-CNN(VGG-16), but
they still can reduce its average detection rate by 31%. As with the digital experiment, AS-W
performs the best.
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Figure 6: Detection results with and without adversarial signboards from Faster R-
CNN(ResNet-101)

Figure 7: Sample frames with and without adversarial signboard from the videos in the
same group.

5 Conclusion

Object detector is an essential component in many computer vision and AI systems. The
previous adversarial studies pointed out that by significantly changing pixels inside target
object, it is possible to fool object detector. In an unpublished work, the authors demon-
strated that it is possible to attack object detector digitally and physically through adversarial
border, which does not require changing pixels insider target object. However, it surrounds
target object tightly and makes it look weird. In this paper, a new adversarial example named
adversarial signboard is proposed. It is placed below target object with a distance and looks
more natural. Extensive experiments on 48 videos and five object detectors have been carried
out and demonstrated that adversarial signboard can perform digital and physical attacks in
white-box and black-box settings.
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