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Abstract

Learning discriminative spatio-temporal representation is the key for solving video
re-identification (re-id) challenges. Most existing methods focus on learning appearance
features and/or selecting image frames, but ignore optimising the compatibility and in-
teraction of appearance and motion attentive information. To address this limitation, we
propose a novel model to learning Spatio-Temporal Associative Representation (STAR).
We design local frame-level spatio-temporal association to learn discriminative atten-
tive appearance and short-term motion features, and global video-level spatio-temporal
association to form compact and discriminative holistic video representation. We fur-
ther introduce a pyramid ranking regulariser for facilitating end-to-end model optimisa-
tion. Extensive experiments demonstrate the superiority of STAR against state-of-the-art
methods on four video re-id benchmarks, including MARS, DukeMTMC-VideoReID,
iLIDS-VID and PRID-2011.

1 Introduction
Person re-identification (re-id), which aims to match people in images or videos across non-
overlapping camera views, is a key capability for many real-world applications, such as
intelligent surveillance and human computer interaction [1, 15, 36]. In general, re-id studies
can be categorised as either image-based or video-based approaches [19, 42]. Most existing
re-id studies are image-based methods [7, 16, 43], which focus on learning effective visual
appearance features using a still image. In comparison, video re-id is closer to realistic ap-
plications, because first-hand data captured from surveillance cameras are usually videos,
and more importantly, video re-id is capable of exploring richer spatial and temporal infor-
mation [1, 6, 19, 45] which alleviates the misalignment and occlusion problems of image
re-id in complex scenes. Therefore, learning discriminative spatio-temporal representations
for video re-id is an important task for both research and applications.

An intuitive solution for video re-id is by temporal pooling of image-level CNN appear-
ance features [29, 32]. However, this strategy tends to be suboptimal since the quality of an
individual image in each video sequence cannot be well guaranteed [15, 20], e.g. corrupted
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Figure 1: Diagrams of spatio-temporal associative representation (STAR) learning.

images by occlusion and/or motion blur and inferior capability for modelling temporal dy-
namics. To make full use of spatio-temporal information, an improved strategy is to stack a
Recurrent Neural Network (RNN) on top of image features as a long-term temporal feature
extractor [22, 42]. However, RNN cannot incorporate spatial information during tempo-
ral learning and its long-term aggregated output is prone to being contaminated by noise
especially in later steps. Inspired by attention mechanism [12, 33, 34, 37], some studies
[1, 6, 15, 42, 46, 49] exploit spatio-temporal saliency to select discriminative spatial and
temporal information in person videos. But such methods do not exploit mutual promotion
of appearance and motion information along with attention learning therefore leading to less
discriminative spatio-temporal feature representations.

In this work, we investigate the potential of jointly learning both spatio-temporal repre-
sentations and attention in synergistic interaction for video re-id. We achieve this by learning
a novel Spatio-Temporal Associative Representation (STAR) (Fig. 1(a)). STAR is compos-
ited of two components: (1) A Local frame-level Spatio-Temporal Association (LSTA) mod-
ule (Fig. 1(b)) to learn discriminative per-frame appearance and short-term inter-frame mo-
tion information (optic flow). (2) A Global video-level Spatio-Temporal Association (GSTA)
module (Fig. 1(c)) to learn compatible spatio-temporal information reinforced with long-
term temporal attention. To enhance the interaction between spatial and temporal repre-
sentation, we adopt Convolutional LSTM (ConvLSTM) [28] in GSTA. This however may
introduces a learning difficulty when jointly optimising CNN of LSTA and ConvLSTM of
GSTA. To address this issue, we further introduce a pyramid ranking regulariser to optimise
the intermediate representations with deeper supervision and train the model with multiple
losses in an end-to-end fashion. The contributions of this work are:

• We propose a novel end-to-end video re-id model fully exploiting appearance and
motion attentive cues for learning discriminative spatio-temporal associative repre-
sentations.

• We design a local frame-level spatio-temporal association module to learn attentive ap-
pearance and short-term motion information, and a global video-level spatio-temporal

Citation
Citation
{McLaughlin, Martinezprotect unhbox voidb@x penalty @M  {}del Rincon, and Miller} 2016

Citation
Citation
{Xu, Cheng, Gu, Yang, Chang, and Zhou} 2017

Citation
Citation
{Hu, Shen, and Sun} 2018

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Wang, Jiang, Qian, Yang, Li, Zhang, Wang, and Tang} 2017

Citation
Citation
{Wang, Girshick, Gupta, and He} 2018{}

Citation
Citation
{Chen, Li, Xiao, Yi, and Wang} 2018

Citation
Citation
{Fu, Wang, Wei, and Huang} 2019{}

Citation
Citation
{Li, Bak, Carr, and Wang} 2018{}

Citation
Citation
{Xu, Cheng, Gu, Yang, Chang, and Zhou} 2017

Citation
Citation
{Zhang, Sun, Li, Ge, Lin, Luo, and Wang} 2019

Citation
Citation
{Zhou, Huang, Wang, Wang, and Tan} 2017

Citation
Citation
{Shi, Chen, Wang, Yeung, Wong, and Woo} 2015



G. WU, X. ZHU, S. GONG: SPATIO-TEMPORAL ASSOCIATIVE REPRESENTATION 3

association module to produce compact attentive video representations.

• We introduce a pyramid ranking regulariser for facilitating end-to-end optimisation of
local and global spatio-temporal attentive representations via reinforcing intermediate
features.

Extensive experiments show that the proposed STAR method outperforms state-of-the-
art video re-id methods on four video re-id benchmarks, including MARS [47], DukeMTMC-
VideoReID [27, 39], iLIDS-VID [36] and PRID-2011 [10].

2 Related Work

Image person re-id has been extensively investigated in the literature. Most existing image
re-id methods aim to learn discriminative appearance features [7, 32, 40] and/or distance
metric [9, 18, 24]. For example, Fu et al. [7] design a deep CNN model to learn discrimi-
native re-id features from horizontal pyramids. Suh et al. [32] propose to learn part-aligned
bilinear representations using a sophisticated appearance and part models. In [24], Paisitkri-
angkrai et al. introduce a learning to rank mechanism that directly optimises the evaluation
measure. Although a great progress has been made in image re-id, existing image-based
methods cannot achieve promising performance in videos because they only consider learn-
ing spatial appearance information without considering temporal dynamics.
Video person re-id attracts more attentions recently [15, 22, 23, 42, 45] due to being closer
to realistic scenarios and the potential advantage of leveraging spatial and temporal informa-
tion to resolve visual ambiguities including occlusion and background noise. In [17], Li et
al. use hand-crafted local features to model motion variations and combine them with deep
features for re-id. Wang et al. [36] propose a clip ranking approach to select discriminative
video sequences for matching. Chung et al. [3] propose a two-stream siamese network to
jointly optimise deep features and distance metric for video re-id. In our work, we learn
spatio-temporal associative representations with attentive optimisation for video re-id.
Spatio-temporal cues collaborative learning for video re-id is one of the most effective
approaches in addressing the intrinsic challenges such as occlusion and viewpoint variation.
Mclaughlin et al. [22] propose to stack RGB frames with optical flow as inputs to a RNN
model and jointly optimise the model in a siamese architecture. Liu et al. [19] design a
refined recurrent unit for modelling temporal motion information and restoring consecutive
parts from reliable historic cues to extract video-level representations. Li et al. [14] incorpo-
rate multi-scale 3D convolution layers into 2D CNN for spatio-temporal learning and use a
two-stream network to combine spatial and temporal features. In contrast to these methods,
the proposed STAR learn appearance and short-term motion information by local frame-level
association and optimise video-level representations by global spatio-temporal association.
Attentive learning for re-id has shown its efficacy and achieved promising results in recent
years [33, 37, 41]. Li et al. [16] propose a harmonious attention network to extract spatial
attentive representations from both holistic and local regions for image re-id. Xu et al. [42]
use spatial pyramid pooling and temporal selection to learn attentive features for video re-id.
In [15], Li et al. present a two-stage spatio-temporal network for video re-id. They separately
train a CNN model in some image re-id datasets as the deep appearance feature extractor and
utilise multiple spatial and temporal models to optimise spatio-temporal gated features. In
our work, we propose an end-to-end joint learning model to fully mining attentive appearance
and motion cues in a synergistic interaction for more effective video re-id.
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Figure 2: Structure of the local frame-level spatio-temporal association block.

3 Methodology

3.1 Framework Overview
We formulate a model to learn Spatio-Temporal Associative Representation (STAR) for
video re-id. The overall structure of STAR is depicted in Fig. 1(a). We use ResNet-50 [8]
as the backbone CNN. STAR contains two components: Local frame-level Spatio-Temporal
Association (LSTA) (Fig. 1(b)) and Global video-level Spatio-Temporal Association (GSTA)
(Fig. 1(c)). Given a video with L frames, we use both RGB frames {Ii}L

i=1 and optical flow
frames {Oi}L

i=1 as the input to LSTA to extract frame-level attentive deep features { fi}L
i=1:

{ fi}L
i=1 = Fl({Ii}L

i=1,{Oi}L
i=1) (1)

where Fl(·) denotes feature extraction by LSTA. This exploits both appearance and short-
term motion cues (inter-frame). In contrast to two-stream action recognition [30] or action
primitives dynamic programming [26], video re-id relies more on fine-grained appearance
features, whilst optical flow provides motion cues for boundary regions which are variant to
appearance variation [1, 22, 46]. Therefore, we separately process appearance information
and short-term motion information [5] (each by a convolutional layer with kernel size 7×7),
and then aggregate them as Ui for the following layers:

Ui = P(max(0,W1Ii))+P(max(0,W2Oi)) (2)

where P(·) is a 3× 3 max pooling layer as that in ResNet-50, W1 and W2 are to-be-learned
weights.

In addition, GSTA (Fig. 1(c)) aggregates attentively long-term spatio-temporal informa-
tion at the video level and outputs the final STAR feature V:

V = Fg({ fi}L
i=1) (3)

where Fg(·) denotes feature extraction in GSTA module.
Assume that there are K = {1, ...,k} video sequences with N = {1, ...,n} identities, we

extract STAR features {V}k
i=1 for each video and use a generic distance metric (e.g. L2

distance) to measure their pairwise similarity for the final video re-id matching.

3.2 Local Frame-Level Spatio-Temporal Association Module
In LSTA module, we incorporate LSTA blocks (see Fig. 2) into the re-id model for learning
local frame-level and inter-frame attentive representations, which is inspired by CBAM [38].
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But unlike CBAM, we consider a block-wise design other than layer-wise for less redun-
dancy. With a feature map M from a previous residual convolutional block, we separately
use average and max pooling for obtaining finer attentive feature maps Mc

a and Mc
m. Then,

we define channel attention feature map Mc as:

Mc = M⊗σ(W4(max(0,W3Mc
a +b3)+max(0,W3Mc

m +b3))+b4) (4)

where ⊗ denotes Hadamard product, σ indicates Sigmoid function, W3 ∈ RC
r ×C (r is the

reduction ratio), W4 ∈ RC×C
r , b3 ∈ RC

r and b4 ∈ RC (in this paper, unless otherwise stated,
{Wi}9

i=1 and {bi}8
i=3 are to-be-learned parameters). Here, the second shared convolutional

layer is to facilitate the combination of two channel attentive representations. Next, we use
spatial pooling to generate Ms

a and Ms
m, and concatenate them together as Ms. Instead of

using a large 7×7 kernel size to capture spatial context as CBAM, we leverage multi-scale
dilated convolution layers [2] with 3×3 kernel size and dilated ratio {1,2,3} for capturing
wider-range spatial information at higher cost-effectiveness, and employ a bottleneck layer
to facilitate aggregation:

Mg = Mc⊗σ(W6(Fc({max(0,W5_iMs +b5_i)}3
i=1)+b6) (5)

where Mg is the output attentive feature map and Fc(·) denotes concatenation. We extract
{ fi}L

i=1 from the convolutional layer before the last pooling layer in ResNet-50.

3.3 Global Video-Level Spatio-Temporal Association Module
Traditional LSTM uses fully connected layers per unit, so spatial information is largely lost
when aggregating video-level representations. To fully exploit global spatio-temporal cues,
we adopt ConvLSTM [28] which allows to model additional associative spatio-temporal cues
because of retaining convolutional structures in each unit (Fig. 1(c)):

{hi}L
i=1 =

1
LHLW

LH

∑
k=1

LW

∑
j=1
Fclstm({ fi}L

i=1) (6)

where Fclstm denotes one-layer ConvLSTM, {hi}L
i=1 are hidden states, LH and LW are height

and width of feature maps. Then, we use two convolutional layers with 1× 1 kernel to
generate 1-dimension scalar values, and use a softmax function φ to generate a temporal
attentive correlation matrix K as:

K = φ(W8max(0,(W7{hi}L
i=1 +b7)+b8)) (7)

We use a bottleneck layer and extract STAR representations V in a residual manner to facil-
itate a holistic gradient optimisation:

V =W9K{hi}L
i=1 +

1
LHLW L

L

∑
i=1

LH

∑
k=1

LW

∑
j=1

fi (8)

3.4 Pyramid Ranking Regulariser
Jointly training a deep attentive CNN with ConvLSTM is non-trivial, considering that video-
level output from GSTA may lose some fine-grained cues from LSTA. To overcome this
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problem, we reinforce the fine-grained spatial attentive cues by designing a pyramid rank-
ing regulariser Rpr. Different from [7, 19, 43], Rpr is an intermediate regulariser, di-
rectly computed using a multi-layer spatial pyramid without fully connected layers or extra
model parameters. This also favourably avoids the need for more complex multi-stage train-
ing [15]. In particular, we explore a Z-layer spatial pyramid by dividing the feature map into
G = {20, ...,2Z−2,2Z−1} stripes. Formally, we computeRpr as:

Rpr =
1

BZ

B

∑
j=1

Z

∑
i=1
Rpr,Gi, j (9)

Rpr,Gi =
1
Gi

Gi

∑
z=1

max(0,α1 +
1
L
D(

L

∑
i=1

(Fta( fi,z)+Ftm( fi,z)),
L

∑
i=1

(Fta( f p
i,z)+Ftm( f p

i,z)))

− 1
L
D(

L

∑
i=1

(Fta( fi,z)+Ftm( fi,z)),
L

∑
i=1

(Fta( f n
i,z)+Ftm( f n

i,z))))

(10)

where { fi,z}L
i=1, { f p

i,z}L
i=1 and { f n

i,z}L
i=1 are the divided z-th horizontal feature map of { fi}L

i=1
and its hard positive and negative counterparts in a mini-batch (transformed to vectors using
average pooling), B is the mini-batch size, α1 denotes a margin, D(·) is Euclidean distance,
Fta(·) and Ftm(·) denotes temporal average and max pooling.

3.5 Optimisation Objective
To jointly optimise the proposed STAR, we consider concurrent multi-loss objective. We use
softmax cross-entropy loss Lid to optimise person identity classification as:

Lid =− 1
B

B

∑
i=1

yi log
exp(WcVi)

∑
N
j=1 exp(WnV j)

(11)

where yi is the ground truth distribution, Wc and Wn are to-be-learned weights. We further
employ triplet ranking loss [9] to optimise the video-level discrimination as:

Ltrip =
1
B

B

∑
i=1

max(0,α2 +D(Vi,V p
i )−D(Vi,Vn

i )) (12)

where α2 denotes a margin. The overall optimisation objective is then formulated as:

Lloss = Lid +Ltrip +λRpr (13)

where λ is a weight factor. Here, Lid and Ltrip are the main training objective, while Rpr is
an auxiliary term to further facilitate the model optimisation (see Section 4.4 for evaluation).

4 Experiments

4.1 Datasets and Evaluation Protocol
Datasets: To evaluate the proposed STAR, we used four challenging video re-id bench-
marks, including MARS [47], DukeMTMC-VideoReID [27, 39], PRID-2011 [10] and iLIDS-
VID [36]. Example videos from the four benchmarks are shown in Fig. 3. MARS is a
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(a) MARS (b) DukeMTMC (c) iLIDS-VID (d) PRID-2011

Figure 3: Example person video pairs from four video re-id benchmarks.

Methods Source
iLIDS-VID PRID-2011

R1 R5 R10 R20 R1 R5 R10 R20

RCN [22] CVPR16 58.0 84.0 91.0 96.0 70.0 90.0 95.0 97.0
TDL [44] CVPR16 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6
MarsCNN [47] ECCV16 53.0 81.4 - 95.1 77.3 93.5 - 99.3
TSSCN [3] ICCV17 60.0 86.0 93.0 97.0 78.0 94.0 97.0 99.0
ASTPN [42] ICCV17 62.0 86.0 94.0 98.0 77.0 95.0 99.0 99.0
STRN [49] CVPR17 55.2 86.5 - 97.0 79.4 94.4 - 99.3
QAN [20] CVPR17 68.0 86.8 95.4 97.4 90.3 98.2 99.3 100
RQEN [31] AAAI18 76.1 92.9 97.5 99.3 92.4 98.8 99.6 100
EIBC [48] CVPR18 44.7 57.3 63.3 68.7 70.9 78.7 82.7 87.3
SDM [45] CVPR18 60.2 84.7 91.7 97.4 85.2 97.1 98.9 99.6
STAN [15] CVPR18 80.2 - - - 93.2 - - -
Snippet [1] CVPR18 85.4 96.7 98.8 99.5 93.0 99.3 100 100
STMP [19] AAAI19 84.3 96.8 - 99.5 92.7 98.8 - 99.8
ResNet-50 Backbone 69.0 89.1 94.1 97.3 86.3 97.8 99.3 99.8
STAR Ours 85.9 97.1 98.9 99.7 93.4 98.3 100 100

Table 1: Comparisons with state-of-the-art video re-id methods on iLIDS-VID and PRID-
2011. The best results are shown in red bold, while second-best in blue bold.

large-scale video re-id benchmark with 1,261 person identities and 20,478 tracklets captured
from 6 outdoor camera views. We follow the original evaluation splits [47], i.e. using 625
identities with 8,298 tracklets for training, and the remaining 636 identities with 12,180
tracklets for testing. DukeMTMC-VideoReID is a recently released large-scale video re-
id benchmark. There are 1,812 person identities with 4,832 tracklets in this benchmark.
Following [39], we selected 702/702 identities for training/testing, with 402 identities as
distractors. There are 2,196 tracklets for training and 2,636 tracklets for testing and distrac-
tors. iLIDS-VID consists of 300 person identities with 600 tracklets captured by two camera
views. We used all identities and tested 10 standard random splits of 50% training and 50%
testing [15, 36, 49]. PRID-2011 contains 934 identities with 1,134 tracklets captured by
two camera views, but only the first 200 identities appear in both views. We followed the
previous studies [19, 20, 36, 49] by randomly splitting the dataset into 10 splits for training
and testing.
Evaluation Metrics: For facilitating comparison, we used Cumulative Matching Character-
istic (CMC) and mean Average Precision (mAP) as the performance evaluation metrics.

4.2 Implementation Details
We employed ResNet-50 [8] as the backbone CNN model, which was pretrained on Ima-
geNet [4]. We resized both RGB and optical flow frames (computed using TV-L1 [25]) to
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Methods Source
MARS DukeMTMC-VideoReID

mAP R1 R5 R10 R20 mAP R1 R5 R10 R20

MarsCNN [47] ECCV16 49.3 68.3 82.6 - 89.4 - - - - -
GOG† [21] CVPR16 24.9 42.0 - - - 52.4 58.8 - - -
ASTPN [42] ICCV17 - 44.0 70.0 74.0 81.0 - - - - -
STRN [49] CVPR17 50.7 70.6 90.0 - 97.6 - - - - -
RQEN [31] AAAI18 51.7 73.7 84.9 - 91.6 - - - - -
DAL? [35] arXiv18 65.0 75.4 - - - 83.5 87.0 - - -
SDM [45] CVPR18 - 71.2 85.7 91.8 94.3 - - - - -
EUG? [39] CVPR18 67.4 80.8 92.1 - 96.1 78.3 83.6 94.6 - 97.6
DuATM [29] CVPR18 67.7 81.2 92.5 - - - - - - -
STAN [15] CVPR18 65.8 82.3 - - - - - - - -
Snippet [1] CVPR18 76.1 86.3 94.7 - 98.2 - - - - -
PABR [32] ECCV18 72.2 83.0 92.8 95.0 96.8 - - - - -
STMP [19] AAAI19 72.7 84.4 93.2 - 96.3 - - - - -
ResNet-50 Backbone 62.5 76.7 90.0 92.7 95.8 79.7 82.2 95.2 97.2 98.6
STAR Ours 76.0 85.4 95.4 96.2 97.3 93.4 94.0 99.0 99.3 99.7

Table 2: Comparisons with state-of-the-art video re-id methods on MARS and DukeMTMC-
VideoReID. ?Supervised EUG and DAL. †Results reported in [35].

Component
iLIDS PRID MARS Duke

R1 R5 R1 R5 R1 R5 R1 R5

Baseline-{ResNet50-ID} 69.0 89.1 86.3 97.8 76.7 90.0 82.2 95.2
Baseline-{CBAM-Multi-loss} 74.7 92.8 83.9 95.6 83.7 93.9 91.7 98.6
LSTA 84.3 96.6 91.2 98.2 84.7 93.9 93.4 98.9
LSTA + GSTA 85.1 96.4 92.2 99.1 84.9 95.0 93.7 99.0
LSTA + GSTA + Rpr 85.9 97.1 93.4 98.3 85.4 95.4 94.0 99.0

Table 3: Evaluating component effectiveness.

256× 128. Random horizontal flip and translation were used for training data augmenta-
tion. We used Adam optimiser [13] with initial learning rate 5e-4 and additional coefficients
{β1 = 0.9,β2 = 0.999}. The learning rate decays by 10 times after 150 training epochs. We
empirically set r = 16 in Eq. (4) and set λ = 0.1 in Eq. (13). In Eq. (10) and Eq. (12), α1
and α2 were both set to 0.4. We set spatial pyramid layers Z = 3, so G = {1,2,4}. The
dimension of STAR feature was set to 2048. We set B = 16 and L = 10 (random sampling)
for training, and in testing, all frames in each video were used to compute STAR features for
matching.

4.3 Comparisons with the State-of-the-Art
Table 1 and Table 2 compare the performance of the proposed STAR with state-of-the-art
methods on the four benchmarks. Here, backbone model is ResNet-50 which uses RGB
and flow streams as the input and use identity loss as training objective. Overall, STAR
achieves the best performance suggesting the efficacy of the proposed spatial-temporal fea-
ture and attentive joint learning method. On iLIDS-VID (see Table 1), STAR performs best
consistently and outperforms the state-of-the-art by 0.5%, 0.3%, 0.1% and 0.2% on rank-1,
rank-5, rank-10 and rank-20 accuracy, respectively. On PRID-2011 (see Table 1), STAR
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Figure 4: Evaluating component variants.
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ranks the first on rank-1 (93.4%), rank-10 (100%) and rank-20 accuracy (100%). On MARS
(see Table 2), STAR achieves second-best performance in terms of mAP (76.0%) and rank-1
accuracy (85.4%), and improves state-of-the-arts by 0.7% and 1.2% on rank-5 and rank-
10 accuracy, respectively. On DukeMTMC-VideoReID (see Table 2), STAR significantly
outperforms the state-of-the-art methods (achieves 93.4% and 94.0% in terms of mAP and
rank-1 accuracy, respectively).

4.4 Ablation Studies

To further validate the proposed STAR, we conduct detailed ablation analysis as below.
Component Effectiveness Evaluation. In Table 3, the first two rows are baseline models:
ResNet-50 with identity loss and ResNet-50 with CBAM [38] and multi-loss. Overall, LSTA,
LSTA+GSTA and LSTA+GSTA+Rpr perform better than both baselines. As shown in the
last three rows, GSTA can further improve the performance beyond LSTA, while LSTA with
GSTA and Rpr (i.e. the full STAR model) achieves the best performance. These verify the
positive influence of all three STAR components.
Component Variants Comparison. To further verify the proposed method, we investi-
gate additional component design variants. For fair and focused comparison, we use LSTA
w/o attention as the backbone. As shown in Fig. 4(a) and 4(c), we compare the proposed
LSTA with CBAM [38], SE [12], holistic attention (two linear transforms and SoftMax
as [15]), and no attention. The results show that LSTA performs better than its counterparts.
As shown in Fig. 4(b) and 4(d), we employ various global aggregation modules, including
GSTA, LSTM [11], Conv3D-STIM [19], holistic temporal attention (one linear transform
and SoftMax as [15]), and pooling. Overall, GSTA achieves better performance compared
with other variants in the proposed architecture.
Loss Impact Evaluation. As shown in Fig. 5, STAR trained with single Lid performs worst,
while STAR with Lid +Ltrip performs significantly better. Besides,Rpr can further optimise
the STAR model to achieve the best performance.
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LSTA Attention Impact Evaluation. As shown in Fig. 6, to evaluate the improvement of
CBAM in LSTA, we compare LSTA with CBAM, LSTA with 7×7 kernel as CBAM, LSTA
with 3×3 kernel instead of dilated convolution, and LSTA w/o spatial attentive convolution.
Overall, the proposed LSTA performs the best.
Temporal Cues Impact Evaluation. In Fig. 7, RGB, FLOW and GSTA denote appearance
cues, short-term temporal cues and long-term temporal cues, respectively. For better evalua-
tion, Rpr is not used here. It can be seen that short-term cues and long-term temporal cues
are beneficial to extract finer features for video re-id and bring better performance.

5 Conclusions
In this work, we propose to learn spatio-temporal associative representations along with at-
tention in synergistic compatibility for video person re-identification. Specifically, we design
a novel end-to-end architecture to simultaneously learn appearance and short-term motion at-
tentive cues by local spatio-temporal association and learn the long-term coherent dynamics
of final video representations by global video-level spatio-temporal association. We fur-
ther introduce a pyramid ranking regulariser for facilitating local and global spatio-temporal
joint learning. Extensive experiments on four video re-id benchmarks show the superiority
of the proposed model against state-of-the-art methods. We further conduct detailed model
component analysis for verifying our model formulation considerations.
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