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Abstract

Background: Atomic Solvation Parameters (ASP) model has been proven to be a very successful method of
calculating the binding free energy of protein complexes. This suggests that incorporating it into docking
algorithms should improve the accuracy of prediction. In this paper we propose an FFT-based algorithm to
calculate ASP scores of protein complexes and develop an ASP-based protein-protein docking method (ASPDock).

Results: The ASPDock is first tested on the 21 complexes whose binding free energies have been determined
experimentally. The results show that the calculated ASP scores have stronger correlation (r ≈ 0.69) with the
binding free energies than the pure shape complementarity scores (r ≈ 0.48). The ASPDock is further tested on a
large dataset, the benchmark 3.0, which contain 124 complexes and also shows better performance than pure
shape complementarity method in docking prediction. Comparisons with other state-of-the-art docking algorithms
showed that ASP score indeed gives higher success rate than the pure shape complementarity score of FTDock
but lower success rate than Zdock3.0. We also developed a softly restricting method to add the information of
predicted binding sites into our docking algorithm. The ASP-based docking method performed well in CAPRI
rounds 18 and 19.

Conclusions: ASP may be more accurate and physical than the pure shape complementarity in describing the
feature of protein docking.

Background
Most proteins interact with other proteins to perform
their biological functions in the form of protein com-
plexes. During the past several decades, many docking
programs have been developed to predict protein-pro-
tein complexes. Among them, the docking algorithms
based on Fast Fourier Transform (FFT) are widely used
and have made great success [1] because they can search
6D space in a very fast way. These programs include
MolFit [2], 3D-Dock [3-5], GRAMM [6], ZDock [7,8],
DOT [9], BiGGER [10] and HEX [11]. The base of the
original FFT-based docking method is shape comple-
mentarity between receptor and ligand. It is usually
used as the first step of docking procedure and then
other methods are used to refine or re-rank the docked
structures [3,12,13]. Besides the FFT-based algorithms,
there are other well-known docking algorithms that also

consider flexibility of proteins during docking proce-
dure, like RosettaDock [14], ICM-DISC [15], AutoDock
[16], or HADDOCK [17]. Since the original FFT dock-
ing algorithm only used shape complementarity feature
to solve bound docking problem [1], different scoring
functions based on other physical features have been
integrated into the original FFT-based docking method
to improve the prediction ability. For examples, the 3D-
DOCK [18] added electrostatic energy into the FFT-
based docking method. ZDOCK [7] used atomic contact
energy to calculate solvation energy. The hydrophobic
docking method [19] combined hydrophobic comple-
mentarity with shape complementarity [20]. GRAMM
used a long-distance potential [21] to calculate atom-
atom van der Waals energy which has proved effective
in detecting binding funnels.
Reliable scoring function is crucial to enhance success

rate of prediction of protein-protein docking. Cheng and
co-workers [22] analyzed the performance of different
energy components in protein-protein interactions. They
showed that the sum of solvation and electrostatic
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energies contributes more than 70% to the total binding
free energy, while van der Waals energy only contributes
less than 10%. Fernandez-Recio’s work also showed that
rather than electrostatic, van der Waals and hydrogen-
bond energies, solvation energy [23] is the most impor-
tant component in the total binding energy. Zhou et al.
[24] found that the correlation coefficient between sol-
vation energy and experimental binding energy is 0.83
with a root mean square deviation (RMSD) of 2.3 kcal/
mol, and the most important is that the slope is close to
1 ( slope = 0.93 ).
ASP (Atomic solvation parameters) model is one of

the best methods to calculate solvation energy. Due to
its fast and efficient feature, ASP model [25-27] has
made great success in free energy calculation [28,29],
structure prediction [30,31], and scoring functions
[22,32]. This suggests that if we integrate ASP into the
sampling stage of docking algorithms, it may enhance
the success rates of docking. Up to now, several groups
have constructed different ASP sets [25-27]. Among
them, Zhou’s set [24] is the most suitable one for calcu-
lating the solvation energy of protein complexes. This
ASP set was extracted from 1023 mutation experiments
and yielded an accurate prediction of free binding
energy of complexes. In this paper, the ASP set from
Zhou’s work is used to develop an ASP-based protein-
protein docking algorithm (ASPDock).
During a prediction procedure, correct auxiliary infor-

mation (e.g., predicted binding sites) usually can
increase the success rate significantly [33-36], but incor-
rect auxiliary information may mislead predictors and
lead to worse predictions. However, we hardly distin-
guish whether the information is correct or not before
the complex structure is experimentally solved. In this
work, we present a softly restricting method of using
biological information in which we constrain receptor
and ligand partially within the predicted binding sites.
Using our ASPDock algorithm with softly restricting
method, we participated in two rounds of Critical
Assessment of PRediction of Interactions (CAPRI) [37].
There are 3 targets (T40, T41, and T42) in rounds 18
and 19. We got high-quality hits for T40 and T41 and
the best LRMSD were 2.35 Å and 1.41 Å, respectively.

Results and Discussion
Free Energy Calculation
The ASP used here is from Zhou and co-workers [24],
which contain only six atom types. It proved to be suc-
cessful in predicting binding free energy of complexes.
ASP model assumes that the solvation energy of an
atom or an atom-group is proportional to its solvent
accessible surface area (ASA). Accurate calculation of
ASA, which depends on the conformation of proteins or
complexes, is a time consuming job. In order to meet

the speed of the FFT-based docking method, we propose
an approximate FFT method to calculate the ASA and
so ASP values (see the section “Methods”).
We first test our method on the 21 protein complexes

[24], whose binding free energies have been measured
experimentally. For each complex, we perform a bound
docking and select the best structure close to the native
state. Usually the LRMSD between the best structure
and native structure is less than 0.5Å, and so we con-
sider the ASP score of the best structure as that of the
native structure. Using similar method we can calculate
the shape complementarity score for each of the 21
complexes. Obviously, if we set all ASP values equal to
one, what we calculated in our method is the shape
complementarity score.
We compared the ASP and shape complementarity

scores with the experimental binding free energy for
each of the 21 complexes. The correlation coefficient
between the ASP scores and experimental binding ener-
gies of the 21 complexes is 0.6868, and that between the
shape complementarity scores and experimental binding
energies is 0.4843 (Figure 1). In Zhou’s work [24], the
correlation coefficient between the ASP scores and
experimental binding energies of the 21 complexes is
0.83 since they used a more accurate method to calcu-
late the ASA than us. This shows that our approximate
method can count most part of the binding free energy
and is better than pure shape complementarity method.
The later is easily understood because the shape com-
plementarity is a reduced ASP model by taking all
atoms as the same.

Benchmark Calculation
Our algorithm is further tested on the benchmark 3.0
[38] by using both the ASP and shape complementarity
scores. There are 124 protein-protein complexes, which
contain 24 antibody-antigen complexes, 35 enzyme-inhi-
bitor complexes and 65 other complexes. In the docking
sampling stage, we use 10 degree as a step for the rota-
tional scanning. Success in top N predictions is defined
as that at least one acceptable hit is found in top N pre-
dictions. Acceptable hits stand for those predicted com-
plexes with ≤ 10Å LRMSD with respect to the native
complex structure. LRMSD is the RMSD between the
predicted and native ligand molecules after superposing
predicted and native receptor molecules. No predicted
and experimental information is used in the docking
process. Result shows that ASP method enhances the
success rate significantly (Figure 2) in comparison with
shape complementarity score.
As in other docking methods, the prediction of

enzyme-inhibitor complexes has a higher success rate
than antibody-antigen complexes and other complexes.
That is mainly because enzyme-inhibitor complexes
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usually have better interface features than other types of
complexes [39]. Success rate of antibody-antigen com-
plexes is not as high as in some other methods [5,7,40].
However, complementarity determining regions (CDR)
of antibodies can be predicted by sequence [41]. If we
utilize this (CDR) information, success rate of antibody-
antigen complexes should be enhanced dramatically. In
general, ASP method can enhance the success rate
significantly.
We also compared our results with the popular dock-

ing algorithms FTDock [5] and ZDock [7,8] using the
Benchmark 3.0 (Figure 2B and also Additional file 1).

The former can be used to compare the performance of
ASPDock relative to a pure shape complementarity
method and the later can be used to judge the perfor-
mance of a single ASP score relative to the best docking
method integrating many important factors of protein
interactions. The results show that the ASP score indeed
gives higher success rate than the pure shape comple-
mentarity score of FTDock but lower success rate than
ZDock. The former shows that “ASP complementarity”
is more reasonable for describing the interface character
of protein-protein interaction than pure shape comple-
mentarity. The later is expected because ASPDock is

Figure 1 Correlation between experimental free binding energy and docking score. (A) Correlation between experimental free binding
energy and shape complementarity score. (B) Correlation between experimental free binding energy and ASP score. Calculation of shape
complementarity score and ASP score are both based on FFT method. Grid step is 1 Å here.

Figure 2 Success Rate on benchmark 3.0. (A) Success Rates of ASPDock method on antibody-antigen complexes, enzyme-inhibitor complexes,
other complexes and total complexes, respectively. (B) Success Rates of ASPDock, GeoDock (Shape complementarity docking using ASPDock
algorithm), FTDock and ZDock3.0 methods on the benchmark 3.0.
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only to search a more physical model of pure shape
complementarity for protein docking and needs integrat-
ing more important factors of protein interactions to get
a higher success rate of prediction.

CAPRI Rounds 18-19
Using our ASPDock and softly restricting method, we
participated in the CAPRI rounds18 and 19, which con-
tain three targets, T40 in round 18 and T41, T42 in
round 19. We got one high quality prediction for each
of T40 and T41 (Figure 3), but no correct prediction for
T42. During the docking procedure, we searched the
structural space in 5 steps as follows: (1) Searching the
binding site information of receptor and ligand from lit-
erature; (2) Scanning the six dimensional space by using
ASPDock method with the amplified ASP valuesri; (3)
Picking out the top 2000 structures, clustering them and
choosing the structures ranking first in each of the top
20 clusters. In this step, the structures are ranked
directly according to their ASP values. (4) Refining the
20 structures using RosettaDock [14] and obtaining a
set of new structures; (5) Re-ranking the structures
using scoring function, clustering them, and then choos-
ing the structures ranking first in each of the top 10
clusters. The scoring functions we used are Rossetta-
Dock [14] and DECK(Shiyong Liu and Ilya Vakser,
submitted). The weight of RossettaDock and DECK
scores is 1:1.

The target T40 (Figure 4) is a complex between
bovine trypsin (1BTY) and the double-headed arrow-
head protease inhibitor API-A (bound). Some important
information shared by Dr. Weng from Boston University
shows that the two active sites of the inhibitor are
Leu87 and Lys145 (Figure 4A). We incorporated this
information into the ASP docking of T40 by using a
softly restricting docking method with the amplification
factor a being set as 3. For comparison, we also did a
totally free docking without using any information of
binding sites by shape complementarity method (Figure
4B) and by ASPDock method (Figure 4C). Although free
docking can find some structures binding at the residues
Leu87 and Lys145, softly restricting ASP docking can
greatly enhance the sampling around them (Figure 4D).
There is one high quality and six medium hits in our
ten submitted structures. The best LRMSD between our
hit and experimental measured structures is 2.35 Å.
T41 is the DNase domain of colicin E9 (G95C

mutant) in complex with the Im2 immunity protein
(C23A/E31C mutant). The unbound coordinates pro-
vided are: E9 DNase domain (1FSJ) and Im2 from the
NMR ensemble (2NO8). We got one high quality hit
and eight acceptable hits in our ten submitted struc-
tures. The best LRMSD is 1.41 Å (Figure 3).
T42 is a symmetric homodimer and designed based on

Lynn Regan’s idealized TPR (1NA3). Residues 1-4 and
108-125 are disordered. We didn’t get any acceptable

Figure 3 Native and predicted structures of T40 and T41 in CAPRI. Our submitted structures are represented by mass center model. Blue
balls represent incorrect structures, yellow balls represent acceptable hits, magenta balls represent medium hits and red balls represent high
quality hits.

Li et al. BMC Bioinformatics 2011, 12:36
http://www.biomedcentral.com/1471-2105/12/36

Page 4 of 9



hits of this target (in fact there were only few hits in all
predictions from the groups that participated in this
CAPRI round).

Conclusions
We proposed an easy way to incorporate ASP model
into FFT protein-protein docking method, which can
calculate the solvation energy approximately but quickly.
This ASPDock method is reduced the FFT docking
method of pure shape complementarity when the ASP
values of all atoms are set to be 1. The scores of
ASPDock reflect solvation energy, which has proved to

be the most significant energy among all kinds of ener-
gies in binding free energy. On the contrast, pure shape
complementarity has no clear physical meaning. Our
results indicate that the ASPDock method can enhance
the prediction accuracy significantly in comparison with
the pure shape complementarity method.
A softly restricting method was also proposed to

incorporate the predicted binding sites into the
ASPDock method. This method is more reasonable than
the strictly restricting method, which will definitely miss
the correct complex structure when the information is
incorrect.

Figure 4 Results of CAPRI T40 predicted by different methods. Top 3000 structures obtained by ASPDock with and without the information
of predicted binding sites. Green protein is the double-headed arrowhead protease inhibitor (API-A). Orange residues are the key residues,
Leu87 and Lys145. Small balls are mass centres of ligands. There are 3000 ligand-mass centres in each figure, representing top 3000 structures of
ligands. The ASP scores are ranked form red to blue color. (A) Native structure of T40. (B) Top 3000 ligands generated by shape complementarity
method. (C) Top 3000 ligands generated by ASPDock method. (D) Top 3000 ligands generated by softly restricting ASPDock method.
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Methods
ΔG Calculation using ASP
Solvation energy of a complex is strongly correlated to
its binding free energy. ASP model, first proposed by
Eisenberg and McLachlan1 [25] in 1986, is one of the
most successful models for solvation energy calculation.
ASP model assumes that the solvation energy of an
atom or an atom-group is proportional to the area of its
solvent accessible surface and so the total solvation
energy of a molecule is

ΔG Ai i

i

= ∑ (1)

where Ai is the solvent-accessible surface area (ASA)
of atom i and si is the ASP value of atom i, which can
be determined experimentally. Although both analytical
[42-45] and numerical [46-48] methods have been devel-
oped, accurate calculation of the ASA, which depends
on the conformations of proteins or complexes, is still a
time consuming job. In this work we propose alternative
approach to estimate the ASA quickly and approxi-
mately in order to meet the speed of the FFT-based
docking method.
In FFT-based docking method, proteins are projected

onto three dimensional grids (Figure 5). We define the
space between molecular surface and accessible surface
as a shell. The thickness of this shell is the radius of a
solvent molecule, which is 1.7Å for water. We assume
that the ASA Ai is proportional to the number Ni of the
grids occupied by the shell of atom i. If the ASP value
of these grids is si, we have

ΔG A Ni i

i

i i

i

= ∑ ∑  (2)

Obviously  i i
i

N∑ represents not an absolute but

a relative value of ΔG, and the accuracy could be

controlled by the grid size. Smaller grid size leads to a
higher accuracy. Using this approximation, we can
quickly evaluate ΔG of proteins.
ΔΔG calculation using ASP
In order to evaluate stability of a protein complex, we

need to calculate the binding energy of complexes ΔΔG,

ΔΔ Δ Δ ΔG G G G= − +Complex Receptor Ligand( ) (3)

where ΔGReceptor, ΔGLigand and ΔGComplex are the solva-
tion energy of receptor, ligand and complex, respectively.
For rigid docking problem, the receptor and ligand

have no conformational changes during the formation of
complex and the calculation of ΔΔG is much simpler
(Figure 6). We only need to calculate the ASP values of
atoms on the buried surface, i.e.,

ΔΔ Δ Δ ΔG G G G
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Here TS, BS and US denote the total surface, buried
surface and unburied surface, respectively. In this work,

we use FFT method to calculate  i i
i

BS
N∑ . It is noted

that  i i
i

BS
N∑ describes the pure shape complementarity

if si is set to be 1 for all atoms.

Figure 5 Calculation of ASP scores using grids. (A) a, b and c
represent different atoms or atom groups, P is the probe molecule,
dashed line shows the solvent accessible surface, different colors
stand for different ASP values. (B) Projecting these atom groups
onto grids, we can calculate accessible surface area approximately
by counting grids occupied by the shells of atoms or atom groups.

Figure 6 Schematic of ΔΔG calculation. Unburied surface keeps
unchanged during association in rigid body docking and we can
evaluate ΔΔG by only calculating ASP values of the atoms on the
buried surface.
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Fast Fourier Transform
In FFT docking method, receptor and ligand are mapped
to three dimensional grids of N × N × N nodes, respec-
tively. The grids occupied by receptor surface, inside
receptor, and outside receptor are set as a value of 1, -15,
and 0, respectively. The grids occupied by ligand and out-
side ligand are set as 1 and 0, respectively.
In our ASPDock, receptor and ligand are described by

two discrete functions in the same way as follows:

R l m n iASP( , , ) ,= +
 ASP value,   on the surface

             i nnside of the molecule

        0,           outside of the mmolecule

 ASP value,   on the surface

    

⎧
⎨
⎪

⎩
⎪

=L l m nASP( , , )           inside of the molecule

        0,           o

 + i,

uutside of the molecule

⎧
⎨
⎪

⎩
⎪

where (l,m,n) is the grid node coordinates. ASP value
used is from Zhou’s work [24], which is simple and
effective. The value of r is a penalty for protein overlap,
setting from -20 to -40 that doesn’t change the results

significantly. i = −1 is the imaginary unit.

If ΔASP is defined as the change of ASP values by
docking,

ΔASP ASP ASP ASPreceptor ligand complex= + − , (5)

the score of ΔASP can be calculated using the correla-
tion function:

S R l m n L l m nASP ASP ASP

n

N

m

N

l

N

( , , ) Im ( , , ) ( , , )     = + + +
===

∑∑∑ 
111

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (6)

where Im [ ] denotes the imaginary part of a complex
function. a, b, g are the numbers of grid steps by which
ligand L is shifted with respect to receptor R in each
dimension. SASP is positive, zero or negative depending
on if there is contact, no contact or overlap between the
receptor and ligand after shift. The tolerance of overlap
is controlled by the penalty factor r.
Calculating correlation of two functions directly is a

lengthy procedure, which needs N3 multiplications and
additions for each of the N3 possible shifts, and results
in totally N6 calculations. We use FFT method to accel-
erate this stage, as in other works.

S
N

IFT IFT R DFT LASP ASP ASP= ⎡
⎣⎢

⎤
⎦⎥

Im ( ( ) ( ))
1

3  (7)

Here the Discrete Fourier Transform (DFT) and
Inverse Fourier Transform (IFT) can be calculated
rapidly by using fftw library. Before translational scan,

the ligand should be rotated in 360 × 180 × 360 degree.
Here we use Lattman’s method to delete the redundant
angles [5,49], which enhances the efficiency significantly.
After the total scan of transition and rotation, we rank

the complexes by their ASP scores in two steps. Firstly,
we rank the complexes in each orientation and pick the
top N out. Secondly, we rank all the top N complexes
together. N could be set from 1 to 10. If N is larger
than 10, there will be many similar complexes, which
may have no benefit in enhancing success rate of predic-
tion and sometimes even make correct complexes rank
worse.

DECK (Distance and environment-dependent coarse-
grained) Scoring Function
Based on Dockground (http://dockground.bioinformatics.
ku.edu/), Liu and Vakser developed a low-resolution scor-
ing function for protein-protein docking (Shiyong Liu and
Ilya Vakser, submitted). Each residue is represented as
one pseudo-atom, the “centroid"of the side chain. The
optimal reference state was selected according to the suc-
cess rate of testing on a public available decoy set (http://
dockground.bioinformatics.ku.edu/UNBOUND/decoy/
decoy.php).

Softly Restricting Method
Predicted binding sites can be used to restrict the range
of docking sampling and enhance success rate of predic-
tion. This has been done in two ways, using as a post
scan filter [3,18,50-52] and integrating into the scanning
stage [33,53]. However, the predicted binding sites may
be incorrect. This will make the docking prediction
completely wrong and much worse than without using
the predicted information.
To avoid this problem, we use a softly restricting

method to use the predicted information. We amplify
the ASP values of the residues belong to the predicted
binding sites by a factor a and keep the values of other
residues unchanged. The ASP values amplified ri are
represented as


 
i  

if atom i belongs to the predicted binding 
=

⎧
⎨
⎩

 i

i

,

,

ssites

other atoms
(8)

If a is set as infinity, the docking sampling will be
completely restricted to the range of the predicted bind-
ing sites. However, if the value of a is finite, the sam-
pling is still allowed around the whole surface of the
molecules. Thus, even if the predicted binding sites are
wrong, we still have the chance to find the correct dock-
ing conformations and the success rate will not decrease
significantly.
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Additional material

Additional file 1: Docking performance of different programs. The
additional file 1 is a table that contains the detailed data of Figure 4B,
i.e., the success rates of ASPDock, GeoDock (Shape complementarity
docking using ASPDock algorithm), FTDock and ZDock3.0 methods on
the benchmark 3.0.
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