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Abstract

It has been widely proven that modelling long-range dependencies in fully convolutional
networks (FCNs) via global aggregation modules is critical for complex scene under-
standing tasks such as semantic segmentation and object detection. However, global
aggregation is often dominated by features of large patterns and tends to oversmooth
regions that contain small patterns (e.g., boundaries and small objects). To resolve this
problem, we propose to first use Global Aggregation and then Local Distribution, which
is called GALD, where long-range dependencies are more confidently used inside large
pattern regions and vice versa. The size of each pattern at each position is estimated in
the network as a per-channel mask map. GALD is end-to-end trainable and can be easily
plugged into existing FCNs with various global aggregation modules for a wide range of
vision tasks, and consistently improves the performance of state-of-the-art object detec-
tion and instance segmentation approaches. In particular, GALD used in semantic seg-
mentation achieves new state-of-the-art performance on Cityscapes test set with mloU
83.3%. Code is available at: https://github.com/1xtGH/GALD-Net

1 Introduction

Detection and segmentation tasks have made steady progress with more powerful represen-
tations learned from Fully Convolutional Networks (FCNs). Since stacking more convolu-
tional layers is not an effective way to achieve large receptive fields for long-range depen-
dency modeling [20, 35], several Global Aggregation (GA) modules have been proposed to
resolve this problem.

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Our proposed GALD framework for semantic segmentation task. The imbalanced
spread of information from small and large patterns in GA module is appropriately handled
through LD module.

In contrast to a standard convolutional layer which aggregates features in a small local
window, GA modules use long-range operators such as averaging pooling [3, 33] and spatial-
wise feature propagation over the whole image [11, 22, 28]. FCNs coupled with GA modules
have consistently improved basic FCNs especially for large objects.

Unfortunately, the advantage of GA modules for large objects is a disadvantage for small
patterns such as object boundaries and small objects, where features from GA modules tends
to oversmooth the predictions for these small patterns. Thus, a straightforwards idea is using
GA features conditionally on the pattern size of each position. Accordingly, we propose a
Local Distribution (LD) module after a GA module (together as GALD for short) to adap-
tively distribute GA features at each position as illustrated in Fig. 1. The adaptive process
is controlled by a set of mask maps, where each mask map is estimated from a feature map
that records activations of some latent pattern over the whole image.

LD is a simple and universal module, and can be combined with existing GA modules
to form different GALD modules for various detection and segmentation tasks. In our ex-
periment, LD is verified on GA modules such as PSP [33], ASPP [5], Non-Local [22] and
CGNL [29], and achieves consistent performance improvement. We also extensively verify
GALD on three vision benchmarks, including Cityscapes for semantic segmentation, Pas-
cal VOC 2007 for object detection, and MS COCO for both object detection and instance
segmentation, and all achieve notable improvement. In particular, for semantic segmenta-
tion evaluated on Cityscapes test set, GALD achieves mloU of 83.3% with single model and
ResNet101 as our backbone network, which surpasses all previously best published single-
model results using ResNet101 as backbone network.

2 Related Work

To keep spatial information required by detection and segmentation tasks, convolutional net-
works designed for image classification are modified to FCNs by removing global informa-
tion aggregation layers such as global average pooling layer and fully-connected layers [19].
To quickly increase receptive field size while keep the spatial resolution, filters in top convo-
lutional layers are enlarged by dilation [2, 5].

To further enlarge the receptive field to the whole image, several methods are proposed
recently. Global average pooled features are concatenated into existing feature maps in [18].
In PSPnet [33], average pooled features of multiple window sizes including global average
pooling are upsampled to the same size and concatenated together to enrich global informa-
tion. The DeepLab series of papers [2, 3, 5] propose atrous or dilated convolutions and atrous
spatial pyramid pooling (ASPP) to increase the effective receptive field. DenseASPP [25]
improves on [5] by densely connecting convolutional layers with different dilation rates to
further increase the receptive field of network. In addition to concatenating global informa-
tion into feature maps, multiplying global information into feature maps also shows better
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performance [23, 27, 29, 30].In particular, EncNet [30] and DFN [27] use attention along
the channel dimension of the convolutional feature map to account for global context such as
the co-occurrences of different classes in the scene. CBAM][23] explores channel and spatial
attention in cascade way to learn task specific representation.

Recently, advanced global information modeling approaches initiated from non-local
network [22] are showing promising results on scene understanding tasks. In contrast to
convolutional operator where information are aggregated locally defined by filters, non-local
operator aggregates information from the whole image based on an affinity matrix calcu-
lated among all positions around the image. Using non-local operator, impressive results are
achieved in OCNet [28],CoCurNet [31], DANet [11], A2Net [7], CCnet [12] and Compact
Generalized Non-Local Net [29]. OCNet [28] uses non-local bolocks to learn pixel-wise re-
lationship while CoCurNet [31] adds extra global average pooling path to learn whole scene
statistic. DANet [11] explores orthogonal relationships in both channel and spatial dimen-
sion using non-local operator. CCnet [12] models the long range dependencies by consid-
ering its surrounding pixels on the criss-cross path through a recurrent way to save both
computation and memory cost. Compact Generalized non-local Net [29] considers channel
information into affinity matrix. Another similar work to model the pixel-wised relationship
is PSANet [34]. It captures pixel-to-pixel relations using an attention module that takes the
relative location of each pixel into account.

Another way to get global representation is using graph convolutional networks, and do
reasoning in a non-euclidean space [8, 14] where messages are passing between each node
before projection back to each position. Glore [8] projects the feature map into interac-
tion space using learned projection matrix and does graph convolution on projected fully
connected graph. BeyondGrids [14] learns to cluster different graph nodes and does graph
convolution in parallel.

All previous work focus on global context modeling, our work also utilizes global infor-
mation modeling but takes a further step to better distribute the global information to each
position, and further improves GA modules on both detection and segmentation tasks.

3 Method

3.1 Model Overview

Our method, Global Aggregation (GA) then Local Distribution (LD), dubbed GALD, ex-
ploits the long-range contextual information of the feature F € R”*W*C from a fully-convolution
network (FCN), and then adaptively distributed the global context to each spatial and chan-
nel position of the output feature, Fgazp € R¥*W*C_ To be noted, one can choose any one

of the methods discussed in Section 2 as GA.

3.2 GALD

Global Aggregation. To calculate a feature vector for each position, GA module takes fea-
ture vectors of F in a large window even the whole feature map depending on different GA
designs. Take the Compact Generalized Non-Local (CGNL) [29] as an example, similar to
non-local [22], it aggregates contextual information from all spatial and channel positions
in the same group. Specifically, a global statistics is calculated for each group and multi-
plied back to the features in the same group, which forms Fg4. In our implementation, we
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Figure 2: Schematic illustration of GALD, which contains two main components: Global
Aggregation (GA) and Local Distribution (LD). GALD receives a feature map from the
backbone network and outputs a feature map with same size with global information appro-
priately assigned to each local position.

downsample F by a factor of 2 for saving memory and computation cost without observing
performance degradation, which also demonstrates the coarse property of global aggrega-
tion.

Since GA modules calculate global statistics of features in large windows, which are

easily biased towards features from large patterns as they contain more samples. Then the
global information distributed to each position is also biased towards large patterns, which
causes over smoothing results for small patterns. One can refer to Section 4.3.1 for more
detailed visualization results.
Local Distribution. LD is proposed to adaptively use Fg4 considering patterns on each
position. Without explicit supervision, the required patterns are latently described by C
channels in Fg4. For each pattern ¢ € {1,...,C}, a spatial operator is learned to recalculate
the spatial extent of the pattern in an image based on the activation map Fgal:,:,c] sliced
from Fg4. Intuitively, spatial operators for large patterns would shrink the spatial extent
more while shrink less even expand for small patterns.

The spatial operators for each pattern/channel is modeled as a set of depth-wise convo-
lutional layers with Fg4 as input, i.e.,

M = o (upsample(W,Fox)), )

where M € [0, 1]7*"*C contains the mask maps for each pattern and describes the recal-
culated spatial extents of each pattern, o(-) is the sigmoid function, Wy is the weights of
those depth-wised convolutional filters with d as the downsampling rate by stride convolu-
tion. The output mask M is sensitive to both spatial and channel and it is upsampled using
bilinear interpolation. With the mask maps M, Fg4 is refined into Fgarp by

Fearp =MOFgs +Fga, )

where © the element-wise multiplication, and elements in F;4 are weighted according the
estimated spatial extent of each pattern at each position. In summary, LD predicts local
weights M for each position of GA features and avoids issues of coarse feature representa-
tion.
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As a common practice [33], original feature F and global aggregated feature Fg4 are
concatenated together for final task-specific head, i.e.,

F, = concat(Fgarp,F)

3)
= concat(M©Fgs +Fga,F),

where M adds point-wise trade-off between global information Fg4 and local detailed infor-
mation F. Note that since the lack of details in GA, LD module only changes the proportion
and distribution of coarse features in GA and leads to a fine-grained feature representation
output F,.

3.3 Overall Architecture

Fig. 2 illustrates the overall architecture with GALD. For semantic segmentation, GALD is
added right after a FCN, features from Eq. 3 are used for final prediction. To further boost
the performance, Online Hard Example Mining (OHEM) loss [24] is used for training, where
only top-K ranked pixels according their losses are used during back-propagation.

For object detection and instance segmentation task, GALD is added at the end of stage4
of a ResNet backbone, FPN [16] is used to build a strong baseline with a feature pyramid
for multi-scale object detection. Fgazp sits on top of FPN and passes information from the
top-down pathway.

4 Experiment

In this section, we verify GALD on three scene understanding tasks including semantic
segmentation, object detection and instance segmentation.

4.1 Benchmarks

Cityscapes: Cityscapes [9] is a benchmark that densely annotated for 19 categories in urban
scenes, which contains 5000 fine annotated images in total and is divided into 2975, 500,
and 1525 images for training, validation and testing, respectively. In addition, 20,000 coarse
labeled images are also provided to enrich the training data. Images of this dataset are all
with the same high resolution, i.e., 1024 x 2048. Following the standard protocol [9], mean
Intersection over Union (mloU) of all categories on validation set and test set is used for
performance comparison.

MS COCO: MS COCO [15] is built for detecting and segmenting objects found in everyday
life in their natural environment. The dataset for detection consists of three sets for 80
common object categories, i.e., the training set has 118,287 images, validation set has 5,000
images and test-dev set has more than 20,000 images.

Pascal VOC: Pascal VOC [10] is a widely used public benchmark for semantic segmentation
and object detection covering 20 object categories including the background. We use VOC
2007 and VOC 2012 trainval set as training set and report results on VOC 2007 test set.

4.2 Implementation Details

Semantic Segmentation We employ Fully Convolutional Networks (FCNs) as baseline,
where ResNet pretrained on ImageNet is chosen as the backbone following the same setting
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Figure 3: Ablation studies on combinations of GA and LD. (a)-(d) shows the different GA
modules with LD. (e)-(g) shows the different arrangements of GA and LD. (h)-(f) represents
using GA and LD respectively.

as PSPNet [33], the proposed GALD is appended to the backbone with random initializa-
tion. For optimization, we also keep the same setting as PSPNet, where mini-batch SGD
with momentum 0.9 and initial learning rate 0.01 is used to train all models with 50K itera-
tions, using mini-batch size of 8 and crop size of 769. During training, “poly” learning rate
scheduling policy where power = 0.9 is used to adjust the learning rate. Synchronized batch
normalization [30] is used for better mean / variance estimation across GPUs.

Object Detection and Instance Segmentation For object detection and instance segmenta-
tion, mmdetection [1] is used as our baseline implementation for fair comparison. GALD is
evaluated for object detection on Pascal VOC based on Faster R-CNN, and for both object
detection and instance segmentation on MS COCO based on Mask R-CNN. FPN [16] is used
as default setting in all these experiments. For fair comparison, we report all the results that
we re-implemented in our framework.

4.3 Results on Cityscapes

Two groups of experiments are conducted on Cityscapes, the first group of experiments
verifies the effectiveness of our GALD framework by ablation studies. The second group of
experiments compares GALD to the state-of-the-art methods.

4.3.1 Ablation Studies

Comparison with baseline We explore our LD module with four different GA modules
as illustrated in Fig. 3 (a)-(d). Table 1(a) first reports the performances of adding four GA
modules to the baseline FCN, where all methods are using the same backbone ResNet50
for fair comparison. Obviously, all GA modules significantly improves the baseline FCN
on semantic segmentation task, where CGNL performs better than other three GA modules.
Table 1(b) reports the results by adding our proposed LD module. Directly using LD alone
improves the baseline FCN by 3.8%, which demonstrates that features from FCN have the
similar problem as features from GA modules. LD together with four different GA modules
consistently improves the corresponding GA module. Comparing with baseline, the combi-
nation of CGNL+LD achieves the best performance, and we mainly choose CGNL as our
GA module in following experiments.

Arrangements of LD and GA Considering LD module can also improve the baseline, we
further study different arrangements of LD and GA as illustrated in Fig. 3 (e)-(g). (f) and
(g) represent LDGA and Parallel in Table. 1(c) respectively. LDGA means first doing LD
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Method T 3 Method mloU(%) Aa Ab
o (()Baseline) Ll ; o) _“ FCN (Baseline) 737 - -
+LD 71.5 381 -
+ASPP 3] 772 35
e 1 > 1 +PSP + LD 78.9 521 | 271
+PSP [33] 762 251 +ASPP + LD 79.5 541 231
+CGNL [29] 782 451 +NL + LD 79.2 5371 L2t
(a) Ablation study on different GA modules +CGN,L +LD 79‘§ _ 597 141
using ResNet50 as backbone. (b) Ablation study on LD applied on different GA modules
using ResNet50 as backbone.
Method mloU(%) Aa Method mloU(%) Backbone Aa
— n FCN (Baseline) 73.7 ResNet50 -
FCN Baseline) 37 FCN (Baseline) 753 ResNet101 :
+Parallel 71.5 387 TCGNL 797 ResNetlol | 447
+é‘2€g ;gé 2'3 i +CGNL4LD 79.6 ResNet50 | 591
+ - - +PSP 78.6 ResNet101 491
(c) Ablation study on different arrangements ~ +PSP+LD 78.9 ResNet50 521
of GA and LD using ResNet50 as backbone. (d) Ablation study on different backbones.
Method mloU(%) Ab
FCN (Baseline) 73.7 -
FCN + CGNL 78.2
+CGNL+LD(depth-wise convolution) 79.6 147
+CGNL+LD(bilinear interpolation) 71.6 0.6
+CGNL+LD(average pooling) 76.5 1.71

(e) Ablation study on downsampling strategies for mask
estimation in LD using ResNet50 as backbone, where the
downsamping ratio is 8.

Table 1: Comparison results on Cityscapes validation set, where Aa denotes the performance
difference comparing with baseline, and Ab denotes performance difference between using
GALD module and the corresponding GA module. All methods are evaluated with single-
scale crop test.

then doing GA while Parallel concatenates the output of LD and GA. Table. 1(c) reports
the results of the three different arrangements, where all improve the baseline and GALD
achieves best result. Fig. 4 shows the mask maps learned in LDGA and GALD, where mask
maps learned by GALD are more focused on regions inside large objects then weight global
features more in these regions, while mask maps from LDGA have no obvious focus on large
objects since the LD module has not accessed to global feature yet.

Compared with stronger backbone To further prove the effectiveness of our method, we
compare GALD using ResNet50 as backbone with a stronger backbone ResNet101 in Ta-
ble 1(d). Our method achieves similar performance improvement comparing GA modules
with stronger backbone which further prove the effectiveness of LD module.

Comparison with different downsampling strategies We also explore three different down-
sampling strategies for LD, including average pooling, bilinear interpolation and depth-wise
stride convolution. Table 1(e) reports the comparison results, depth-wise stride convolution
achieves the best result, while average pooling and bilinear interpolation even slightly de-
grades the performance, which shows that the learnable filters for each channel is important
to refine the features from the GA module.

Visualization of GALD To further study the features at different stages, we add another two
segmentation heads on features outputted from FCN and GA respectively, the model is fine
tuned until converge to analyze segmentation ability of features from different stages. Fig-
ure 5 compares the segmentation results, segmentation based on GA resolves the ambiguities
in FCN features but also tends to over smoothing regions of small patterns which are shown


Citation
Citation
{{Chen}, {Papandreou}, {Schroff}, and {Adam}} 2017

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018

Citation
Citation
{{Zhao}, {Shi}, {Qi}, {Wang}, and {Jia}} 2017

Citation
Citation
{Yue, Sun, Yuan, Zhou, Ding, and Xu} 


8 LI ET AL.: GLOBAL AGGREGATION THEN LOCAL DISTRIBUTION

Input LDGA GALD Ground Truth

Figure 4: Comparison of mask maps learned in different arrangements of GA and LD. The
mask maps are calculated by the mean of M along channel dimension. Best view in color.

Method Backbone mloU(%)

SAC [32]1 ResNet101 78.1

AAF[13]F ResNet101 791 Method Backbone mloU(%)

BiSeNet [26]t ResNet101 78.9 PSP [33]% ResNet101 81.2

PSANet [34] ResNet101 80.1 Deeplabv3+ [6] 1 Xception 82.1

DFN [27]F ResNet101 79.3 DPC [4]1 Xception 82.6

DenseASPP [25]F DenseNet161 80.6

Glore [8]+ ResNe50 79.5 Auto-Deeplab [17]1 - 82.1

Glore [8]F ResNet101 80.9 GALDNet ResNet101 82.9

DAnet [11]F ResNet101 81.5 T

GALDNett RoNetS0 503 GALDNe1(+Me.1plllary)i ResNetl O 1 . 83.3

GALDNett ResNet101 S1.8 (b) Results on Cityscapes test server trained with both fine
(a) Results on Cityscapes test server trained and coarse data

with fine-data.

Table 2: State-of-the-art comparison experiments on Cityscapes test set. {means training
with only the train-fine dataset. {means training with both the train-fine and coarse data

in red boxes. Segmentation of GALD keeps the global structure of GA while refines back
the details.

4.3.2 Comparison with state-of-the-art

We further compare our results with other state-of-the-art methods in this section. We choose
dilated ResNet50 and ResNetl101 as backbone models. The results are summarized in Ta-
ble 2. For fair comparison, we first compare methods trained with only fine annotation data
in Table 2(a), and then compare the results with other methods using extra training data in
Table 2(b). Following [33], multi-scale crop test is used for final test submission. As illus-
trated, our method surpasses all previous methods. In particular, our model based on a weak
backbone ResNet50 can still achieve comparable performance, which is higher than most
methods with stronger backbone. By using extra coarse annotation data for training, our
method achieves 82.9% mloU, which also surpasses the state-of-the-art methods. By further
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(a) Input (b) w/o GALD (c) +GA (d) + GALD (e) Ground Truth

Figure 5: Visualization of different parts output results in one model.(a), input images;
(b),results after FCN’s outputs; (c), results after GA module’s outputs; (d), results after
GALD module’ss outputs; (e), ground truth. Yellow boxes highlight regions that GA can
handle global semantic consistency, while red boxes highlight regions that LD can recover
more detailed information. Best view in color.

adding Mapillary [21] as training data, the proposed method achieves 83.3% mloU based
on ResNet101. To the best of our knowledge, this is the first single model using ResNet101
as backbone that surpasses 83% mloU on Cityscapes test server. More detailed per-class
results, visualization results and training settings can be referred in the supplementary mate-
rial.

4.4 Results on Pascal VOC and COCO dataset

Pascal VOC: We perform experiments on the PASCAL VOC 2007 data set to evaluate the
effect of GALD for object detection. We train all the models on the union set of VOC 2007
trainval and VOC 2012 trainval (07+12) for 14 epochs with weight decay of 0.0001 and
momentum of 0.9. For comparison, experiments of non-local block [22] are also summarized
and are denoted as NL. As results listed in Table 3(a), GALD consistently improves detection
accuracy over the strong baseline Faster-RCNN using both ResNet50 and ResNet101 as
backbone, which demonstrates the effectiveness of GALD for object detection.

COCO: To further verify the generality of GALD, we conduct the experiments on instance
segmentation task on MS COCO based on the state-of-the-art method Mask R-CNN. Ta-
ble 3(b) summarizes the AP of bounding box (AP-box) and AP of mask (AP-mask) evaluated
on COCO minival. GALD improves the baseline by about 1% regardless the used backbone.
Figure 6(b) compares the object detection and instance segmentation results of our method
with baseline. With GALD, Mask R-CNN can find objects that are missed in baseline (e.g.,
the “light” in the third column), resolve ambiguity in region classification (e.g., the “bed” in
the first column) and help to better estimate the spatial contents for objects (e.g., “bear” in
last column).
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Backbone Detector mAP@ 5 Backbone Detector AP-box AP-mask
ResNet50 Mask-RCNN 382 3438
Ezzgzgg FaStirﬁLC NN . 38(()667 " ResNet50 +NL 390081 | 353087
ReoNut20 ACONL 811051 ResNet50 +CGNL 389071 | 354060
es e 105D ResNet50 +GALD 392101 | 356(.11)
ResNet50 + GALD 81.5(09 1)
ResNetl0l | Mask-RCNN 302 363
ResNet101 - Faster-RCNN 80.7 ResNet101 +NL 409071 | 3720091
ResNet101 +NL 823(1.61) ResNet101 +GALD 411091 | 378051
ResNet101 +GALD 830237 (b) Results of object detection and instance segmentation

(a) Object detection results on VOC 2007 test on COCO dataset. Our method can improve

set measured by mAP(%), Faster;RCNN with  Mask-RCNN baseline by around 1% across different
FPN serves as the baseline. backbones.

Table 3: Results on Pascal VOC dataset (a) and MS COCO dataset (b).

Mask-RCNN

Mask-RCNN + GALD

Figure 6: Comparison of object detection and instance segmentation results on MS COCO.

5 Conclusion

In this paper, we propose GALD to adaptively distribute global information to each position
for scene understanding tasks. In contrast to existing methods that assign global information
uniformly to each position and cause the problem of blurring, GALD learns a set of mask
maps to distribute global information adaptively according pattern distributions over the im-
age. GALD benefits from both the GA module for ambiguity resolving and LD module for
detail refinement. Extensive experiments verify the universality of GALD in improving the
performance of semantic segmentation, object detection and instance segmentation. In the
future, we will study the effectiveness of GALD for more vision tasks where both global and
local information are important such as depth estimation.
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